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Plastic Yielding as a
Phase Transition

A statistical mechanical theory of forest hardening is developed in which yielding arises
as a phase transition. For simplicity, we consider the case of a single dislocation loop
moving on a slip plane through randomly distributed forest dislocations, which we treat
as point obstacles. The occurrence of slip at the sites occupied by these obstacles is
assumed to require the expenditure of a certain amount of work commensurate with the
strength of the obstacle. The case of obstacles of infinite strength is treated in detail. We
show that the behavior of the dislocation loop as it sweeps the slip plane under the action
of a resolved shear stress is identical to that of a lattice gas, or, equivalently, to that of
the two-dimensional spin-} Ising model. In particular, there exists a critical temperature
T, below which the system exhibits a yield point, i.e., the slip strain increases sharply
when the applied resolved shear stress attains a critical value. Above the critical
temperature the yield point disappears and the slip strain depends continuously on the
applied stress. The critical exponents, which describe the behavior of the system near the
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critical temperature, coincide with those of the two-dimensional spin-% Ising model.

1 Introduction

The aim of this paper is to show that yielding in crystals may be
understood as a phase transition, and to establish conceptual links
between theories of crystalline slip and the theory of critical
phenomena.

A phase transition occurs in a system when there is a singularity
in its free energy or one of its derivatives. Phase transitions
manifest themselves as sharp changes in the properties of the
system. Examples of phase transitions are the evaporation of a
liquid into gas, the transition from a normal conductor to a super-
conductor, or from paramagnet to ferromagnet. The theory of
critical phenomena is a well-developed discipline which delves on
the commonalities in the behavior of seemingly disparate physical
systems near their critical points. The theory has been successfully
applied to a wide variety of systems and has led to the identifica-
tion of universality classes obeying well-defined scaling laws (see,
e.g., Stanley (1971), Binney et al. (1992), and Chaikin and Luben-
sky (1995)).

By contrast, the full potential of the theory of critical phenom-
ena as regards the formulation of macroscopic constitutive theories
for solids, and particularly to the understanding of crystal plastic-
ity, is far from realized at present. The classical KTHNY theory on
the statistical mechanics of ensembles of linear elastic dislocations
in crystals (Kosterlitz and Thouless, 1972, 1973; Nelson and
Halperin, 1979; Young, 1979; Chaikin and Lubensky, 1995) was
mainly intended as a theory of defect-mediated melting and did not
address issues related to the macroscopic plasticity of crystals. In
particular, the KTHNY model of a dislocated crystal, which may
be understood as a vectorial extension of the Coulomb gas model
(Kosterlitz and Thouless, 1972, 1973), is not appropriate for the
study of yielding, plastic flow, and hardening of crystals, as these
phenomena are macroscopic manifestations of the motion of dis-
locations and their interaction with obstacles, More recently, Chr-
zan and Mills (1993, 1994) have argued for a connection between
rates of hardening and critical exponents in L1, intermetallic
compounds, and for the kind of scale invariance which accompa-
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nies criticality in the dislocation pinning-depinning transition in
those materials. Chrzan and Mills pioneering work provides com-
pelling evidence for a link between plastic yielding and criticality,

The work presented in this paper endeavors to demonstrate this
link for the classical forest-hardening mechanism (e.g., Kovics,
1967; Kovacs and Zsoldos, 1973; Cuitifio and Ortiz, 1992). In the
forest-dislocation theory of hardening, the motion of dislocations,
which are the agents of plastic deformation in crystals, is impeded
by secondary— or “forest”— dislocations piercing through the slip
plane. As the moving and forest dislocations intersect, they form
Jjunctions of varying strengths which may be idealized as point
obstacles. The strength of some of these obstacles has recently
been computed by Baskes et al. (1997) and Phillips and Shenoy
(1998) using atomistic models. Moving dislocations are pinned
down by the forest dislocations and require a certain elevation of
the applied resolved shear stress in order to bow out and bypass the
pinning obstacles. The net effect of this mechanism is a steady
increase in the critical resolved shear stress required for macro-
scopic slip to operate, a phenomenon known as “hardening.”

The simplest analytical treatments of the forest-hardening mech-
anism are based on a line-tension approximation. Thus, in these
approaches long-range interactions between dislocation are en-
tirely neglected. Despite its apparent coarseness, this approxima-
tion may be closer to reality than other formulations which pain-
stakingly account for the interaction energy between dislocations,
but fail to account for the formation of low-energy microstructures.
Begin by recalling that the net Burgers vector—or net
“charge”—of a dislocation ensemble must be zero. For instance, in
multipolar arrangements this condition implies that there is an
equal number of positive and negative dislocations in the ensem-
ble. In addition, dislocations often tend to attain low-energy con-
figurations (Hansen and Kuhlmann-Wilsdorff, 1986; Kuhlmann-
Wilsdorf, 1989). These are arrangements in which the long-range
stress field of the dislocations vanishes. Roughly speaking, this is
accomplished by surrounding each dislocation segment with seg-
ments of the opposite sign, i.e., by screening the segment; or by
arranging dislocations as low-angle grain boundaries, dipolar
walls, and other configurations for which the attendant plastic
strains are compatible (Ortiz and Repetto, 1998). Under these
circumstances, the remaining energy of the dislocations, or “self-
energy,” is proportional to the dislocation length, as presumed in
the line-tension approximation.

One of the most successful analytical treatments of the forest-
hardening mechanism was advanced by Kocks (1964) (see also
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Ortiz and Popov (1982) and Cuitifio and Ortiz (1992)), and is
sometimes referred to as Kock’s percolation model. In this ap-
proach, the applied resolved shear stress is equilibrated by the line
tension of the dislocations. The critical stress 7, required for a
dislocation segment to bypass a pair of pinning point obstacles is
proportional to the line tension and inversely proportional to the
distance between the obstacles. If the point obstacles are assumed
to be randomly distributed over the slip plane, it follows that 7,
itself is a random variable with a well-characterized probability
density function f{1.) (Grosskreutz and Mughrabi, 1975; Mugh-
rabi, 1975). As the resolved shear stress is raised from 7to 7 + A7,
all dislocation segments with 7, in the interval {7, T + A7] become
unstable and effect random flights. The length of these flights, and
the attendant slip-strain increment, was estimated by Kocks (1964)
by imagining that the dislocation segments move over a one-
dimensional “obstacle course” consisting of obstacles of random
heights distributed as f(7.). In particular, the segments arrest when
they reach obstacles of strength greater than 7 + Ar.

It is clear that the one-dimensional character of this analysis
represents a sweeping simplification as regards the geometry and
topology of moving dislocation loops. For instance, an expanding
dislocation loop may become pinched, with the result that the
number of connected components of the loop is increased by one.
Conversely, loops can shrink to a point or be left behind as debris
surrounding point obstacles, or Orowan loops. Evidently, these
intricacies are not accounted for in one-dimensional renditions of
the forest-hardening mechanism. More detailed analyses of forest-
hardening have invariably been based on numerical methods
(Foreman and Makin, 1966, 1967). Despite these limitations,
Kock’s percolation model, or subsequent extensions thereof (Ortiz
and Popov, 1982; Cuitifio and Ortiz, 1992; Kocks et al., 1991) has
provided an effective basis for describing the hardening of mate-
rials such as fcc metals (Cuitifio and Ortiz, 1993; Cuitifio, 1996),
L1, intermetallic compounds (Cuitifio and Ortiz, 1993), and oth-
ers.

The theory developed in this paper overcomes the topological
restrictions inherent to one-dimensional treatments of the forest-
hardening mechanism, and establishes a clear link between yield-
ing and criticality. In order to establish this link in the simplest
possible terms, we restrict our attention to the motion of a single
dislocation loop through a slip plane containing a random array of
point obstacles. As discussed above, we assume that the disloca-
tions are well screened and hence their energy is ostensibly pro-
portional to their length. In the spirit of level-set methods, the
dislocation loop is described by a scalar field ¢ which takes the
value of 1 inside the loop and 0 outside the loop. The transition
between these two extreme values occurs over the dislocation line.
In this manner, no restrictions are placed on the evolving geometry
and topology of the loop. In order to simplify the analysis, how-
ever, we discretize the field & on a square lattice spanning the slip
plane. The motion of the loop is impeded by forest dislocations
piercing the slip plane, which we treat as point obstacles. The
occurrence of slip at the sites occupied by these obstacles is
assumed to require the expenditure of a certain amount of work
commensurate with the strength of the obstacle.

The equilibrium properties of the dislocation loop/obstacle sys-
tem may be described within the framework of Gibbsian statistical
mechanics. We show that, once the effect of the point obstacles is
taken into account, the effective Hamiltonian of the system is
identical to that of a lattice gas, or, by a simple change of variables,
to the two-dimensional spin-; Ising model (see, e.g., Yeomans
(1992)). In the parlance of the theory of critical phenomena,
crystals whose plasticity is well described by the forest-hardening
mechanism belong to the universality class of the two-dimensional
spin-5 Ising model. In particular, the behavior and scaling proper-
ties of all such crystals should be identical near the critical point,
and be described by a few material-independent critical exponents.
For zero applied field, the spin-; Ising model was solved by
Onsager (Baxter, 1982), and to date furnishes one of the rare few
examples of nontrivial model systems which can be solved exactly.

290 / Vol. 66, JUNE 1999

In particular, the critical exponents are known exactly for the
two-dimensional spin-} Ising model and, by extension, for the
forest-hardening model developed in this paper.

Systems which can be described by the two-dimensional spin-3
Ising model exhibit a phase transition at a critical temperature 7.
In the particular case of the dislocation loop/obstacle system,
below the critical temperature this transition is signalled by a
sudden increase in the slip strain. For sufficiently low tempera-
tures, the system jumps from a state characterized by a slip strain
close to zero to a state characterized by generalized slip over most
of the slip plane. The critical resolved shear stress at which
yielding occurs follows from the theory as a function of temper-
ature, the obstacle density and material constants. The size of the
slip-strain jump at yielding decreases to zero as the critical tem-
perature is approached from below, and disappears altogether
above the critical temperature. In this latter regime, therefore, the
slip strain depends continuously on the applied resolved shear
stress and no yield point is in evidence. However, examination of
model materials, such as copper, suggests that T, is close to the
melting temperature. Therefore, yielding in these materials is
predicted to persist up to very high temperatures, in keeping with
observation.

Unfortunately, no exact solution is presently known for the
two-dimensional spin-} Ising model in the presence of an applied
field. A simple approximate solution may be obtained by recourse
to mean-field theory. Mean-field theory reveals compelling geo-
metrical insights into the equilibrium properties of the system. In
addition, it suggests the rudiments of a kinetic theory which
accounts for hysteresis. This rudimentary kinetics is in analogy to
that which is envisioned in theories of hysteresis proposed for
wires or bars which undergo martensitic transformations (Abe-
yaratne and Knowles, 1988). It should be emphasized, however,
that the resulting kinetic model represents an extension of equi-
librium statistical mechanics, in as much as it requires additional
assumptions regarding the accessibility of states in phase space.
These restrictions on accessibility clearly violate ergodicity and
place the model outside the realm of equilibrium statistical me-
chanics.

The paper is organized as follows. In Section 2 the Hamiltonian
of the dislocation loop/obstacle system is formulated. This Ham-
iltonian includes terms which account for the self-energy of the
dislocations, computed from the line-tension approximation, the
applied resolved shear stress, and the point obstacles introduced in
the slip plane by forest dislocations. In particular, a chemical
potential is introduced as a device for controlling the density of
point obstacles. In Section 3 the equilibrium properties of the
system are established within the framework of Gibbsian statistical
mechanics. These developments lead to he computation of the
internal and free energies of the system, and the attendant relations
between slip strain, applied resolved shear stress, temperature, and
obstacle density. In Section 4, the nature of the phase transition
and its relation to yielding is uncovered with the aid of mean-field
theory. In Section 5, a simple kinetic theory is developed which
accounts for hysteresis and plastic dissipation. Possible extensions
of the theory and suggestions for further work are discussed in
Section 6. ’

2 Forest Hardening

The aim next is to formulate a simple model of forest-hardening
mechanism which captures the essential physics of the mechanism
while lending itself to a full analytical treatment within the frame-
work of equilibrium statistical mechanics. In the interest of sim-
plicity, we focus on the motion of a single dislocation loop through
a random array of point obstacles corresponding to the intersec-
tions between the slip plane and forest dislocations,

We begin by discretizing the slip plane into a square lattice of
parameter a (Fig. 1). In order to avoid infinite sums, we consider
a square subdomain containing N sites, e.g., with periodic bound-
ary conditions enforced on its boundary. The thermodynamic limit
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Fig. 1 Schematlc of the dislocation/obstacle system

of interest may then be attained by letting N — o and is inde-
pendent of the precise nature of the boundary conditions. Each
pointi = 1, ..., N in the lattice is assigned a variable &, of value
1 if the point is within the dislocation loop and 0 if it is without
(Fig. 1). Thus £, is the characteristic lattice function of the area
covered by the dislocation loop. The lattice function £, may also be
regarded as a two-state field describing the configuration of the
loop. The dislocation line may be identified with the collection of
segments which join lattice sites in different states, i.e., unslipped
lattice sites, £, = 0, with slipped lattice sites, & = 1.

We shall assume that the dislocation loop is well screened, so
that the main contribution to its energy arises from its self-energy.
For. simplicity, we shall assume that the self-energy I' per unit
dislocation length, or line tension, is isotropic, i.e., does not
depend on the local orientation of the dislocation segments. An
estimate for the line tension is (e.g., Hirth and Lothe (1968))

I = CGb? (n

where G is the elastic shear modulus, b is the Burgers vector
length, and C is a constant of order unity. It should be noted that
G is strongly temperature-dependent in general and may be ex-
pected to reduce to zero at the melting temperature.

With these assumptions, the self-energy of the dislocation loop
represented by the field §; is

E= E Ta(é - §j)2 )
[0

where the sum is restricted to nearest-neighbor pairs, and 'a may
be regarded as an “exchange” energy. Indeed, for a straight dislo-
cation aligned with the lattice, it is readily verified that Eq. (2)
gives an energy per unit length equal to I'. If, in addition, the slip
plane is under the action of a resolved shear stress 7, then the total
energy becomes

N
E= 3 Ta(f, - £)*— a’ Y & 3)

) =t

where b is the Burgers vector length and tba? plays the role of an
applied field. The energy (2) is direct analogy to that of a lattice
gas (Stanley, 1971; Yeomans, 1992).

Next we wish to model the effect of forest dislocations piercing
the slip plane and hindering the motion of the loop. We shall
restrict the intersection points to coincide with the lattice sites. A
pinned mobile dislocation is assumed to drag the point obstacle
when the force exerted by the dislocation on the obstacle attains a
critical value f, which may be regarded as the strength of the
obstacle. As the dislocation drags the obstacle one lattice distance,
it does work in the amount fa. Heidenreich and Shockley (Na-
barro, 1967) were the first to make a quantitative estimate of the
work required to cause two dislocations to cross. They showed
that, when two dislocations cut, each acquires a jog with an energy
which they estimated as Gb*. Nabarro (1967) later refined this

Journal of Applied Mechanics

estimate to Gb’/4 1 for each jog or Gb*/2 in all. Using Nabar-
ro’s formula with ¢ = b the strength of a forest obstacle is
computed to be

f=Gb*¥2m. 4)

Since the strength of the obstacles is proportional to the shear
modulus, it may be expected to reduce to zero at the melting
temperature, which accounts for the observed thermal softening of
crystals. For simplicity, we restrict our attention to the case of one
species of point obstacles of uniform strength. Under these as-
sumptions, the total energy of the system becomes

E= ) Ta(¢— &)~ 1ha’ >, &+ fa 2, tm (5)

(i) i=1 i=1

where 1), is 1 if site i contains a point obstacle, and 0 otherwise,
Fig. 1. The four possible states at a site i are, therefore,

1§ =0, n; = 0: the site has not slipped and is not occupied
by a point obstacle; the work done against obstacles is zero.

2 & = 1, m; = 0: the site has slipped and is not occupied by
a point obstacle; the work done against obstacles is zero.

3 & =0, n; = 1: the site has not slipped and is occupied by
a point obstacle; the work done against obstacles is zero.

4 & = 1, m; = 1: the site has slipped and is occupied by a
point obstacle; the work done against the obstacle is fa.

Evidently, the effect of the last term in (5) is to introduce an
energetic barrier to slip across obstacles. This barrier effectively
pins the dislocations and forces the dislocation loops to bow out
between obstacles, which is the desired effect.

Finally, we wish to have control on the number of point obsta-
cles

N
n= )
i=1

populating the slip plane. A conventional means of accomplishing
this control is to introduce a chemical potential u, whereupon the
total energy becomes

N
E= Y Ta(t - &) — tha® 3, &

(i) i=1

N N
+fa D Emi—p > M (T
i=1

i=1

This energy constitutes the basis for all subsequent developments,
and is the centerpiece of the present theory.

3 Equilibrium Thermodynamic Behavior

We proceed to explore the equilibrium properties of the dislo-
cation loop/obstacle model introduced in the foregoing. According
to the fundamental principle of equilibrium statistical mechanics
(Feynman, 1972), the probability that a system in equilibrium be in

astate £ = {&, ..., & and g = {n,,..., nu} is
1
p(§ M) = e PHEW (®)
where
1
B:ﬁ- )

k is Boltzmann’s constant, T is the absolute temperature, and
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&€fo,1}

DEEDY

eve{0,1} me{0,1}

(10)

is the partition function. The thermodynamic properties of interest
follow directly from Z. For instance, the internal energy per unit
volume is

U= 1 . 1 dlogZ "
SZIMY T T8 (b
whereas the free energy per unit volume is
P 1 i 1 log Z 1
- a21 NI_I)I:O N B . ( )

Here [ is the distance between slip planes. The expected number of
point obstacles per unit area follows as

OF
lim — = —]— 13
2 lim <2 )= ~lg (13)
and the slip strain is
b1 & oF
y=7lm g2 6= -5 (14)

i=1

In addition, the mobile dislocation length p on the slip plane per
unit volume of the crystal is given by

— lim <2 (& -

Ly N )

&% = (15)
As may be seen, this dislocation density is closely related to the
two-point correlation function of the slip distribution.

The partition function corresponding to enetrgy (7) may be
evaluated as follows. The sum over the obstacle occupancy field n
is trivial and gives

N
Z= > o > e PEOT][1 + ¢ Pletw]

&e{o,1} &ve{0,1} i=1

(16)

where E(£) is given by (3). Alternatively, (16) may be recast in the
form

z= 3

&€{0,1}

> exp{ —B[E(g)

evef0,1}

-~ é— > log (1 + e-f*(f"ﬁ'f“)H . an

i=1
But, since £, takes the values 0 and 1 only, we can write
log (1 + e PUE~m) = log (1 + ¢ ~FUa m) g,

+log (1+eP)(1-¢), &eE{0,1}. (18)

Inserting this identity into (17) gives

Z=(1+ef" 3

£€{0,1}

S exp{—B[Y Talt, - £)2— € >, &1} (19)

eve{0.1} {igh i=1

where

20

1+ e Bla—m
1+ ePr )

1
€= tha*+ = lo (
B g
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It is possible to reduce (19) to a familiar form by the following
change of variables:

s;=2&-1 21
Ta

J= 5 22)
€

H= 7 (23)

The new state variables s; take the values {—1, 1} and may be
regarded as local “spins’.” Within this “spin gas” analogy, J may
be regarded as an exchange energy, (£ as the magnetization, and
H as an applied field. Inserting these definitions into (19) gives

Z = (1 + ePr)Ne PUTHN Zm (K, h) (24)

where
K=pJ (25)
h=BH (26)

and
Zising — 2 2 o ~BES(s) 27
=l ay=zd
N

Eis(s) = =K > si5;,— h Dy 5 (28)

(¢8] i=1

are the partition function and energy of the two-dimensional spin-3
Ising model. Substitution of (24) into (12) gives the free-energy
density of the loop/obstacle system as

1 1
—;Tl{—ﬁ—log(l +eB“)+J—H} + FSn(K ), (29)
Thus, the equilibrivm properties of the looplobstacle system are
closely related to those of the two-dimensional spin-; Ising model,
which are well understood at present (e.g., Baxter (1982)).
Subsequent calculations may be simplified by the introduction
of the following dimensionless variables:

t = Brba® (30)
¢ = BFa’l (32)
We also note the identities
- b%
= lim D= " 33
® NLwN<,.=E,§> e (33)
r—hmﬁ@(&, ) 2>——@ (34)
N 0
<n>—hm—<2 ") = (35)
i=1
which follow from (13), (14), and (15) with
b
,ysat - _ (36)
1
sat — ___
P = (37)
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(38)

Evidently, these are: the saturation slip strain which is attained
when the loop sweeps the entire slip plane; the saturation disloca-
tion density which is obtained, e.g., when the dislocation popula-
tion consists of parallel straight dislocations at a distance a; and
the saturation obstacle density, which is obtained when the forest
dislocations intersect the slip plane through every lattice site. We
also note that (£) plays the role of a normalized slip strain, r the
role of a normalized dislocation density, and (n) the role of a
normalized obstacle density, all ranging from O to 1. In terms of
these variables (29) becomes

e=—log(l +e™ +K—h+ o™ (K, h) 39)
with
h= . 1 1+e”
=55 log(1+e”) (40)
whereas (13), (14), and (15) simplify to
d¢
(©=->" @1)
1 de¢
r=713% 42)
d¢
(m=-=". “3)

This last relation may be inverted to determine the chemical
potential m as a function of the obstacle density (7).

4 Criticality and Yielding

Criticality underlies and unifies a number of important physical
phenomena such as the transitions from liquid to gas, from a
normal conductor to a superconductor, and from paramagnetic to
ferromagnetic behavior (e.g., Stanley (1971), Feynman (1972),
Yeomans (1992), Binney et al. (1992), and Chaikin and Lubensky
(1995)). As is well known, the phase diagram of the two-
dimensional spin-§ Ising model exhibits a phase transition (e.g.,
Yeomans (1992)). In the present theory, this phase transition
provides a model for the yield phenomenon in crystals.

Unfortunately, the two-dimensional spin- Ising model with
nonzero field has not been solved analytically. The numerical
calculation of F*" offers no particularly difficulties and is exten-
sively discussed in the literature (e.g., Binder, ed. (1986, 1987) and
Koonin and Meredith (1990)). Here, however, in order to obtain
explicit results we shall resort to a mean-field approximation
(Yeomans, 1992; Chaikin and Lubensky, 1992). We begin by
introducing an effective or mean-field energy of the form

N
Ey=—Hy 2, s (44)
i=1

and we seek to optimize the value of the effective field H,. To this
end, we recall Bogoliubov’s inequality

11
F5F0+1£2Na_2l'<E—Eo>o (45)

where F is the free energy per unit volume, Eq. (12), correspond-
ing to the original energy E, the average { * ), is taken with respect
to the mean-field probability,

1
Pols) = 5 e P (46)
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h

0

Fig.2 Bogoliubov’s function f(h,) shown in the zero applied field case,
h=0

Zo= D oo D e BEW

s1=*1

47

sN=*1

and F, is the free energy per unit volume corresponding to the
mean-field energy E,. Inequality (45) holds for any choice of
energy E, (e.g., Feynman (1972)), with the equality sign attained
for E, = E. Inserting (28) and (44) and using normalization (32)
and (26), the bound in (45) becomes

fhy) = 3RS — k log (cosh hy) — hhy, (48)

The optimum value of the effective field &, is identified with the
absolute minimizer of f(h,). The resulting mean-field free energy
for the two-dimensional spin- Ising model with nonzero applied
field is (cf. Yeomans (1992)):

@™ =~ min f(he) = —log (2 cosh k) + % Kz tanh? A,

ho

(49)

where z is the coordination number of the lattice, e.g., z = 4 for
the square lattice. A trite but straightforward calculation of (41),
(42), and (43) using (49) gives

(&) =5 (1 + tanh hg) (50)

z 2
r=§(1 — tanh? hy) 620
{n) =1 (1 — tanh hy) T (52)

Equations (50) and (51) yield the normalized shear strain and
dislocation density, respectively, whereas (52) can be used to
eliminate the chemical potential m in favor of the obstacle density
{n).

The function f{h,), Eq. (48), is shown in Fig. 2 for the zero
applied field case, A = 0. It is seen from this figure that f{k,) is
convex in the supercritical regime K < K, where

1
K.=~ (53)
defines a critical value of K. By contrast, in the subcritical regime,
K > K., f(h,) is nonconvex and exhibits two minima, or wells,
separated by a maximum. It is therefore expected that the behavior
of the system will differ sharply in the two regimes, and that the
condition K = K, signals the onset of a phase transition. The
corresponding critical temperature is
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and, thus, the subcritical and supercritical regimes correspond to
the temperature ranges T < T, and T > T, respectively.

As a check on the accuracy of the mean field approximation it
may be noted that the exact critical point of the Ising model on a
square lattice (z = 4) at zero applied fleld is K, = ilog (1 +
V2) = 0.44069, whereas the mean-field critical point is K, = 4
which is somewhat lower than the exact value. The mean-field
critical exponents also differ from those obtained from an exact
treatment of the Ising model. Despite these discrepancies, the
mean-field theory does furnish a simple and analytically tractable
model which exhibits a phase transition, and thus suffices to
demonstrate the connection between criticality and yielding pur-
sued here.

The extrema of the function f(A,), Eq. (48), are the solutions of
the secular equation

h = hy — « tanh h,,. (55)
Here and subsequently we write
k=Kz= o (56)

The solutions of Eq. (55) in turn correspond to the intersections
of the function h, — k tanh h, with the horizontal line of height
h (Figs. 3(a) and 3(b)). It is clear from these figures that (/) has
a single minimum #, in the supercritical case T > T, (Fig. 3(a),
point A), and that k, depends continuously on 4. In view of (50),
(51), (52), and (40) it follows that the slip strain and the dislocation
density are continuous functions of the applied resolved shear
stress and no yielding occurs in the supercritical regime.

The subcritical or low-temperature equilibrium behavior of the
loop/obstacle system is more eventful and may be characterized as
follows. The function s, — k tanh A, attains the maximum

h, = acosh \Jk — \k(k — 1) 57

at hy = acosh Vk. In the range h < —h,, which by virtue of Eq.
(40) corresponds to a low applied shear stress ¢, Eq. (55) has a
unique solution &, (Fig. 3(b), point A). An increase in 4, €.g., due
to an elevation in the applied resolved shear stress ¢, results in a
corresponding increase in k2, and (&). In the range —h, < h < h,,
the horizontal line at A intersects the function , — k tanh A, at
three points, Fig. 3(b), corresponding to three extrema of f(h,). Of
these extrema, the central point is a maximum and the remaining
points are minima. Of these two minima, the left point s, < 0is
the absolute minimizer in the range A < O (Fig. 3(J), point B), and
the right point 4, > 0 is the absolute minimizer in the range 4 >
0 (Fig. 3(b), point C). The point of exchange of stability is,
therefore, & = 0, at which point the effective field A, jumps
discontinuously to a larger value. This jump is accompanied by a
sudden increase in slip activity and may, therefore, be identified
with the yield point of the system. In the range A > h,, corre-
sponding to a high applied shear stress ¢, Eq. (55) has again a
unique solution A, (Fig. 3(b), point D).

It may be noted that, at zero temperature, the yield transition just
described is in analogy to solid-solid phase transitions in bars and
wires, and the applied field & = O plays a role analogous to the
Maxwell stress (Ericksen, 1975; James, 1979). This analogy will
be exploited further in Section 5 with a view to formulating a
simple kinetic theory which accounts for hysteresis and plastic
dissipation.

The critical resolved shear stress corresponding to the yield
point & = 0 follows from Eq. (40) as

t,=log (1 +e™). (58)
Equivalently, ¢, may be rewritten in terms of the obstacle density
using (52), with the result
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hy- X tanh h,
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Fig. 3 Mean-field construction for the determination of the effective
field h, from the applied field h. (a) Supercritical case x = }; (b) subcritical
case k = 2.

2(m)
fe = ~log (1 - manv) G
where h, is the positive root of the equation
ho = k tanh hy = 0. (60)

It follows from this relation that the critical resolved shear stress
vanishes in the absence of point obstacles, {n) = 0, and diverges
to infinity at the “percolation limit”

1 + tanh A,
m=—7 (61)
As the critical temperature is approached from below, one has
that /. — O and the percolation limit is attained when one-half of
the lattice sites are occupied by obstacles. In the opposite extreme
of zero temperature, the root A, diverges to infinity and the
percolation limit is attained when all lattice sites are occupied by
obstacles.

Figure 4 displays the equilibrium properties of the system in the
subcritical regime T < T.,. The evolution of the slip strain (£) with
applied resolved shear stress ¢ is shown in Fig. 4(a) for three values
of the obstacle density (). As expected, the critical resolved shear
stress hardening rate increase with obstacle density. Figure 4(b)
shows the dependence of the chemical potential m on the slip
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Fig. 4 (a) Normalized resolved shear stress t = frba®; (b) normalized chemical potential m = Bu; and (c) normalized
dislocation density r = pa® versus the normalized slip strain (£) = v/(b/!) for three values of the normalized obstacle

density () = ca?® In the subcritical regime, 1« = 2

strain and obstacle density. It is seen from the figure that the
chemical pontential is an increasing function of the obstacle den-
sity. It is also interesting to note how, as the slip strain and,
consequently, the energy of interaction between the dislocation
loop and the obstacles increases, it becomes necessary to compen-
sate by raising the chemical potential in order to maintain the
number of obstacles constant. The variation of the dislocation
density with slip is also noteworthy (Fig. 4(c)). During the early
stages of loading, the dislocation density r is close to zero. In this
stage, the mobile dislocation population consists of small loops
covering a small area fraction of the slip plane. Physically, these
loops emanate from dislocation sources, which we assume to be
plentiful and easy to operate. In the neighborhood of the yield
point, the mobile dislocation density explodes to accommodate the
rapidly increasing slip strain, attains the maximum z/8, and sub-
sequently decreases monotonically to zero as dislocation dipoles
annihilate. As the slip strain nears its saturation value, the dislo-
cation population consists of small debris, or Orowan, loops sur-
rounding the forest obstacles, slip having occurred everywhere
outside the loops.

If follows from the preceding discussion that the critical point
T = T. is marked by divergences in the zero-field specific heat

Journal of Applied Mechanics

c < i U) (62)
H™\ 31
T/,
and the plastic compliance
dy
Xr = <;) R (63)

The precise understanding of these divergences, and more gen-
erally of the behavior of the system near the critical point, has been
one of the principal objectives of the theory of critical phenomena.
Near the critical point, it is convenient to introduce the variable

-1,

0 T,

(64)

which measures the deviation in temperature from 7,. Then one
has (Yeomans, 1992)
Cy~101%,

(H=0) (65)

y~(—0)F (H=0) (66)
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Table 1 Exact critical exponents for the two-dimensional
spin-} Ising model and mean-field approximation

Exponent a B y o
Ising 0 (log) s 714 15
Mean field 0 172 1 3
Xz~ 1617 (H=0) (67)

H~Iylisgn(y), (T=T) (68)

for some critical exponents @, B, ¥, and 8. As noted earlier, the rate
of growth of the dislocation density p also diverges at yield. It may
be shown (Yeomans, 1992) that the sum of the correlation function
over site pairs involved in Eq. (15) is proportional to the plastic
compliance y. It therefore follows that the characteristic exponent
for p coincides with the characteristic exponent for x,, namely 7.
The characteristic exponents obtained by an exact treatment of the
Ising model and from the mean-field approximation are collected
in Table 1. It should be noted that the mean-field exponents
generally differ from the exact values.

Critical exponents are important because they afford a classifi-
cation of critical phenomena into universality classes. They also
define scaling relations between various thermodynamic quantities
near the critical point. Striking evidence of universality was pro-
vided by Guggenheim (1945), who showed that the coexistence
curves for eight different fluids near the critical point, when plotted

in terms of reduced variables, collapse into a universal curve which °

can be described by a characteristic exponent. In a similar manner,
whereas T, and other aspects of the hardening of single crystals
may vary widely between materials, the characteristic exponents
should be universal and therefore define material-independent
scaling relations between quantities of interest, such as the critical
resolved shear stress and the obstacle density.

5 A Simple Kinetic Theory

The equilibrium properties of the dislocation loop/obstacle sys-
tem described in the foregoing rest critically on an assumption of
ergodicity, i.e., the assumption that the system is free to explore
the entire phase space and that all states are accessible from all
other states regardless of any intervening energy barriers. Under
these assumptions, the behavior of the system is reversible.
Whereas instances of reversible dislocation motion exist, e.g., the
“flip-flop” of Taylor lattices in fatigue crystals (Kuhlmann-
Wilsdorf, 1979), the plasticity of single crystals is most commonly
observed to be irreversible and to be accompanied by hysteresis
and dissipation.

The mean-field approximation developed above, in conjunction
with its analogy to solid-solid phase transitions (e.g., Ericksen
(1975)), affords the following simple model of hysteresis. Con-
sider a loop/obstacle system below the critical temperature. As in
the equilibrium case, the effective field &, is assumed to minimize
the Bogoliubov function f(k,), Eq. (48). In the range 2 < —h, the
minimizer is unique (Fig. 5, point A). Imagine now increasing the
applied field # monotonically above the point h = —#k, (Fig. 5,
point B). In the range —h, < h < h,, the function f(h,) has two
minima. Of these, the leftmost point, 2, < 0, is the absolute
minimizer in the range A < 0. As noted earlier, the absolute
minimum shifts to the positive axis, &, > 0, for 2 > 0. However,
we may argue that this exchange of stability is impeded by the
intervening maximum of the function f(h,), which plays the role
of an energy barrier, and that, in consequence, the leftmost mini-
mizer h, < 0 is the only state accessible to the system (Fig. 5,
point B). In the range A > h, the function f(h,) has a unique
minimizer A, > 0 (Fig. 5, point E). Therefore, it follows that %,
must jump discontinuously at the critical point & = h, (Fig. 5,
points C and D), which therefore sets the yield point in the kinetic
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Fig. 5 Mean-field construction including hysteresis and plastic dissipa-
tion. Subcritical case « = 2.

theory. The corresponding critical resolved shear stress, or yield
stress, then follows from (40) as
K — 24k = 1) + log (1 + ™).

t, = 2 acosh (69)

This critical resolved shear stress may be rewritten directly in
terms of the obstacle density () by the elimination of the chemical
potential m with the aid of Eq. (52), with the result

t, = 2 acosh \/;-*2 k(k — 1)

2(m)
1— 1 —-1/k—2n)

Imagine that the process of loading just described, in which the
applied field & is increased monotonically from A to E in Fig. 5, is
followed by unloading, i.e., the applied field is subsequently de-
creased monotonically from E. The fundamental assumption is
that, upon unloading the loading path ABCDE is not traversed in
reverse. Indeed, during unloading the point D defines the absolute
minimum of f(A,) and, therefore, the jump from D to E is not
energetically favorable. Instead, the unloading path is postulated to
be EDGHA, Fig. 5, and involves reverse yielding at A = —h,.
Indeed, at the yield point the effective field #, jumps discontinu-
ously. The net result is a hysteresis loop ABCDEDGHA and the
dissipation of energy as plastic work.

It should be carefully noted that both the hysteresis model and
the accessibility criteria invoked to select minimizers constitute
physical postulates that are formulated in addition to the strict
principles of equilibrium statistical mechanics. In particular, pos-
tulates are introduced regarding what subset of the phase space is
accessible from a given state, with the result that the system is no
longer ergodic. These additional postulates form the rudiments of
a kinetic theory, as attested to by the irreversible and dissipative
character of the predicted behavior.

+10g<1+ ) (70)

6 Summary and Concluding Remarks

We have developed a statistical mechanical theory of forest
hardening in which yielding arises naturaily as a phase transition,
Our focus in this paper has been to identify the simplest possible
model of slip which clearly demonstrates the connection between
yielding and criticality. With this objective in mind, we have
focused on the motion of a single dislocation loop on a slip plane.
We have assumed that the dislocations are well screened so that
their energy is proportional to their length. The motion of the loop
is impeded by forest dislocations piercing the slip plane, which we
treat as point obstacles. The occurrence of slip at the sites occupied
by these obstacles requires the expenditure of a certain amount of
work commensurate with the strength of the obstacle. The case of
obstacles of infinite strength has been treated in detail.

We have shown that the behavior of the dislocation loop as it
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sweeps the slip plane under the action of a resolved shear stress is
identical to that of a lattice gas and, equivalently, to the two-
dimensional spin-§ Ising model. In particular, there exists a critical
temperature T, below which the system exhibits a yield point: The
slip strain increases abruptly when the applied resolved shear
stress attains a critical value. Above the critical temperature the
yield point disappears and the slip strain depends continuously on
the applied stress. The critical exponents, which describe the
behavior of the system near the critical temperature, coincide with
those of the two-dimensional spin-3 Ising model.

It is revealing to compute the transition temperature T, for
specific materials. For the sake of argument let us simply assume
that the shear modulus decreases linearly with temperature and
vanishes at the melting temperatare T, i.e.,

T
G:GO 1—'T—m

where G, is the shear modulus at zero temperature. Inserting this
relation into the expression (54) for the critical temperature yields

(71)

( 1 1 ) !
‘ 1 0 1 m ( )
where
To=K ! o 2 73
0 [+ :!‘ M ( )

Taking copper by way of example, one has G, ~ 40 GPa, b =
2.556A,a~b,k=1380 X 102 JK", C~03,and T, =
1,343 K. With these constants, (73) gives Ty = 16,474 K and
(72) T, = 1,241 K, or 92 percent of the melting temperature. This
example suggests that metals remain within the subcritical regime
and, consequently, exhibit a yield point, up to temperatures very
close to the melting temperature, although the sharpness of yield-
ing should be blunted with increasing temperature. These general
conclusions are indeed in keeping with observation.

Unfortunately, the full effect of temperature on the behavior of
the system cannot be ascertained without knowing the dependence
of the elastic moduli on temperature. Thus, linear elastic estimates
predict the line tension, Eq. (1), and the obstacle strength, Eq. (4),
to be proportional to the shear modulus G, which is itself a strong
function of temperature. Under these conditions, as the crystal
approaches melting G tends to zero and, correspondingly, both the
line tension and the obstacle strength should decrease to zero. This
in turn accounts for the thermal softening observed to occur in
many ductile crystals with increasing temperature.

As stated above, the system defined by a single dislocation loop
moving through forest dislocations has the virtue of exhibiting the
connection between criticality and yielding in the simplest possible
terms. However, in this model the slip displacement is restricted to
be either 0 or b and the maximum slip strain which can be born by
a slip system is (36). By way of contrast, the unconstrained plastic
flow characteristic of the macroscopic behavior of single crystals
requires the simultaneous operation of many dislocation loops on
each slip plane. An extension of the Hamiltonian (7) which ac-
counts for this effect may be obtained by allowing the slip §; at site
i to take any nonnegative integer value. The resulting Hamiltonian,
however, cannot be sotved analytically but should yield to approx-
imation techniques such are mean-field theory based, e.g., on a
mean-field energy of the form (44).

Also in the interest of simplicity, we have given special attention
to obstacles of infinite strength. The treatment of obstacles of finite
strength does not offer any particular difficulties. A more chal-
lenging extension concerns the combined hardening effect of ob-
stacles of different strengths, e.g., such as are introduced by the
activation of more than one secondary system. Foreman and Makin
(Foreman, 1955; Foreman and Makin, 1966) have investigated this
problem numerically, and have characterized the effective strength
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of the obstacles. Here again, an extension of the Hamiltonian (7)
which accounts for more than one obstacle species is

r N
EZZTa(gi_gj)z_Tbazzgi

(i) i=1

s N v
+ 2, 4% 2 Em = u® D . (74)
s=1 =1 i=

Here the sum over s extends to the S species of forest dislocations
contributed by different secondary systems; the variable 1" is 1 if
site i is occupied by an obstacle of type s and is O otherwise; f*’
is the strength of the obstacles of type s; and ' is a chemical
potential to be determined on the condition that the density of
obstacles of type s match a prescribed value. It should be noted
that, in this model, a site i may be occupied by several obstacles of
different species. As in the case S = 1 considered in this paper,
Eq. (16), the sums over the obstacle occupancy fields " are
trivial. The resulting model should provide a precise characteriza-
tion of how obstacles of different strengths cooperate to determine
the hardening characteristics of a crystal.

Other worthwhile extensions of the basic Hamiltonian (7) might
account for the energy required to activate dislocation sources,
e.g., of the Frank-Read type; the Peierls stress required to over-
come the resistance of the atomic lattice to dislocation slip, spe-
cially in materials other than elemental metals where such barrier
is not negligible; the inertia attendant to the motion of dislocations;
the anisotropy of the elastic moduli and of the line tension; and
other effects. Evidently, while these extensions enhance the pre-
dictive character of the theory, they are also introduced at a certain
expense as regards the complexity of the theory. In any case, the
statistical mechanical framework sketched out in this paper may
open the way for a physics-based description of crystalline slip
which benefits from the tools and principles of the theory of
critical phenomena.
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imperfect cylindrical shells. It is shown how the initially positive contributions arising
Jrom the shells membrane energy are eroded with increasing levels of both deformations
and imperfections. This loss of membrane energy is shown to be responsible for the
notoriously imperfection sensitive buckling of the shell. Extensive parameter studies
demonstrate the existence of a well-defined lower bound to buckling loads and the
dominance of characteristic incremental deformation modes as this lower bound is

approached. For the first time the physically based hypotheses of the reduced stiffness
method are theoretically demonstrated. Furthermore, it is shown how a slightly modified
form of the reduced stiffness method provides very close predictions of the lower bounds

to buckling loads.

1 Introduction

Partly due to the major discrepancies between observed buck-
ling loads and the predictions from classical theory, the buckling of
axially compressed cylindrical shells has excited extraordinary
interest over the past 75 years. Indeed, the list of contributions to
the understanding of the behavior of axially loaded cylinders
almost reads as a Pantheon of the 20th century’s leading mecha-
nicians. It was early realized that small changes in imperfections,
combined with the highly unstable forms of post-buckling behav-
ior, were largely responsible for the immense scatter of buckling
loads and at times severe reductions from the classical linear
theory. There was a growing appreciation that this sensitivity to
small changes in geometric form was the converse, and indeed the
consequence, of the cylinder providing such a strong optimal form
for axial load carrying capacity. However, despite the immense
effort put into its understanding, added to the growth in our ability
to undertake sophisticated nonlinear calculations, most cylindrical
shell design still relies more upon empirical evidence than it does
upon the fruits of the many ingenious theoretical solutions. The
present paper is directed towards the reconciliation of the two
dominant, but at times competing approaches to the theoretical
analysis of axially loaded cylindrical shell buckling.

Broadly, the theory of shell buckling, including that of the
axially loaded cylinder, has been presented using one of two
theoretical approaches. With its earlier successful application to
the buckling of slender columns, classical eigenvalue analysis was
also applied to shells. To reconcile the lack of agreement with
tests, this classical theory was extended to include the effects of
nonlinear post-buckling, with many clever methods developed to
relate the imperfection sensitive buckling loads to the initial post-
buckling characteristics of the perfect or idealized shell response.
Although this approach has achieved considerable success when
buckling is dominated by very small imperfections, it has for cases
like the axially loaded cylinder, failed to provide reliable estimates
of buckling loads for shells containing imperfection levels remi-
niscent of those found in engineering practice. Hence, the continu-
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ing reliance upon accumulated test results, or the growing ten-
dency towards the second theoretical approach.

With our capacity to now undertake immensely complicated
nonlinear calculations, the second theoretical approach has been
based upon large-scale numerical analysis. Although there must
remain uncertainty as to the reliability of some of the many
numerical solutions available, the best of them have recently been
shown capable of reproducing in the minutist of detail the nonlin-
ear paths observed in carefully conducted test programs (Yamada
and Yamada, 1983). However, without very great care, and pos-
sibly having to run very large numbers of costly parameter studies,
there are still severe problems in the use of numerical analysis in
design other than final design checking. Its adoption as a method
for choosing the “best” choice of stiffeners in, say, rib stiffened
shells or on the “optimum” levels, distributions, and orientations of
fiber reinforcement in composite shells, and yet capturing the
worst possible effects from a wide ranges of potential imperfect
shapes and amplitudes, is far from settled.

Our present study seeks to bring together the potential ad-
vantages from each of these approaches. It uses the reduced
stiffness method, first proposed (Croll and Chilver, 1971) as on
extension to classical theory in the early 1970s, as a means for
guiding careful nonlinear numerical studies. The reduced stiff-
ness method is based upon the observation that it is components
of the initial membrane stiffness, or energy, that are lost in the
unstable post-buckling of shells. With imperfections acting as
catalysts for this loss of membrane energy it was reasoned that
a lower bound to the imperfection sensitive buckling into a
particular mode will be provided by a linear eigenvalue analysis
from which this at risk membrane energy has been eliminated.
A more recent summary of some of the main features of the
reduced stiffness method has been presented by Croll (1995).
By comparing its predictions with accumulated physical test
data, it has been shown that the reduced stiffness method
provides realistically safe, lower bounds, to the scatter of im-
perfection sensitive shell buckling loads for a wide range of
shell geometries and loading cases. However, it was early
recognized that nonlinear analytical confirmation would be
needed before the method could be confidently used as a basis
for design. It was not until the early 1980s that numerical
simulation of the highly nonlinear buckling responses for shell
problems reached a level of reliability that the complex obser-
vations from physical tests could be reproduced in detail
(Yamada and Yamada, 1983). This made it possible to carry out
systematic numerical studies as a means of validating the me-
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chanics of, and predictions from, the reduced stiffness method.
Under these circumstances, an international research collabo-
ration was initiated in late 1985. As a first example, the case of
pressure-loaded cylindrical barrel vaults was considered
(Yamada and Croll, 1989). This showed that with very small
total imperfections the buckling loads relate closely to the
classical critical loads. However, at large total imperfections the
buckling loads were shown to converge to the reduced stiffness
buckling loads. In many ways the barrel vault proved more
difficult than the second example to be considered, as a conse-
quence of the constraints along the longitudinal boundaries
introducing a form of loading imperfection which contributed to
the total imperfections. Hence, the second example of pressure
buckling of complete cylinders (Yamada and Croll, 1993)
proved to be rather more straightforward, and demonstrated
even more convincingly that with large imperfections, shells
exhibit buckling loads that closely relate to reduced stiffness
theory. By looking at the incremental energies this study also
indicated how the positive linear components of membrane
energy are eventually eroded by the development of nonlinear
negative components arising from modal interactions stimu-
lated by the presence of imperfections,

The present work extends this same approach to the case of
axially loaded cylinders. With this case being perhaps the most
imperfection sensitive of all shell buckling problems, it provides
perhaps the ultimate test of the reduced stiffness method.

2 Theoretical Background

Because it provides a systematic framework for the interpreta-
tion of behavior, and also represents a convenient and compact
basis for analytical modeling, the principle of stationary total
potential energy will be used to formulate the equations of equi-
librium.

2.1 Total Potential Energy. For an imperfect thin-walled
circular cylinder of longitudinal length L, wall thickness ¢, and
radius R, shown in Fig. 1, the change in the total potential energy,
consequent upon the application of a uniform axial compression
stress of ¢, may be written as

N=Uz+Uy,+V, €))]

where the bending and membrane strain energy (U,, U,) and the
increase in load potential (V,) for an axial compressive stress of o,
are given as

2R (L
Uy = %f f (Mo, + myk, + 2my i, )dxdy  (2a)
0 0
2k (L
Uy=1% f J (ne, + nye, + 2n,€,)dxdy  (2b)
0 0
27R L au
V.= —ot (— 5;) dxdy. (2¢)
0 0

y
[

Fig. 1 Notation and convention adopted for geometry
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In these expressions, (m,, m,, m,,) and (n,, n,, n,,) are the total
bending and membrane stress resultants, and {k,, k,, K,,) and (e,,
€,, €,) are the corresponding strains associated with total dis-
placements (u, v, w) from an imperfect but stress-free unloaded
state. The compressive stress may be written in terms of the
nondimensional load parameter A as

o= A0y 3)
where o, is the well-known classical buckling load,

E t

N

The bending and membrane stress resultants are related to
strains through the constitutive equations

mx:D(Kx+ “’Ky)’ my:D(IJ“Kx+ Ky)s

my, = D(1 — pk,, (4a)
n, = K(e, + ne), n,= K(ue, + ¢€),
n, = K(1 — e, (4b)

where D = Ef*/{12(1 — ub)}, K = Et/(1 — w?), E = modulus
of elasticity, and p = Poisson’s ratio.

The strain-displacement relations associated with deformation
from an initial imperfection w°, are taken as

9w 9w d%w s
K, = ax2 s Ky— ayz s ny_ axay ( (l)
_ du awlow 1 [ow)? s
&= ox T ox ax T2 \ox (55)
v w+6w°6w+1 aw\ 2 s
&7 dy R 3y dy 2\ dy (5¢)
__1 8u+6v+3w°8w+aw°6w+aw8w 54
) dy dx  dx dy dy dx  dx ay/’ 5d)

2.2 Boundary Conditions and Modal Approximation.
The end boundary is assumed to be supported in such a way as to
conform with the classical simple support, corresponding with the
conditions

atx=0,L. 6)

By taking displacement functions u, v, and w as linear combi-
nations of the harmonic expressions,

I
i

Lt
u="p > > &, cos (iy/R) cos (jmx/L) (Ta)
i J
Lt &
v= > > @, sin (iy/R) sin (jmx/L) (7b)
i J
5y
w=t Z 2 w; ; cos (iy/R) sin (jarx/L). (7¢)

i J

These boundary conditions will be exactly satisfied since each
separate component satisfies the boundary conditions of Eq. (6). In
these expressions, i and j are the circumferential full-wave and the
longitudinal half-wave numbers; «,;, v;;, and w,; are the nondi-
mensional amplitudes of each harmonic function.

The initial geometric imperfection is expressed as
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5° N Nv N

0= t 2 2 W?j Cos (iy/R) sin (JWX/L) (8) E um’arm’ + E 'U,,, (aml + a ) + 2 wm’am:
i j m' m' m'
Nv  Nw
2.3 Equilibrium Equation by the Ritz Method. By substi- _ . .
tuting Egs. (4), (5), (7), and (8) into Eq. (2), the energy compo- + Z 2 WypWpafpy =0, r'=1,2,..., N (11b)

nents associated with the unknown coefficients #;;, v;,;, and w,

can be expressed as Nu N N
Nvo Nw 2 ﬁ”,ld:::]m: + 2 ?}m'a?’zm‘ + 2 "_Vm’ agtz'g’ + af’an:t;'
Uy = (24wDLIR) D, D, W Wa®3 9a) "
room NY N©
N« Nu N + amr + aa’?’ ’) + 2 2 Wm’uk (armk’ mrk)
UM = (24WDL/R){E ﬁr (E u ’am r + 2 vm'am’r’ "
r Nv N
NY Nv Nv Nw + E 2 Wm'vk (arm k' + am’r’k)
+ E w 'am'r') + 2 ?jr’ (2 ;)ln'am r + 2 Wm’am’r’) mo
m' r m' m' Nv  NW
N N¥ Nu Nw N + 2 E W W (akal?l ot agie arkm)
+ E Z rW,,,fOl r + E 2 2 u ’Wm'wk’ak m r oK
rooom m' Nv Nw Nw

- = = 3333

R + 22 D el + el
S e o3 mook i

+ z 2 2 Up Wy Wi Qg '

’ ' ’

o +ayBe +adR,)=0, r'=1,2,...,N" (llo)
Nw Nw Nw

+ 2 2 2 W el ‘ 24 Incnemental Strain Energy Analysis.. The sets of non-

o linear equation (Eg. (11)) can be solved using a step-by-step

process in which either load or displacement is used as a control

Nwo NvONYONY parameter. At each step a Newton-Raphson iteration is used to

+ E 2 2 2 Wy Wi Wi ps o} (9b) provide convergence to an acceptable level of precision. This

room i incremental analytical procedure makes it convenient to compute,

at any stage along the equilibrium path, the nature of the incre-

ul o mental strain energy components. A sufficiently small amplitude
= (24wDLIR)A E a, (9¢)  (0.001 X f) of a displacement control parameter provides a very
r close approximation to the tangent vectors (1%, v, w*) in the form
h of differences between the two close equilibrium states (#”, v,
where wh) and (wf + u? oF + % w® + w?. The total strain
ATET) components at a point (x, y) after the small incremental deforma-

al= - RASI A fori =0 andj = odd tions about the equilibrium state may be written

3 ;

= Eq = E g gt - d
, . = = . =Kt
al,=0; fori# 0orj=even. Ke= Ky F G Ky = Ky KG Ky =k kg (12)

e =€t elt e+ el e =€+ el+ et el

(d,, 0y, W) is aset of generalized coordinates equivalent to (#,;,

Uy W ,J) and the constants a2, alt,, a., ..., divy, obtained —eF 4ol 4 By gdd !
from the integrations of Eq. (2) are exactly the same as those for Co T En T €y T €y T €y a3
pressurized cylinders (see the appendix of Yamada and Croll, where
1993); it is noteworthy that only the constant a,. depends on the
loading condition. PY 92wk 92w E
The Ritz method is used to obtain approximate solutions, by kl= — =, Kf = — K fy = — (14a)
requiring the total potential energy to be stationary with respect to dx dy dxdy
all the independent degrees-of-freedom, so that 2 4 2 4 2 4
W= -2 e SO Y (14b)
Il JI1 oIl x axt gy’ v dxdy
—=—=7=—=0. (10)
duy vy dwy au®  ow®owFf 1 [ow"\?
i i i e T ey 15
A total of (N* + N” + N") nonlinear algebraic equations ex- €T x dx odx 2 ( dx ) (15a)
pressing the unknown coefficient &, v, w,., in terms of the load . E B oo
parameter A are obtained; these nondimensionalized forms can be eF = dv”  w” " dw” dw " 1 (a w ) (15b)
represented as Y 9y R dy dy 2\ 3y
e ar e 1 ouf  avF  awl awf owlowf owfowt
et + 2 il + ally) + E Ul o+ D, Wty =3\ %y Tox T ax ay | ay ox | ax oy
m' m'
- (15¢)
+ 2 2 wm'wk'ak'mr = O rl = 17 2, vy N* (110) aud 61}" Wd 1 aud a'l}d
a €l=—, €l="-—, e =5l77+—--] 16
*oax 7 dy R o2\ dy ax
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a(w?+ wE) ow? ow? + wt) ow
ef"=—~——( )—, €=~ (——————( ) ) (17a)
dx dx 72 ay ay
1 (a(w?+wh ow? a(w®+ wF aw?
ekl = — (—) +__(_.__..__~)__ (l7b)
SA) ax dy ay ax
d\ 2
EdzI:l aw’ edd=l ow’
T 2\ax ) Y T2\ay )
1 ow9 aw?
dd
€y T2 ox 6y ) (%)
The corresponding stress components are
m)}=D(x!+ pk}), m)=D(ux]+ k),
ml,=D(1 — p)kj, (19a)
n!=K(e] + pe)), nl=K(ue)+ e)),
n),=K( — u)el, (195)

where 7y takes the values F, d, Ed, and dd.

To fully understand the changing nature of the resistance to
incremental deformations as buckling progresses, it is necessary to
break the quadratic form for the incremental energy into its com-
ponent parts. These component parts of the quadratic form of the
incremental energy may be written as

I, = Ilp + Iy (20)
where the contributions from bending I, are
Iy = Uy
27R L
= ‘;J J. (mikd+ mikd + 2mék?)dxdy, (21)
0 0

and these from membrane strain energy I1,,, may be further broken
down as
Wopy = Uy + Vayr + Wa. (22)

In Eq. (22) the membrane contributions arising from the linear
incremental strains may be written

Uy = Uiy + Uy + U3y (23a)
where
27R L
wm = %f j nieldxdy (23b)
0 0
27R L
Uy =1% f f n;le;,’dxdy (23¢)
0 0
27R L
Uy = j f xy ,,ydxdy, (234d)
0 0

while those resulting from the nonlinear incremental strains are

Vou = Vi + Vig + Vii (24a)

where

2R
;M=;-J f (n¥ef + nfedxdy  (24b)
0 0
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2mR
V§M=%f J (ndef + nleiydxdy (24¢)
0 0

2aR L
Viu = f f (n%el + nleldxdy. (244d)
0 0

The additional interaction between the incremental linear response
and the current total nonlinearities can be written

Wou = Wiy + Wiy + W2y (25a)
where

27R L
=1 (n%% + nfe? + nfeEdxdy (25b)

0 0

2mR

W§M=%j j (nfef + nied + ni'efdxdy (25¢)

0 0

2mR L
W, —j J' (nef? + ntlel + niefdxdy. (25d)
0 0

Since it is the membrane resistance that is undergoing the signif-
icant change as buckling progresses, the membrane strain energy,
I1,,., has been broken down into its component parts associated
with axial, hoop, and in-plane shear action. Because it derives from
the linear incremental strains, the term U,y may be referred to as
the linear membrane strain energy. The term V,, represents the
interaction between the nonlinear incremental membrane action
and the current membrane equilibrium state. The term W,,, results
from the interaction between the linear incremental membrane
actions and the current total deflections including the effects of
imperfections; these terms do not appear in the classical bifurca-
tion analysis.

3 Nature of Buckling

To illustrate the behavior of a typical cylinder under axial
compression and to use this behavior to exemplify the mechanics
of post-buckling, a sample of the shells tested by Yamaki (1984)
is considered. Direct comparisons with the test results cannot be
made since the present simply supported boundaries differ from
the clamped ends used in the experiments. However, the geome-
tries are ones that in the past have been the subject of extensive
numerical studies and against which the present solutions have
been validated. Shell geometry is defined by R = 100 mm and ¢ =
0.247 mm so that R/t = 405. By varying the length L, the
geometric parameter L/R, and the well-known Batdorf parameter,

Z = V1 — p* L*(Rr) are chosen as
L mm L/R VA
36.0 0.360 50
50.9 0.509 100

72.0 0.720 200.

For this and all subsequent examples the material is taken to have
p=03.

3.1 Classical Bifurcation Analysis. An idealized classical
bifurcation analysis (see, for example, Koiter, 1963) can easily
allow derivation of the nondimensional classical load spectrum
(Brush and Almroth, 1975), in the form

_¢

Af=— + (26)

!
¢

where
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7 (Bi +j%)?
= \/§ 7
The classical critical load A° is the minimum occurring when £ =

2, resulting in the so-called Koiter circle (Koiter, 1963; Arbocz
and Sechler, 1974; Hunt et al., 1986) represented as

L Bi=ig. @

Bi+j*=2Bj (28)
and shown in Fig, 2, where
\/g Z 172
= (-271_7) . (29)

As is well known, this means that several different buckling modes

= b have critical loads close to the minimum classical critical

load A° = 1. For the present shell model having R/t = 405, the
parameters of this Koiter circle are

Z imax jmax=2B
50 183  4.19
100 183" 592
200 183  8.38

Through nonlinear post-buckling analysis, solution convergence
has been found to reach acceptable limits by using in Eq. (7)

jmx

jq'rx
2 Ug, COS —— 2 7 cos cos I

Lt 2by jmx
= 2 Uy COS —5— R COS T

Jj=1

Jjmx

5
? cos cos I (30a)

jmx

IS . L oY mx .
_fE vbJsmrs zvz,,dsm smT

_ . 3by | jmx
+ 3 21 U3, Sin —= sin T (30b)
=
b Jjmx by  jmx
w—tZw(,,sm i3 +t2w,,1cos R smT
j=1 ) j=1
i y Jjmx
; 26,7 €08 —— sin T (30¢)
Bi=iL/(rR)
1
i 2
B = {‘ff}
Bi=B L
e rd
e— j=B
0L
0 B 2B 7

Fig. 2 Koiter circle described by Eq. (28)
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Imperfection sensitivity

Fig. 3 Effects of initial imperfections (a single asymmetric mode W)
for shells (£ = 50, R/t = 405, L/R = 0.360, b = 16)

Post-buckling from this classical critical bifurcation state is
illustrated in Fig. 3(a). Two cases of perfect shell bifurcation are
shown. Idealized bifurcation models, shown dotted, are based upon
the assumption that prior to buckling the effects of bending are
ignored and the internal shell stress and strain take the form of a
uniform membrane state, for which

nf=—ot, nf=nl=0,
= -olE =polE h=0. O

The two idealized bifurcation curves relate to two very close
critical loads having modes with i = 16 and eitherj = 1 orj =
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Fig. 5 Effects of initial imperfections for shells (Z = 200, A/t = 405,
LIR = 0.720, b = 12)

3; the near coincidence of the critical loads is seen in Fig. 8(a).
These idealized post-buckling curves are obtained using the incre-
mental method with respect to the displacement coefficients w
and w4 for the upper and lower curves, respectively. A second
bifurcation model, indicated by curve “A,” is based upon the
assumption that the effects of bending in a fundamental prebuck-
ling nonlinear axisymmetric deformation state are taken into ac-
count. Due largely to the additional axisymmetric hoop compres-
sions arising from the end boundary constraints, this more exact
bifurcation analysis predicts lower critical loads. As is evident
from Figs. 3 to 5, there remains on average an about 15 percent
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difference.

3.2 Imperfect Shell Response. Included in Figs. 3(a), 4(a),
and 5(a) are representative imperfect curves, where the horizontal
axis w,, represents the nondimensional total displacement com-
ponent having a circumferential full-wave number { = b and a
single half-wave in the axial direction, j = 1.

Previous experiments, not only by Arbocz and Babcock (1969),
but also by Batista and Croll (1979), have shown that at the last
load level prior to buckling the shell displays a dominant mode
with only a one-half axial wave covering the entire length of the
shell, even though the advanced post-buckled pattern is character-
ized by the well-known diamond pattern in which the axial and
circumferential wavelengths appear to be approximately the same.
Furthermore, Croll and Batista (1981) have indicated that a solu-
tion for the lower bound to imperfection-sensitive critical load has
a single axial half-wave. In view of these earlier findings the initial
imperfection function Eq. (8) is taken to be a single mode having
the single axial half-wave j = 1; that is the asymmetric imper-
fection takes the form

w? = W)t cos (by/R) sin (wx/L). (32)
Recalling that the imperfection amplitude w} , has been nondimen-
sionalized with respect to the shell thickness, it can be seen that the
sensitivity of buckling load to changes in imperfection is most
severe when the imperfection has a very smail amplitude. In Fig.
3 for Z = 50, an imperfection in the single axial half-wave mode
of just two percent the shells thickness will reduce the buckling
load by around eight percent of the bifurcation load of the perfect
shell. With an imperfection of around 60 percent the shell’s thick-
ness, the maximum load has all but disappeared with the behavior
approaching that which is more reminiscent of column buckling;
the buckling load in this case has been reduced by some 58 percent
compared with the bifurcation load of the perfect shell and 65
percent compared with the classical critical load. This imperfection
sensitivity is more clearly illustrated in Fig. 3(d). As the shell
slenderness increases so also does the potential reduction in buck-
ling load due to imperfections. This is illustrated in Figs. 4(a) and
5(a) where for, respectively, Z = 100 and 200; the lowest buck-
ling loads are reduced by 75 percent and nearly 80 percent of the
classical critical load.

Figures 3(b,c), 4(b,c), and 5(b,c) show the axial distributions of
deformation on meridians at y = 2k7R/i (k = 0, 1,2, ..., 1),
where the periodic buckling modes take on their extreme values, at
the maximum or buckling loads. Figures 3(b), 4(b), and 5(b) show
the axisymmetric components in the total deformations, while the
incremental modes in Figs. 3(c), 4(c), and 5(c) are of the periodic
buckling components associated with an increment of 0.001 X ¢
in the control parameter neglecting the incremental axisymmetric
components. As the level of imperfection W}, is increased there is
a gradual change in the incremental mode shape at the buckling
load; this is shown in profiles “B,” “C,” . . . in Fig. 4(¢). For small
imperfection the mode W 1,5 can be seen to dominate, while at large
imperfections the incremental mode at buckling consists almost
entirely of mode w,,. The total axisymmetric deformation at the
buckling loads are seen in Fig. 4(b) to also undergo major changes.
Whereas at low imperfections, w§,, the axisymmetric deformation
“B” takes the form of a constrained axisymmetric bulging; at high
imperfection the axisymmetric deformation at the buckling con-
tains a major component of w5. It is this axisymmetric mode w4
that plays such a vital role in eroding the nonlinear membrane
energy associated with buckling into mode w,,; this Donnell
coupling is discussed more fully in Batista and Croll (1979).

In Fig. 4(e), the initial imperfection function Eq. (8) is taken to
be an axisymmetric mode having the inverse form to the linear
bending mode; that is for Z = 100 the axisymmetric imperfection
takes the form

mX 3mx
wl= ﬁ/?t{ 1.1200 X sin T+ 0.3938 X sin ——

Journal of Applied Mechanics

Smx Tarx
+ 0.1888 X sin _L— + 0.0650 X sin T

9mx 11ax
+ 0.0200 X sin I + 0.0063 X sin 7

137x 157x
+ 0.0006 X sin

+ 0.0025 X sin i 7

} (33)

It becomes evident that when an inward geometric imperfection of
w! (=we/t) = 0.16 is chosen, the outward loading-induced
imperfection caused by the end constraint is being almost exactly
counterbalanced by the inward geometric imperfection. The axi-
symmetric response can be seen to develop a major component in
mode w, s, which corresponds with the lowest of the axisymmetric
critical loads. It is the additional circumferential membrane stress
associated with this axisymmetric deformation that causes the
additional destabilization which in turn is responsible for reducing
the bifurcation, at “A” in Fig. 4(a) and 4(e), from the classical load
A= 1.

As Z increases the number of axial half-waves j,.., associated
with the lowest axisymmetric critical load, also increase. For Z =
50, 100, and 200, for example, it follows from the substitution of
i = 0 into Eq. (28) that j . are 4.19, 5.92 and 8.38, respectively.
It is for this reason that in Fig. 3(b) the deformation at the
bifurcation load “A” has a major component of j = 3, while that
in Figs. 4(b) and 5(b) are dominanted by j = 5 and j = 7,
respectively. Since these nonlinear axisymmetric deformations
arise from the effects of the end restraints on the Poisson bulging,
resulting in a form of loading imperfections (see Croll, 1984), it is
the odd components j = 1, 3, 5, ... that provide the dominant
components in the nonlinear prebuckling response.

It is noticeable in the case of Z = 50 that the nonsymmetric
buckling mode shapes shown in Fig. 3(c) change very little as the
amplitude of the initial imperfection increases; for all imperfection
levels it is mode Ws,, with a smaller contribution from w4,
which dominates. For larger values of Z there are distinct changes
in axial mode participation as the critical imperfections W, in-
crease. As Fig. 4(c) shows, there is a significant change in the form
of nonsymmetric buckling mode between cases “D” and “E.”
Similarly, Fig. 5(c) displays changes in the axial mode shape
between “E” and “F.” These shifts in dominant buckling mode are
reflected in the forms of imperfection sensitivity and post-buckling
curves. This feature is most clearly seen in the changes to post-
buckling lower bounds between “D” and “E” in Fig. 4(a), and less
so0 in the similar mode shifts that occur in Fig. 5(a). Whereas Fig.
3(a) exhibits a smooth drop-off in buckling loads and associated
mode shapes with increasing w},, this is not the case for the shell
of Fig. 4(a) and 5(a) having higher Z values.

With the preference of the Z = 100 shell to develop incremental
modes dominated by w,; when imperfection #,, is small, as
shown in Fig. 4(c), it might be anticipated that imperfections
having short axial wavelengths would produce even more extreme
imperfection sensitivity. This is shown to be the case in the two
further studies are summarized in Fig. 4(d). These show that for
small imperfection amplitudes, the shorter axial wavelengths have
asymptotically more extreme imperfection sensitivities. For larger
amplitudes, however, these shorter axial wavelength imperfections
cease to exhibit a (maximum) buckling load; it is for this reason
that there is no buckling load shown for W},; > 0.4 and Wias >
0.2. A similar situation is evident in the studies of varying the
axial shape of imperfections in Fig. 5(d). Although not shown,
there is a tendency as the amplitudes of these shorter axial wave-
length imperfections are increased, for the axial mode shape to
become dominated by w, ;.

3.3 Incremental Energy Characteristics Along Nonlinear
Paths, To identify which of the shells components of initial
resistance to buckling are lost in the unstable post-buckling pro-
cess, it is instructive to look at the changes in incremental energy.
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Figure 6(a) shows the variation of the incremental quadratic com-
ponents of total potential energy, I1,, defined in Eq. (20). Rectan-
gles represent the initial stiffness; circles indicate the zero resis-
tance at the maximum buckling loads. All results show the extreme
sensitivity of the shell initial resistance to incremental buckling
deformations as imperfection levels are increased. They also show
that I1, of the prebuckling paths undergoes rapid decreases as the
load approaches the buckling point; at the buckling point II,
becomes zero. For the results shown in Fig. 6(a), and in subsequent
discussions of the energy, the quadratic incremental energies are
normalized with respect to the summation of the squares of the
incremental (non-dimensional) displacement components, S, given
as

w
I

24 3 > whHE (38
i j

iz A
$=2 2 @hr+ X X (o
i J i i

It has been suggested that the nonlinearity of the shell buckling
is all to do with changes in the initial membrane resistance; this is
certainly a central hypothesis of the reduced stiffness method. To
emphasize this, Figs. 6(b)-(h) show the contributions to the incre-
mental quadratic form of total potential energy from its bending
components II,; = U,; and the various membrane components.
As the level of the imperfection increases, the originally positive
contribution from membrane energy, I, — U, — Vjy in Fig.
6(c), is rapidly reduced, eventually becoming almost zero at the
buckling load (as in case “I”). At large deformations the total
destabilizing membrane V3, energy reaches a fairly consistent
negative asymptote, which can be seen to exactly counteract the
almost invariant positive contribution from bending energy as
imperfections and deformation increase as shown in Fig. 6(b).

By breaking down the membrane energy into the linearized
axial membrane energy Vsy, see Eq. (24b), and the rest, it becomes
even clearer how the resistance of the axially loaded cylinder is
eroded with increasing deformation and/or imperfections. It is
clear that the destabilization is provided by the axial linearized
component V3, When it is considered from Eq. (24b) that the
uniform axial stress n” and its associated strain € are necessarily
negative, while incremental strain € and its associated stress n2*
must be positive, it becomes clear why V3, provides the negative
or destabilizing contribution. What is noteworthy is the important
positive stabilizing contribution from V3. This arises from the
first term in Eq. (24¢), for which the positive Poisson bulging
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Fig. 7(a) Critical load spectra

strain € and the necessarily positive definite incremental hoop
stress ni“ (positive definite as a result of the nonlinear strain e* of
Eq. (18) also of necessity being everywhere positive) give rise to
a positive energy term V3,,. However, what Fig. 6(f) shows is that
this initially important stabilizing contribution from V3,, together
with the contribution from the membrane strain energy U}, +
W2y as shown in Fig. 6(g), are both lost with increasing deforma-
tion into the buckling mode and increasing imperfection, For
sufficiently large imperfections, these stabilizing membrane terms
have been eroded at the maximum buckling loads. These obser-
vations support the physically based reasoning underpinning the
reduced stiffness method (Croll, 1975; Batista and Croll, 1979).

4 Nonlinear Behavior and the Reduced Stiffness
Method
Although it has been described elsewhere (see, for example,

Batista and Croll, 1979), it will be instructive to summarize in the
present context the major features of the reduced stiffness method.

4.1 Reduced Stiffness Method. The classical bifurcation
analysis of Eq. (26) fof a prospective buckling deformation (i’
v, w') from a uniform prebuckling stress and strain state, Eq.
(31), could be represented in terms of energy as

avis  avh
2M + M - 0
EY E

Uy + Uy + )\”( (35)
In this equation, U, is the linear' bending energy (Eq. (21)), Usy
is the linear' membrane energy (Eq. (23)), and V3, is the linearized
membrane component associated with axial direction, while Vi3 is
associated with circumferential direction, that is

wr L
Vi =71 f J (ner + njef’)dxdy (36)
0 0

27R L
vh = %f f (nde! + nle)dxdy. 37)
1] 0

For the shell having Z = 100 and critical modes with a single axial
half-wave, Fig. 7(b) shows the breakdown of the total potential
energy. It can be seen that V3, provides the negative destabilizing
contributions to the critical loads A shown in Fig. 7(a). Both the
linear bending U,; and membrane U,,, energies contribute to the
stabilization, as does the linearized circumferential component V5,

! Linear in the sense of being refated to the linear strain-displacement relationships
in the incremental critical buckling deformations.

Journal of Applied Mechanics

(this linearized circumferential energy V3 is closely related to the
incremental component V3,, discussed in Section 3.3 and shown to
be eventually eliminated at buckling in Fig. 6(f)). Batista and
Croll (1979) (following Donnell, 1934) have reasoned how V3
would be lost due to the occurrence of mode coupling. They have
obtained a reduced stiffness critical load, A*, by solving the
following eigenvalue problem:

avE,
EX

Upp + Uy + A¥ =0. (38)

However, Yamada and Croll (1993) have shown, for the related
case of pressure buckling, that the linear membrane energy U, is
also eliminated. Based upon the elimination of both V), and U,,,,
an alternative critical load equation A** may be proposed as

Upy + M¥* —2 =0,

(39

0.04
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Fig. 7(b) Contributions of energy components in critical mode
Fig. 7 Bifurcation analytical results (Z = 100, A/t = 405, /R = 0.509)

Based upon this reduced energy a modified reduced stiffness load
is given by

e LU LR
VT 2Bz (@ - wHGmT + plGLIRY

This alternative has the advantage of being consistent with the
reduced stiffness philosophy applied to other loading cases and
more importantly the observations of Fig. 6(c) and Fig. 6(e) to
6(h). Lower-bound buckling would be given by the value of A**
corresponding with a mode having a single half-wave in the axial
direction j = 1 and at a circumferential full-wave number i,,
associated with the lowest classical critical load, Defining i, from
Eq. (28), with j = 1, Eq. (40) leads to the modified expression

(40)

1 _ 2
A= a @1)

I
2-pt - pt - (2432)"7

for the reduced stiffness lower bound to elastic buckling. As noted
in previous discussion of the reduced stiffness method, lower
bounds to axial loaded cylinder buckling have both a dependence
upon Z and Poisson’s ratio u (see Croll and Batista, 1981). But
how does this modified reduced stiffness load relate to the results
of nonlinear buckling studies?

4.2 Parameter Studies and Lower Bound Buckling, Fig-
ure 8(a) shows the various critical load spectra for the shell Z =
50. To provide additional confirmation of the lower boundedness
of the modified reduced stiffness critical load A%Y a number of
imperfection sensitivity studies like that shown in Fig. 3(a) have
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been undertaken. The many dots in Fig. 8(a) show the buckling

loads for imperfections in modes 12 = b = 20. Those shown for

b = 16 relate to the results described in Fig. 3(a). For this shell the

integer mode nearest to that resulting in the minimum critical load

Ao 18 b = 16. Tt is evident that the imperfection sensitivity in this

mode is at its highest; an imperfection of 60 percent the shell
thickness is enough to almost reach the reduced stiffness load ARE

For this same amplitude of imperfection in modes b < 16 the
buckling load is a little higher, while for » > 16 the snap buckling

no longer occurs and nonlinear responses approach A%} in Eq. (40)

@y  monotonically from below. It is for this reason that no buckling

:0.00 loads are shown for some imperfections in modes b > i,,, and a]so
:0.02  why in mode b = 16 there are no buckling loads shown for w*® >

:0.05 0.6, With the lower imperfection sensitivity in modes b < i, it

O A

A B

0c

O D:0.10 4465 rather larger imperfections to reach their lower bounds. It is

A E:020 - ;

O F:o40 288I0 significant that the lower bounds are effectively constant and

O G:oeo cdual to A%k

A H:0.80 Figures 8(b) and 8(c) show the related behaviors for shell having

L O I:1.00 Z = 100 and 200, respectively. For each case, and others not

0.0 : L . . . . . v shown, the characteristics are effectively the same. Maximum

4 [ 8 10 12 14 186 18 20 22
i imperfection sensitivity is experienced in the class1ca1 critical

mode (i,,, 1), with the reduced stiffness critical load A%y provid-
ing very close approx1mat10n of the lower bounds to 1mperfect10n
sensitivity. Table 1 summarizes the relatlonshlps between A% and
the lower bounds to nonlinear buckling loads AJ,.

Before leaving the parameter studies of Fig. 8(a) to 8(c) it is
relevant to note that as the imperfections in mode b < i, are
increased there is a gradual shift in the incremental buckling
mode from that of the imperfection to that of i.,. This is
illustrated in Fig. 9 for the case of Z = 200. Imperfections in

17;,?1 mode (i, j) = (8, 1) result in the nonlinear responses shown in

O A:0.00 Fig, 9(q); these relate to the buckling loads shown in Fig. 8(c)
A B:002 g5 mode i = b = §. With small imperfections, exemplified by
g g 3(1)2 “B,” the incremental deflection mode at buckling is seen in Fig.
AE 090 Jb)to be essentially associated with the imperfection i = b =
O F:o040 8- For large imperfections, case “P,” the dominant wavelength
o G:060 of the incremental deflection modes has shortened to conform
A H:080 closely with the critical wavelength i,,, = 12. It is these mode
O 1:1.00 shifts resulting from mode coupling at large deformations and
O J:120 for larger levels of imperfection that eventually make the re-
é II(, : }ég duced stiffness A** relevant even for initial imperfections hav-

ing very different wavelengths.

A6 & 10 1z 14 16 18 20 22
5 Conclusions

An elastic nonlinear Ritz analysis has been developed to
allow investigation of the imperfect behavior of axially com-
pressed cylindrical shells. This has allowed a number of im-

—o0  portant observations. First, as deformations increase along the
.000 nonlinear equilibrium path for a particular imperfection, the

O A
A B:0.02 originally positive (stabilizing) contributions from membrane
0 C:005 energy are rapidly reduced, eventually becoming effectively
O D:0.10 zero at moderate levels at post-buckling deformation. Second,
A E:020 a5 the imperfection levels are increased, the significance of
I(:)‘ g ggg incremental membrane energy at the buckling (maximum) load
A H:080
0O I:1.00
O J:120  ygpe 4 Comparison between the present lower bound of buckling
A K:140 (oads by nonlinear numerical analysis (A, and the modified reduced
O L:1.60 stiffness loads (A.m) for j = 1
O M:1.80
: 2. . . N .
& N:200 z tem(F=1) | Amin(9) Ao
O P:240
K L L L L L . . L 50 15.6 0.34(16 0.31
0 04 [ 8 10 12 14 186 18 20 22 (16) 4
iorbd
Fig. 8(c) Z =200 100 13.7 0.26(14) 0.269

Fig. 8 Summary of buckling loads from nonlinear analysis for imperfect

shells and comparison with linear classical and reduced stiffness anal- 200 11.9 0.24(12) 0.221

yses
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Fig. 9(a) Nondimensional load versus total deflection in harmonic i =
b=8andj=1
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Fig. 9(b) Circumferential shapes (at x = L/2) of the incremental out-of-
plane displacement component at the buckling load
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Fig. 9(c) Axial shapes (at y = 2kwR/8: k= 0,1, 2, ..., 8) of the Incre-
mental asymmetric out-of-plane displacement component at the buck-
ling load

Fig. 9 Effects of initial imperfections (a single asymmetric mode i}+)
for a shell (Z = 200, R/t = 405, L/R = 0.720, b = 8)

is also reduced, becoming effectively zero when buckling loads
reach their minimum levels. Third, although for extremely

Journal of Applied Mechanics

small imperfections the incremental deformation modes at
buckling show considerable variability, there is a particular
incremental mode that dominates buckling when imperfections
reach moderate levels. This dominant buckling mode, having a
single axial half-wave and a characteristic circumferential full-
wave number, is shown to conform closely with that predicted
from a reduced stiffness analysis. Furthermore, the lowest re-
corded nonlinear buckling loads are demonstrated to be accu-
rately predicted by a modified form of the reduced stiffness
critical load.

In terms of the specific problem considered it is concluded that
this modified form of the reduced stiffness method, which is a
straightforward extension of classical linear buckling theory, pro-
vides a simple but safe basis for the design of axially compressed
cylinders. At a wider level the paper shows how a synthesis of
classical and numerical nonlinear analysis can lead to an under-
standing of greater significance than if either were considered
alone.
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Evolution of Interfacial Voids
Around a Cylindrical Inclusion

The formation and evolution of interfacial cavities is predicted for compression flows of
a viscous solid around a rigid cylindrical inclusion. The resulting free-boundary problem
is solved by the finite element method with boundary-fitted mesh motion. The matrix-

inclusion interface is perfectly weak and separates at a dynamic contact line. For a fixed
set of geometric parameters, increasing the external pressure causes smaller interfacial
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voids and slower growth rates. The size of the stagnant voids found is affected by the
applied pressure. The profiles of interfacial voids change from convex to convex-concave
as the strain increases. This can lead to unstable cusps at low enough external pressures.
The numerical predictions compare well with the experiments of Kao and Kuhn (1990) for

void size as a function of strain in viscoplastic model materials.

1 Introduction

Imperfect interfaces in two-phase materials are often criticized
when manufactured structures demonstrate unexpectedly poor me-
chanical properties. Interfacial debonding, sliding, and separation
are among interfacial problems which may occur during process-
ing and can later lead to premature failure (see, e.g., Mura (1987)
and Achenbach and Zhu (1989)). Recently these interfacial prob-
lems have been studied by a number of researchers (e.g., Xia et al.
(1994), Budiansky et al. (1995) Chao and Laws (1997), Jasiuk et
al. (1997), and Ru (1998)). When such materials are subjected to
compressive or extensional loads, interfacial voids may occur by
further decohesion of the matrix material from the inclusions
(Hashin, 1991). Evolution of large interfacial voids around cylin-
drical inclusions in two-phase materials is the focus of this paper.

Budiansky, Hutchinson, and Slutsky (1982) investigated the
evolution of isolated spherical voids in an infinite linear viscous
solid subjected to various biaxial stresses. The effect of outside
pressure on the final shape of such voids was extensively analyzed.
Deformation of spherical cavities has been also studied by Rice et
al. (1978) for a class of fluid-infiltrated elastic materials. For
viscous materials, Budiansky et al. (1982) showed that tension or
transverse compression loads lead to elongated ellipsoidal voids.
In this work, we show that similar tendencies develop in plane
compression flows around cylindrical inclusions, although the
deformation of cavities is no longer homogeneous. Taya and
Patterson (1982) pointed out that the viscous solid model can
effectively predict interfacial voids around debonded rigid inclu-
sions in a ductile two-phase material. The ductile matrix was
modeled as a linear viscous solid (Nadai, 1950). This assumption
is based on the mechanical behavior of ductile metals, such as
copper or aluminum, which can be described by

gy = a + bé, )

where o is the flow stress and a and b are constants for a certain
range of strain rates & and flow temperatures. Note that the
debonded particles have interfacial mechanical properties which
are similar to a perfectly weak interface. Such interfaces represents
an important limit for weak intetfaces. Recently Jasiuk et al.

! Currently at the Army Research Laboratory and the Center for Composite
Materials, University of Delaware, Newark, DE 19716,

Contributed by the Applied Mechanics Division of THE 'AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS,

Discussion on the paper should be addressed to the Technical Editor, Professor
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston,
Houston, TX 77204-4792, and will be accepted until four months after final publi-
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.

Manuscript received by the ASME Applied Mechanics Division, June 30, 1998;
final revision, Oct. 27, 1998. Associate Technical Editor: R. C. Becker.

310 / Vol. 66, JUNE 1999

Copyright © 1999 by ASME

(1997) examined perfectly strong and weak interfaces for a class of
elastic matrices and an inclusion in a half-space. In this work, we
demonstrate how perfectly weak interfaces separate, undergo large
nonlinear deformation, evolve in time, and that they may be prone
to interfacial instabilities.

Needleman (1987) studied formation of interfacial separation
and evolution of interfacial voids in a periodic array of rigid
spherical inclusions in an elastic-viscoplastic matrix. A rectangular
unit cell was subjected to the external tensile loads, which lead to
monotonically increasing separation and the complete voids asso-
ciated with complete debonding along the entire interface. In
particular, it was noted that the shear stiffness parameter of the
phenomenologically described interface had insignificant effect on
the voids studied. In the case of compression flows around cylin-
drical particles with perfectly weak interfaces, we also show that
the interfacial sliding has rather small influence on the voids as
they are formed by predominantly normal interfacial separation.

In this paper we investigate the temporal evolution of interfacial
voids around a cylindrical inclusion in a thick plate subjected to
biaxial compressive loads. The influence of external pressure on
the development and shape of voids at rigid inclusions is exam-
ined. The biaxial loads considered lead to the formation of inter-
facial voids with variable rate of growth, voids with convex and
convex-concave profiles, and cusps. The numerical simulations are
compared with physical modeling experiments of Kao and Kuhn
(1990).

2 Formulation of the Problem

This paper analyzes two-dimensional symmetric compression
flows around a cylindrical inclusion (as shown in Fig. 1). These
flows represent physical situations of practical importance: for
example, extensional flows around cylindrical obstacles and forg-
ing of two-phase specimens with cylindrical inclusions (e.g., Kao
and Kuhn, 1990). The physical domain contains a thick plate with
a single cylindrical inclusion, which is subjected to biaxial com-
pressive loads. The computational cell considered is a rectangle of
dimensions 2L X 2H which is centered around the inclusion. Both
dimensions of the cell are smaller than those of the plate (see
Section 2.1). We assume that the matrix is an incompressible
viscous solid. The total stress o is

o= —pl+ u(VV +(YV)7), (2)

where p is pressure, I is the identity tensor, w is the dynamic shear
viscosity, and V is the fluid velocity. We shall demonstrate that for
certain cases this constitutive model can simulate material defor-
mation of low Deborah numbers. It also ensures numerical stability
of the simulations. For incompressible materials, the equation of
mass conservation is
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Fig. 1 Schematic of the compression flow region near a rigid cylindrical
inclusion in a viscous two-dimensional column

du dv

VY=gt =0

(3)
where 1 and v are two components of the material velocity vector,
In the case of quasi-static deformation of a viscous solid, the
Reynolds number Re = pV,H/u is small and the momentum
balance is described by the Stokes equation for creeping flows:

Vp=V-7 or

Here, p is density, V, is the compression velocity, and 2H is height
of the specimen. Typical values of these parameters are V, ~ 3 X
107 m/s, H ~ 0.1'm, p and p are 2,600 kg/m® and 11 X 10"
kg/m - s for a glass at the temperature 575(°C), and 1800 kg/m® and
4.7 X 10° kg/m - s for a wax at the temperature 8(°C) (Weast,
1988). Thus, Re < 1 for a number of highly viscous Newtonian
solids. Note that the time-dependence of the flow-field is caused
solely by interfacial boundary motion.

2.1 Boundary Conditions. By symmetry, only a quarter of
the solution domain needs to be analyzed (Fig. 2). Following
Needleman (1987), we replace the constant strain rate at infinity by
a constant velocity along a side of a rectangular computational cell.
As a result, boundary conditions on the top shear-free boundary of
the cell are

vix,y=H)= -V, t-o(x y=H) =0, 6]

Vp = uV2v. @)

for x € [0, L], where V, is the inflow velocity, 2H is the height
of the cell, and 2L is the width of the cell. The symmetry lines x =
0 and y = 0 are also shear-free with no penetration

ux=0,y)=0, teo(x=0,y)=0, ®)
for y € [r;, H], and
v(x,y=0=0, troxy=0)=0, 7

for x € [r;, L], where r, is the radius of a cylindrical inclusion.
The cell boundary at x = L is subjected to a constant pressure P
and zero shear stress:

noekx=Ly)=-P, tra(x=L,y) =0, ®)

The perfectly weak interface may slip and even separate from
the inclusion if the processing pressure is low enough. The sliding
interface should satisfy the following conditions for free slip and
no penetration:

o(r=r,0 =0, V(ir=r,0 'n=0, ()]

for 6 & [0, m/2], where n is the normal vector, r and 6 are polar
coordinates with the origin at (x = 0, y = 0), and r, is the
inclusion radius. The sliding part of interface should satisfy con-
ditions (9) for 0 € [6,, 7/2], where the angle 6, defines the contact
line at (r = r;, 6 = 6,). The unknown angle 6, may change with
time. When interfacial boundary slips or separates from the inclu-
sion, it is also required to satisfy the kinematic boundary condi-
tions

(V-V)'n=0, (10)

where V| is the surface velocity vector. The free interfacial bound-
ary at r = r; and 8 € [0, 6,] is assumed to be subjected to zero
radial stress and zero shear stress,

o'rr(r=ri’6)=03 G:-H(r=ri19)=0-

1mn

This part of the interface is free to move, deform, and take any
kinematically admissible location and shape.

Note that two different sets of boundary conditions are required
for the sliding part of the interface and the “freely” evolving part
of the boundary. The position and the shape of interfacial free
boundary and the location of the contact line joining the two parts
of interface together is not known before hand. The numerical
aspects of such nonlinear problems are thoroughly discussed by
Christodoulou et al. (1996). We show that the dynamic contact line
problem involved can be resolved by introducing an equivalent set
of interfacial conditions for the resulting system of equations.

SYMMETRY
o
i

1 nec =P

tec =0

Ven = 0
te o= 0

(V-Vs)'l'l. =0

neg=10; tec=0

SYMMETRY

Fig. 2 - Schematic of the computational domain with the boundary conditions and the

governing equations used
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3 Numerical Simulations

The plane compression flows around a cylindrical inclusion are
investigated in a quarter of the solution domain (Fig. 2). The
Galerkin finite element method is implemented for the computa-
tional cell which is discretized with nine-node quadrilateral finite
elements. The mesh was tested for convergence under refinement.
The resulting system of nonlinear algebraic equations is solved by
a fully coupled Newton-Raphson iterative scheme with boundary-
fitted mesh motion (Christodoulou et al., 1996). The finite element
analysis is performed by using the code developed in cooperation
with Sandia National Laboratories (Schunk et al., 1995). There are
several commercial computational mechanics packages which can
address similar problems for elastoplastic solids (e.g., ABAQUS
and ANSYS) or viscoplastic materials (e.g., DEFORM and
DYNA). The present code offers additional flexibility in defining
a phenomenological weak interface by introducing a repulsion
potential along the ill-defined interfacial surface with a dynamic
contact line (Harik, 1997). This code also avoids additional itera-
tions by utilizing a fully coupled scheme for the mesh motion and
the momentum equations. Such approach increases accuracy of the
free surface modeling, which is especially important at the onset of
the cusp instability.

In the numerical calculations presented, the initial inclusion
volume fraction is 9.8 percent, for the inclusions of normalized
radius 0.5. The x and y-coordinates and the velocity vector com-
ponents are nondimensionalized as x* = x/H, y* = y/H, u* =
u/V, and v* = »/V,. The nondimensionalized pressure p* is
given by p* = p/(uV,/H). The external pressure P applied to the
outer surface of the cell at x = L is varied. The location of the top
cell boundary is set at y = H = 1. The normalized vertical
velocity along this cell boundary is set to be —1. The location of
the outflow boundary is set at x = L = 2. Geometry of inclusion
and the matrix material viscosity remain fixed, p = 1, for all
numerical calculations.

In order to enforce two sets of interfacial boundary conditions
and allow slip along the sliding interface together with unrestricted
evolution on the free interfacial surface, phenomenological repul-
sion is introduced (Harik, 1997). The corresponding boundary
condition is defined for the entire surface of the interface:

€

P(r, 6)_pa+(r_r0)4’ (12)
where p(r, 0) is the repulsion pressure, p, is the ambient pressure
parameter, b, is the sensitivity coefficient for the repulsion poten-
tial, and r, defines a circular surface along which the repulsion
potential is infinite. Note that r, is smaller than the radius of
inclusion r;, r; — ry < 0.001. To simulate zero pressure on the
free interface boundary the ambient pressure parameter p, is set to
be zero. The sensitivity coefficient b, is chosen so that the repul-
sion potential balances the flow pressure at the inclusion surface
and simulates the presence of a rigid body. Note that this approach
is similar to the modeling of a phenomenologically defined inter-
face by Needleman (1987).

4 Analysis of Results

In two-phase materials with the perfectly weak interface, inter-
facial separation starts on both sides of a cylindrical inclusion at
the line of symmetry (y = 0; see Fig. 3(a)). At the place of
separation, there is a small region of zero pressure, which is
preserved for some time (Fig. 3(9)). In that region, the matrix has
a “dead zone” of the deformation-free material. A similar zone
near interfacial voids has been observed by Needleman (1987) in
an extensional flow. High values of external pressure P can reduce
the growth and the size of microvoids. Interfacial microvoids
rapidly grow into finitg cavities. Development of finite interfacial
voids at cylindrical inclusions in compression flows: goes through
a sequence of convex profiles for small strains and low external
pressures (Fig. 3(a, b)). Figure 3(a) shows a set of instantaneous
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Fig.3 Transient evolution of an interfacial void at a cylindrical inclusion
at zero external pressure P. (a) Stream lines of the deformation flow at ¢
= H(H/Vo) = 0.053, (b) pressure contours at t* = 0,126, and (¢) velocity
vector field at * = 0.422.

flow stream lines which is characteristic for all stages in void
growth. The zero line moves upward as the strain increases and the
length of void & grows. ’

Under low external pressure, the sequence of convex interfacial
cavities breaks down when a cusp develops in the interfacial free
surface at the symmetry line (Fig. 3(c)). This marks a highly
unstable stage in the evolution of free interfacial surfaces subjected
to low external pressures. It is characterized by a sudden increase
in the matrix flow velocity near the interface at the line of sym-
metry. High values of external pressure P reduce not only the
growth of voids and their final size (Fig. 4) but also suppress their
interfacial instability. Under high enough pressure, an interfacial
void grows monotonically until its size reaches a steady-state
value. Figure 4 illustrates the changes in the time-dependent evo-
lution of finite interfacial voids caused by the outside pressure.

The rate of void growth decreases as the applied pressure rises.
A steady state is reached under higher external pressures, which
limit the cavity growth and the interfacial instability. The limiting
void size is controlled by the external pressure for a range of large
strains (Fig. 4). The shape of the stagnant void is determined by the
local flow-field which resembles the Bingham plastic flow around
a sphere with solid stagnation regions (see Beris et al., 1985).

The transient evolution of an interfacial void at a cylindrical
inclusion shown in Fig. 3 provides a good qualitative description
of the experiments performed by Kao and Kuhn (1990). In fact, all
topological characteristics of the convex interfacial cavities are in
agreement (see Figs. 3 and 6 in Kao and Kuhn (1990)). That is,
similarities extend even to the break up of the sequence of convex
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Fig. 4 The time-dependence of the interfaclal separation & (6 = Dx/H) at
y = 0 around a cylindrical inclusion of normalized radius 0.5 for different
outside pressures P (P = Ap/(uVo/H))

profiles by unstable transition to the cusp in the evolving interfa-
cial surface. The velocity vector fields obtained from the experi-
ments and the finite element modeling are quite similar as well (see
Fig. 3(c) and Fig. 6 in Kao and Kuhn (1990)). Figure 5 illustrates
a quantitative agreement between the physical modeling of void
growth and finite element simulations.

Similarity between the flow of a viscoplastic paste-type model
material and the finite element simulations based on the viscous
solid model is the result of low rates of deformation and low
Deborah number of the paste flow. Lipscomb and Denn (1984)
demonstrated that the Bingham plastic flow around a sphere can be
approximated by a linear viscous flow when the yield siress and
the rate of deformation are small. Duvaut and Lions (1976) proved
that a unique solution for the creeping flow of Bingham plastics
exists and it approaches the Newtonian limit as the yield stress
approaches zero. In the physical modeling experiments, the shear
thinning near the particle surface creates rheological conditions
resembling weak interfaces.

5 Conclusions

This paper presents finite element modeling of time-dependent
evolution of interfacial voids at a cylindrical inclusion in plane
compression flows. In particular, the influence of applied external
pressure on the development of voids at the inclusion surrounded
by a highly viscous matrix is examined for a variety of cases. For
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Fig. 5 The dependence of interfacial separation (Dx/r;) on the compres-
sive strain (Vot/H). The experimental data is shown for zero outside
pressure (Kao and Kuhn, 1990). The data reflect the unstable develop-
ment of an interfacial cusp. The two sets of data obtained by finite
element modeling are shown for P = Ap/(uVy/H) = 0 and Ap/(uVo/H) =
—1. The final strains mark the onset of interfacial instability.

Journal of Applied Mechanics

a fixed set of geometric parameters, increasing the normalized
pressure drop between the free surface and the inclusion Ap/
(uwVo/H) reduces the interfacial void size. The profiles of interfa-
cial voids change from convex to convex-concave (with smaller
area) as the applied pressure and strain increases.

The external pressure affects the initiation of interfacial separa-
tion and all stages in the void development. The presence of an
inclusion leads to complex deformation of interfacial free surface.
As a result, the topology of deformed voids is more complicated
than that of elongated voids without inclusions. It is especially true
in the case of biaxial compressive loads which lead to interaction
between the interfacial free surface and the rigid inclusion. The
compression velocity and the matrix viscosity also affect the void
formation as they change the time scale. The initial convex profile
of the nucleated voids simulated by Needleman (1987) is similar to
the shape of interfacial voids simulated at cylindrical inclusions.
The formation of “dead zones” at both lines of symmetry of
inclusions is observed as well. However, the difference in loading -
leads to distinct evolution patterns.

Analysis and examples of the transient deformation of interfa-
cial voids at a cylindrical inclusion illustrate how such voids
evolve under various external pressures. The sequence of void
profiles shown in Fig. 3 provides a good qualitative description of
the experiments performed by Kao and Kuhn (1990). Altogether,
this demonstrates that advanced finite element codes involving the
boundary-fitted mesh motion (Schunk et al, 1995) or other
schemes for moving boundaries (Hu et al., 1992; Tezduyar et al.,
1992) can successfully simulate highly nonlinear deformation of
free or moving boundaries.
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Analytic Solution for Eshelby’s
Problem of an Inclusion of
Arbitrary Shape in a Plane or
Half-Plane

Despite extensive study of the Eshelby’s problem for inclusions of simple shape, little
effort has been made to inclusions of arbitrary shape. In this paper, with aid of the
techniques of analytical continuation and conformal mapping, a novel method is pre-
sented to obtain analytic solution for the Eshelby’s problem of an inclusion of arbitrary
shape in a plane or a half-plane. The boundary of the inclusion is characterized by a
conformal mapping which maps the exterior of the inclusion onto the exterior of the unit
circle. However, the boundary value problem is studied in the physical plane rather than
in the image plane. The conformal mapping is used to construct an auxiliary function with
which the technique of analytic continuation can be applied to the inclusion of arbitrary
shape. The solution obtained by the present method is exact, provided that the expansion
of the mapping function includes only a finite number of terms. On the other hand, if the
exact mapping function includes infinite terms, a truncated polynomial mapping function
should be used and then the method gives an approximate solution. In particular, this
method leads to simple elementary expressions for the internal stresses within the
inclusion in an entire plane. Several examples of practical interest are discussed to
illustrate the method and its efficiency. Compared to other existing approaches for the
two-dimensional Eshelby’s problem, the present method is remarked by its elementary
characters and applicability to inclusions of arbitrary shape in a plane or a

C. Q. Ru

Department of Mechanical Engineering,
University of Alberta,

Edmonton, Alberta T6G 2G8, Canada

half-plane.

1 Introduction

Stress analysis of an infinite homogeneous elastic body that
contains a subdomain undergoing a uniform stress-free strain
(Eshelby’s problem) is a classic topic. Among various physical
phenomena which lead to the Eshelby’s problem, thermal stresses
and intrinsic stresses, caused by thermal or lattice mismatch be-
tween dissimilar materials, are of particular significance. The ex-
amples of current interest include passivated interconnect lines and
trench isolations in large-scale integrated circuits (see Hu, 1991;
Okabayashi, 1993; Burges et al., 1996), and strained semiconduc-
tor laser devices (see Gosling and Willis, 1995; Faux et al., 1996,
1997; Downes et al., 1997), where residual stresses induced by
thermal or lattice mismatch between buried active components and
surrounding materials crucially affect electronic performance of
devices and, in some cases, are identified as the major cause of
degradation and failure. For these problems, a common simplifi-
cation made by many researchers is that the thermal or lattice
mismatch plays the dominant, role and the difference in elastic
constants between dissimilar constituents can be ignored. For
example, Niwa et al. (1990) have modeled the passivated metallic
line as an elliptic thermal inclusion surrounded by an infinite
elastic medium of the same elastic constants (called “thermal
inclusions,” see Hu, 1991). Their results show that the solution
based on this simplified model is in reasonably good agreement
with accurate numerical solutions.

Various methods have been developed for the Eshelby’s prob-
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lem. Among others, Green’s function (see, e.g., Seo and Mura,
1979; Chui, 1980; Hu, 1989; Yu and Sanday, 1991; Muller et al.,
1994; Wu and Du, 1995, 1996; Faux et al., 1996; Nozaki and Taya,
1997) is the most widely used method. However, because Green’s
function involves nontrivial integrations, it cannot be used to
obtain an analytic solution for a stress field, especially when the
shape of the inclusion is not simple. This explains why, until very
recently, most works have focussed on the inclusions of special
shape (in addition to those mentioned above, see also Rodin
(1996)). To our knowledge, no simpler analytical method is avail-
able for inclusions of any shape. Here it should be stated that
although the method of the singular integral equation (see e.g.
Sherman 1959, Theocaris and Ioakiidis 1977) can be applied to
inclusions of any shape, its solution requires substantial numerical
effort, making it difficult to apply the solution to complex practical
problems. Hence, from a practical viewpoint (see Niwa et al.,
1990; Hu, 1991; Faux et al., 1996), a simple method that gives an
analytical solution for inclusions of any shape, even only for a
two-dimensional case and with a certain degree of approximation,
is of great interest. The present work is triggered by such a desire.

It is known that the technique of conformal mapping provides a
powerful method for stress analysis of two-dimensional elastic
body containing a hole or rigid inclusion of any shape (see Savin,
1961; Cherepanov, 1974). However, it should be clearly recog-
nized that, due to the lack of a conformal mapping which maps,
simultaneously, the exterior and interior of the inclusion onto a
plane with a simple interface, this technique cannot be directly
applied to elastic inclusions of any shape (see, e.g., Jaswon and
Bhargava, 1960; List and Silberstein, 1966; Sendeckyj, 1970). In
the present paper, combining the techniques of analytical contin-
uation with conformal mapping, a novel procedure is presented to
obtain the analytic solution for the Eshelby’s problem of an arbi-
trary shaped inclusion in a plane or a half-plane. One remarkable
advantage of this method is that simple elementary expressions can
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Fig. 1 An Inclusion of arbitrary shape in an entire plane

be obtained for the internal stresses within the inclusion in an
entire plane.

2 An Inclusion in an Entire Plane

Consider an infinite homogeneous elastic plane containing a
subdomain which undergoes uniform stress-free eigenstrains (€%,
€, €%). Let S, and S, denote the subdomain and its supplement
to the elastic plane, respectively, and I' the interface separating S,
and §,. Throughout the paper, the subscripts 1 and 2 are used to
identify the respective quantities in §, and S, (see Fig. 1).

For plane problems, the stresses and the associated displace-
ments can be given in terms of two complex potentials, ¢(z) and
Y(2), as follows (Muskhelishvili, 1963; England, 1971):

2ulu + ivy = ke(z) ~ 29’ (z) ~ ¥(z2),
O T Oy = 2[e'(2) + ¢'(2)],
0= i0,=0¢' (@) +¢' (@) —z¢"(@) —¢¥'(z) Q1)
where k = 3 — 4y for plane strain and k = (3 — ¥)/(1 + ») for
plane stress, and u and v are the shear modulus and Poisson’s
ratio. In addition, the resultant force acting on the left of an
arbitrary arc AB is

~i[g(z) + z¢' (2) + ¥(z)]L.

Thus, the boundary value problem of the Eshelby’s problem has
the form

kei(z) — 201(z) — (D)
= k@a(z) — zeh(2) — ¥a(z) + 2p[8z + (8, + i8:)z),
©1(2) +20)(2) + ¥1(2) = 02(2) + 205(2) + Paz), zET;

() =o(l), 4y(2) =0(1), (2.3)

where the two conditions at the interface indicate the continuity of
tractions and displacements; the last one represents the zero-stress
condition at infinity, and

2.2)

lz] = o

* * —
_Ext €, €T €,
81_ » 2 )

7] 2 2.4)

63 = Efy.

For an arbitrary simply connected inclusion enclosed by a
simple curve, it is known (sec Kantorovich and Krylov (1958) and
Savin (1961)) that there exists a conformal mapping, z = w(§) that
maps the exterior of the inclusion onto the exterior of the unit
circle in the &-plane. The conformal mapping can be generaily
expressed by an infinite series in (1/£) (see Al) of the Appendix).
For many practical problems, the infinite series can be truncated
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and replaced, with good accuracy, by a pelynomial in (1/£) which
includes only a small number of terms. Various methods for the
construction of an accurate or approximate polynomial mapping
function have been extensively developed, and there are plentiful
known solutions in the literature. Hence, without loss of generality,
we assume that such a polynomial mapping function, w(§), exists
for the inclusion of arbitrary shape. Consequently, it is shown (see
(A4) of the Appendix) that there exists a function D(z) which
satisfies the condition
z=D(z), z€T 2.5)
and, moreover, is analytic in the exterior of the inclusion except
infinity where it has a pole of finite degree determined by its
asymptotic behavior
D(z) — P(2) +o(1), |e| — o, (2.6)
where P(z) is a polynomial in z of finite degree. A simple
procedure for the construction of D(z), in terms of the polynomial
mapping function w(&), is given in the Appendix. In particular, the
polynomial P(z) can be easily determined without the details of
D(z). Here it should be stated that a condition similar to (2.5) has
been used, in a different way, by some authors (see, e.g., Jaswon
and Silberstein (1960) and Varley and Cumberbatch (1980)) to
elliptic hole or elliptic inclusion. In the present paper, based on the
relation (2.5) for inclusions of any shape, the technique of analyt-
ical continuation is used to obtain an analytic solution of the
Eshelby’s problem for an inclusion of any shape. Since the solu-
tion of the Eshelby’s problem for multiple inclusions can be
obtained by simply adding the solutions for individual inclusions,
our discussion is confined to the single inclusion.
Throughout the paper, it is assumed that the function D(z),
defined by (2.5), (2.6), exists. Thus, the interface conditions in
(2.3) along I' can be written into an equivalent form

2p o e
o1(2) = @,(z) + P {81z + (8, + i83)z],

¥(2) + zZ[e1(2) — pi(2)]

2
= () — [ + (8, - i8)e), ET. @7)

Using (2.5), the first condition of (2.7) can be written as

2
¢ (z) — }TMT [812 + (8, + i8;)D(2)] = @,(2), zET. (2.8)

Since the left and the right of (2.8) are analytic functions on two
sides of T, respectively, the continuity condition (2.8) implies that
any one of them can be extended analytically to the other across I'.
Thus, their derivatives are also continuous across the interface T',
and

2
#i(0) =~ (81 + (8, + 8D ()] = 03(a), zET. (2.9)

Using (2.5) and (2.9), the second condition of (2.7) along I can be
written as

2
(@) + 2 [28,D(2) + (5 + i) DD’ ()

+ (8, — i83)z] = (z), z€E€T.
Evidently, the left sides of the interface conditions (2.8) and (2.10)
are analytic outside the inclusion, except infinity, where they have
the poles of finite degree, while the right sides are analytic inside
the inclusion. Thus, one can define two new functions as

(2.10)
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®(z) = ei(z) - P [8iz + (8, + i8:)D(2)], z €S,
(PZ(Z)’ 4 S S2
2.11)
y(z) + [25 D(z) + (8; + i8,)D(2)D'(2)
Y(z) = +(8,~i8y)z], z €S,
(2.12)
P(z), zE€S,

both of which are analytical in §, and S, respectively. It is seen
from (2.8), (2.10) that ®(z) and ¥(z) are continuous across I" and
then analytic in the whole plane, except infinity, where they have
the poles of finite degree, described by

2
®(z) » — =7 [8iz+ (8, + i8)P(7)],

¥(z) = [28,P(z) + (8, + i8;)Q(2)

K + i
+ (8, — i83)z],

where Q(z), a polynomial in z, is the principle part of the product
D(Z)D’(z) at infinity, namely

D(z)D'(z) = Q(z) + o(1),
This simply implies that

z > x (213)

|z = co.

(2.14)

2p
P(z) = — 1 [8:z + (8, + i83)P(2)],

V(z)

2u
=il [28,P(2) + (8, + i8,)Q(z) + (8, — i85)z] (2.15)
in the whole z-plane. Once ©(z) and W(z) are known, the original
complex potentials ¢ (z) and ¢(z) (k = 1, 2) can be easily
obtained from (2.11), (2.12) and then the full-field stresses can be
calculated through (2.1). In particular, within the inclusion §,, we
have

‘/fz(Z) [25 P(z) + (8; +i8;)Q(2) + (8, — i83)z]

i(2) = — ZE S, (2.16)

k+1 [812 + (8, + i8;)P(2)],
The formulas (2.16) give the explicit solution for the internal stress
field inside the inclusion in an entire plane. It is emphasized that
the expressions (2.16) depend only on the polynomials P(z) and
Q(z), but not on D(z) itself. This fact is of great value because
P(z) and Q(z) can be easily determined, whereas D(z) involves
the inverse of w(€) and then is relatively troublesome (see the
Appendix).

On the other hand, the simple expressions for ¢,(z) and ,(z)
in S, are given by

(2) = — 7 [28,[P(2) - D(2)]
+ (8 + 5[0 ~ DD @)
2
@) = =41 (8 + i8)(D@) — P(2)), zE€ S @17)

The function D(z) is given by (A4) in terms of the inverse of the
polynomial mapping function w(§). Evidently, the right of (2.17)
depends on D(z), not only on P(z) and Q(z). Hence, the calcu-
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Fig. 2 An inclusion of arbitrary shape In a half-plane

lation of external stresses is more complicated than the internal
stresses. However, the internal stresses are of major interest for
many practical problems, such as those related to thermal stress-
induced failure of passivated interconnect lines in integrated cir-
cuits (see Hu (1991) and Okabayashi (1993)). Therefore, in Sec-
tion 4, detailed discussion will mainly focus on the internal stress

field within the inclusion.
For a thermal inclusion of arbitrary shape, we have €, = €%,
= ( and then §, = 8, = 0. It follows from (2.16), (2.17) that

o
Po2) = =778z () =7 8P, z€S, (218
inside the inclusion, and
e(z) =0, Y lzg)= [P(z) D(2)], z€S, (219

outside the inclusion. In particular, since the mean stress (o, +
a,,) is determined by the first derivative of @(z) (see (2.1)), it
follows from (2.18), (2.19) that the mean stress remains constant
inside the thermal inclusion and vanishes outside, regardless of the
shape of the inclusion. This result has been stated in some earlier
works (see, e.g., Gosling and Willis, 1995) for several special cross
sections.

3 An Inclusion in a Half-Plane

The Eshelby’s problem for an inclusion in a half-plane is of
practical importance. For example, for interconnect lines of inte-
grated circuits, because the passivation layer is usually much
thinner than the underlying substrate, the passivated metallic line
which lies between the passivation and the substrate, can be
modeled, more realistically, by a thermal inclusion in a half-plane
rather than in an entire plane. Similar circumstance occurs for
trench insulations in electronic packaging (see Hu, 1989, 1990). In
general, due to the presence of a free surface, the analysis of the
Eshelby’s problem for a half-plane is significantly complicated.
Despite this, the present method can be extended to the inclusion
of arbitrary shape in a half-plane.

Assume that the elastic half-plane occupies the lower half-plane,
y < 0, and contains an internal subdomam that undergoes uniform
stress-free eigenstrains (e%,, €%, €%). Let S, and §, denote the
subdomain and the remainder of the lower half-plane, respectively,
and T the interface separating S, and §, (see Fig. 2). Thus, the
boundary value problem for two pairs of analytical functions,
©i(z) and Y, (2) (k = 1, 2), defined in §, and S,, respectively, is
of the form

¥n(z)
= key(z) — 293(2) —

kp(z) — zpi(z) —
Un(2) + 2ul81z + (3, + i6,)7],
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0:.(2) + 201(2) + ¥1(2) = 02(2) + 203(2) + Ua(z), zET;
@:1(2) + 201D + ¥i(2) =0, y=0-

e(z) =o(1), ¢(z) = o(1),

In a manner similar to that described in Section 2, the interface
conditions on I' can be written in the forms of (2.8) and (2.10),
where D(z) satisfies the condition (2.5) on I" and is analytic in the
entire plane exterior to the inclusion except infinity where it has a
pole of finite degree. Further, one can define two new functions
®(z) and W(z) in the lower half-plane, in a way similar to (2.11),
(2.12). Thus, it follows that ®(z) and ¥(z) are analytic in the
lower half-plane except infinity where they have poles of finite
degree, determined by

3.1

|Z|y50 - ®.

2
V(D) > 7 [28,P() + (8, +i8)Q(2) + (5, — i8)2],

2
D) > ~ T8z + (8 + 18P, |ehmo > » (3.2)

where Q(z) is a polynomial defined in a manner similar to (2.14).
Now, the free-surface condition of (3.1) can be given in terms of
®(z) and ¥(z) as

D) + B 1282 + (8, + 18)D(2) + (8, — 182D (D]

T + Q) e (2850 + (8, ~ 18)DDD )

+ (8, +1i8:)Z] =0, y=0. (33)

Since D(z) and its derivative are analytic in the upper half-plane
including the real axis, the functions

D), D'(z)

are analytic in the lower half-plane including the real axis. Thus,
the condition (3.3) can be written into the form

2 - — =
B(2) = = [28[D(2) ~ 2] + (5, ~ i8)D' ()[D(2) - <]]

2 — —
= S (8, + i8)[e - D()] — F(D) - 7 (2),
y=0. 34
Evidently, the right and the left of (3.4) are analytic in the lower

and the upper half-planes, respectively, except infinity, where they
have the same principle part as follows:

2 -
=B [81[c = 2P(@)] - (8, + i8)P(2)

+ (8, — i8)[zP'(z) — 0(2)]). (3.5)

This implies that the right and the left sides of (3.4) are equal to the
polynomial (3.5) in the upper and the lower half-planes, respec-
tively. Thus, we have

. 2 - =
B(2) = 7 [8,[2D(2) — 2P() ~ 2]

+ (8, — i8;)D" (2)[D(z) — z] —(8, + i8,)P(2)
+ (8, = i8)[zP'(2) - 0()]], y=0 (3.6)

in the lower half-plane, and
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21

K+ 1 [81[Z - 216(2)] = (8, + i8,)P(2) + (8, — i8,)

— _ 2
X [2P'(2) = Q@)1 = 4 (82 + i)z — D(2)]

—W(z) —z®'(z), y=0 (3.7)

in the upper half-plane. In particular, the relation (3.7) implies that
W(z) = -2’ 2E 5z - 2P
(@) = —2®'(z) -~ — [z (2)]

— (8, — 583)[2 - D(Z) + 13(2)]
+ (8, + i53)[ZP'(Z) - Q(Z)]],

Hence, the equations (3.6), (3.8) give the explicit expressions for
®(z) and ¥(z) in the lower half-plane. Consequently, within the
inclusion S,, we have

y=0. (3.8)

21 _ -
¢2(2) = 7 [8:[2D(2) — 2P(2) — 2]

+ (8, ~ i8)D"(D)[D(2) — 2] = (8, + i8)P(z)

+ (8, — i8)[zP'(2) — Q()]), zES, (3.9)

2p
Pa(2) = —z5(z) — PR [8[z — 2P(z)]

— (8, = i8;)[z ~ D(z) + P(z)]
+ (8, + i83)[ZP'(Z) - Q(Z)]],

On the other hand, in the lower half-plane exterior to the inclusion,
we have

z€ 8, (3.10)

2 _ - —
o1(2) = 7 [28,[D() - P(2)] + (5, — i8)D'(2)

X [D(z) ~ z] + (8, + i8,)[D(z) — P(2)]
+ (8, — i8)[zP (2) — Q(2)]], z €S, (B.1D)

2
(D) = ~261(2) — —47 [281D() = P@)] + (8, i5)

X [D(z) = P(z)] + (8, + i8;)[D(z) D' (2)
+ zP'(z) = zD'(2) — Q(2)]1], (3.12)

The expressions (3.9), (3.10) and (3.11), (3.12) give the analytic
solution for the Eshelby’s problem of an inclusion of arbitrary
shape in a half-plane. The solutions are expressed through the
function D(z) and the associated polynomials P(z) and Q(z). As
shown by the formula (A4) in the Appendix, D(z) is given
explicitly in terms of the inverse of the polynomial conformal
function. Here, similar to all methods based on conformal mapping
(see Muskhelishveli (1963), England (1971), and Savin (1961)),
the inverse of the polynomial conformal mapping is treated as the
known, although its explicit elementary expression is not always
available especially for the inclusions of complex shape.

For a thermal inclusion of any shape in a half-plane, we have
et = €%, €% = 0 and then 8, = 8, = 0. It follows from
(3.9)-(3.12) that

ZES[.

2ud,  _ -
¢xz) = 7 [2D(2) ~ 2P(2) — 2]

418,

7DD~ P (@) - P]. zES, (13)

l!’z(Z) = -
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inside the inclusion, and

4ud; -
&(2) =~ [D(z) — B(2)]

Kk +
4ud,
i(z) = — K_‘:'T [z[D'(z) — P'(z)]

+ [D(z) — P(2)]1,

outside the inclusion. It will be seen that, due to the appearance of
a free surface, the internal stresses are no longer uniform even for
an elliptical thermal inclusion embedded in a half-plane.

7€ S8, (G.14)

4 Examples

4.1 An Elliptic Inclusion in an Entire Plane. For an ellip-
tic inclusion, the explicit expressions for D(z) and P(z) are given
by (A9) and (A10) of the Appendix, respectively. If the inclusion
is in an entire plane, we choose y, = 0 and then the complex
potentials within the inclusion are given by

2p [25, (5,+i8y) .
b =t | e i)
2 (8, + i8y)
‘Pz(Z):_K+1[81+ 2Rz 3]2, ZES, @)

On the other hand, the complex potentials in the exterior of the
inclusion is given by

2 [268,(1 —RY
K+ 1

RZ
2 d 4 2 d
—[RZ+E(1—R)§][R +§(1—

l.l’l(Z) = [Z - de] + (8, + faa)[,%

. §
R)?.de—z]”’

2 (@ iB)UZRY L

K+ 1 R?

¢oi(z) = ZES, (@2

where € = w™'(z) is the inverse of the conformal transformation,
given by (A7). It can be verified that these results agree with the
known solution (see, e.g., Jaswon and Bhargava, 1961).

4.2 An Elliptic Thermal Inclusion in a Half-Plane. Now,
let us consider the internal stresses within an elliptic thermal
inclusion embedded in a half-plane (see Fig. 2). In this case, the
internal stresses are determined by (3.13) with

- d -
D(z) = R¥z + iyy) + R (1 = RYw ™ z) + iy,

R*+1
RZ

=[5 e
* a Z+iy0 ’ (.)

If the depth of the inclusion is much larger than its size, then for
Z € §,, we have

ﬂﬂ=%+% (4.3)

where

z+ iy,

—7 \ _
0 '(2) = 5R

z +iyo

@) = dR

d2
O(W) . |yd = 4r. 4.5)

Thus, as expected, the results (3.13) with (4.3), (4.4) reduce to
(4.1) (except a constant which does not influence the stress field).
In general case, however, the uniformity of internal stresses is
diminished even for an elliptic thermal inclusion in a half-plane.

It is known (see Niwa et al. (1990) and Okabayashi (1993)) that
voiding of interconnect lines is governed largely by the internal
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mean stress. It is found from (3.13), (4.3), and (4.4) that the mean
stress field within the inclusion is

(o
—8u8, 1-R* 1
T(k+1) g7 Rel1- (2d>2’
S P
7E S, (4.6

Hence, to reduce the level of the mean stress within the inclusion,
the simple formula (4.6) could provide useful insight into the
design of the top passivation layer and the aspect ratio of the
interconnect lines. For an elliptic thermal inclusion embedded in
an entire plane, the internal mean stress is uniform. For an elliptic
thermal inclusion in a half-plane, due to the effect of the free
surface, the internal mean stress is no longer uniform. For instance,
along the minor principal axis (with x = 0), the internal mean
stress is

R*—1 1

R 1~
\/1

Evidently, in qualitative agreement with the three-dimensional
results of Seo and Mura (1979), the effect of the free surface
decreases with the depth of the inclusion. The formula (4.7)
indicates that for some combination of the depth and the aspect
ratio, the mean stress along the minor axis could change the sign
at an interior point y*, if any, determined by

4 _-8;1,81
N PR o
(v + y0)?

4.7

2d

3
1+
()’* + }’0>

For example, when the aspect ratio is 2, the condition (4.8) gives

R*~1
R*-1-RY

4.8)

Ja? — 4d? 39 o

Thus, such an interior point y* exists, provided the depth y, is less
than 1.2 the semiminor axis. These results show that the free
surface has a significant effect on the internal stresses, especially
when the inclusion depth is small.

4.3 Hypotrochoidal Inclusions. Next, we consider hypotro-
choidal inclusions (see the Appendix). These inclusions are of
practical interest because, with suitable combination of the param-
eters (say, m = 2/[n(n + 1)], see Fig. 3, and Savin (1961), and
England (1971)), they provide good approximations to regular
polygonal inclusions. For instance, the hypotrochoid with n = 2
and m = § resembles a triangle with rounded corners, and the
hypotrochoid with n = 3 and m = § resembles a square with
rounded corners. Although the hypotrochoidal hole and rigid in-
clusion have been studied by some authors (see, e.g., Milne-
Thomson (1968) and England (1971)), it seems that the explicit
solutions for the Eshelby’s problem of hypotrochoidal inclusions
are not available in the literature,

Consider a hypotrochoid thermal inclusion in an entire plane. In
this case, the complex potentials within the inclusion are given by
(see (2.18) and (Al4) of the Appendix)

2u 4udm .
@ = - 778z dlz)= T

Z€ S, 4.9

Thus, the exact internal stresses are given by
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Hypotrochoid with cusps
(mn=1)

Hypotrochoid with rounded corners
(mn(n+1)=2)

Fig. 3 Hypotrochoidal inclusions

o _ —4ud . nmr" ! cos [(n — 1)6]
zZ=re, (Txx—(K+l) pn—l ’
_ —4pd . nmr" ' cos [(n — 1)0]
O’Y}’ (K + 1) - pn'l )
48 nmr™ ' sin[(n - 1)6]
(Tx}' = k+ 1 pn—l 2 z € S2' (410)

Since the hypotrochoidal inclusions provide approximations to
regular polygons, it is of interest to compare the above formulas
with, say, recent numerical results of Nozaki and Taya (1997) for
regular polygonal inclusions. First, at the center of the inclusion
(x = y = 0), the stresses given by (4.10) are identical to the
Eshelby’s solution for a circular inclusion. This is in agreement
with Nozaki and Taya’s conclusion. On the other hand, different
from the logarithmic singularity appearing at the sharp corners of
a polygon, the internal stresses given by (4.10) for hypotrochoids
remain bounded for any combination of the parameters m and n,
even when mn = 1 and then the hypotrochoidal inclusion has
(n + 1) cusps (see Fig. 3). This is due to that fact that the internal
angle between two neighboring boundary curves reduces to zero as
the tip of the cusp is approached.

For a more detailed comparison, let us consider strain distribu-
tion along the positive x-axis (8 = 0) under the conditions of plane
strain. The present formulas (4.10) give

€, + 6 1

xn—l
som|ml)
€, + & 1

3 (x n—1
s () )

0=x=(1+mp.

4.1

First, the results (4.11) with m = 2/[n(r + 1)] (it gives the
lowest-order approximation to regular polygons, see England
(1971)) are compared to the numerical solutions of Nozaki and
Taya (see their Figs. 3 and 4, where v = 0.3). A good agreement
is found in the major part of the interval considered (say, when
0 = x = 0.8(1 + m)p). However, a large error occurs in the
neighborhood of the corners where, as stated previously, the so-
lution for polygons exhibits logarithmic singularity whereas the
results (4.10), (4.11) for the hypotrochoids remain bounded. This
discrepancy is apparently due to the fact that the hypotrochoidal
inclusion with m = 2/[n(n + 1)] has rounded corners and cannot
resemble local geometry of a polygon at its sharp corners.

Since the hypotrochoids with mn = 1 have (n + 1) cusps, it
could resemble, more accurately, a polygon near its sharp corners
provided # is not large. In fact, the formulas (4.11) with mn = 1

give
€t 8 1 . | 1\ !
5 T 2i-w| \!''x
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€, +8 1 1+<1+1 a-l
5 201 - n ’

x=(1+mp 4.12)

at the cusps. Note that
3 ( 1) n—1
-1+ <e, n=12
2 n

a comparison of (4.12) with Nozaki and Taya’s Figs. 3 and 4
indicates that (4.12) provides a good estimate for local strains near
the sharp corners of a regular polygon provided, say, n < 5.
Hence, despite their elementary forms, the formulas (4.10) can be
used, with a good accuracy, to estimate the internal stresses within
a regular polygonal inclusion.

4.4 Rectangular Inclusion. An important geometrical
shape of thermal inclusions in many practical problems (e.g.,
electronic packaging) is the rectangle (see, e.g., Hu (1989, 1990)).
Based on a truncated polynomial mapping function (see (A15) of
the Appendix), it follows from (2.18) and (A.17) that ¢,(z) and

" P,(z) inside the rectangular thermal inclusion, centered at the

origin and with the sides parallel to the coordinate axes, can be
approximated by

2
‘Pz(Z):_mSlZ
_4ud, [(P=P)?  P+P (P—P)?
l’bz(z)—_K-i-l[ 24c¢? 4 2 L= 8 K
zES, (4.13)

where ¢ and P are two geometrical parameters determined by the
size and aspect ratio of the rectangular inclusion, respectively (see
the Appendix). Thus, the internal stresses within the inclusion are
given by

—:_’ia%[(’;;;gﬂmSZO—FP;P[1_(13_817’)2]]
+:i}“_,%[(£8:;2}3—)2r200s26+});?[1_(P;P)Z}}
Ty = :iﬁi (P—i;—?lzﬂ sin 26. (4.14)

It can be verified that (4.14) reduces to (4.10) withn = 3 and m =
% when £ = § (the rectangle becomes a square, see the Appendix).
Further, it follows from (4.14) that the internal deviatoric stress is

8ud, [ (P —P)*
O'XX—()'},),:_m Tﬂcosﬂ?
P+P (P~ P)
+— I_T (4.15)

which vanishes at the center only if the rectangle is a square.

When the aspect ratio of the rectangle is very large, the number
k approaches zero and then the limit values of (4.14) for the case
of plane strain (then €,, = 0) read

21 —2u8, ,
_—1—;_;8I9 Crzz_l_v(l—"_v_v)s

Ty =
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o

w= Oy =0

where the direction z is perpendicular to the x-y plane. Hence, the
internal stress field is in a bi-axial stress state in the x-z plane.
These results are in good agreement with those obtained by Niwa
et al. (1990) for a thin-film conductor of elliptic cross section.

~

5 Conclusions

A general method is presented to obtain an analytic solution for
the Eshelby’s problem of inclusions of any shape in a plane or in
a half-plane. The method is based on the auxiliary function D{z),
which can be constructed, accurately or approximately, from the
associated polynomial mapping function. With aid of the function
D(z), the technique of analytic continuation can be applied to the
inclusion of arbitrary shape in a plane or a half-plane. It is
emphasized that the problem is studied in the original physical
plane rather than in the image plane. The solution obtained by the
present method is exact, provided that the mapping function in-
cludes only a finite number of terms. On the other hand, if the
exact mapping function includes an infinite number of terms, a
truncated polynomial mapping function should be used and then
the method gives an approximate solution. In particular, this
method gives simple elementary expressions for the internal
stresses within the inclusion in an entire plane, even without the
need of determining D(z). This fact makes the present method
particularly useful for internal stress analysis and optimal design of
the shapes of inclusions in some practical problems, such as those
mentioned in the Introduction. Several example are discussed to
illustrate the method and its efficiency. It is believed that the
method provides an effective approach to obtain an analytical
solution for the Eshelby’s problem of an inclusion of arbitrary
shape in a plane or a half-plane.
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APPENDIX

Here, a simple method is described to construct the auxiliary
function D(z), which is analytic in the exterior of the inclusion
and satisfies the condition (2.5) along the boundary of the inclu-
sion. First, according to the conformal mapping theory (see, e.g.,
Kantorovich & Krylov, 1958), the exterior of the inclusion can be
mapped onto the exterior of the unit circle in the ¢-plane by an
analytical function of the form

2= () =AE+ > it

k=0

(A

where A is a real nomber and ¢, (k = 0, 1, ...) are some
complex constants. Various methods for accurate or approxi-
mate determination of the expansion (A1) are described in the
literature (see Savin, (1961) and Kantorovich and Krylov
(1958)). For many simple boundary curves, the mapping func-
tion (A1) includes only a finite number of terms. On the other
hand, for many practical problems, the truncation of the infinite
series (Al) to finite (say, N) terms offers a good approximation
to (Al). In fact, almost all existing methods of conformal
mapping are based on an expansion with only a finite number of
terms. Hence, under fairly general conditions, one can reason-
ably assume that the conformal mapping (Al) is a finite poly-
nomial in (1/€) as follows:

N

=w(f) = A+ 2, e

k=0

(A2)

In this case, at the boundary I' (or equivalently, along the unit
circle of the &-plane), we have

fol

7=

1 A &

(—) =5+ > Gt z€T, |g=1. (A3
¢ ¢ k=0

Thus, the desired function D(z) can be defined by
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D(z) = (I)(rll(z‘)—> = F);‘(z—) + k}: o ' (@)]F (Ad)

=0

where @~ '(z) is the inverse function of (A2). Because v '(z) is
analytic in the exterior of the inclusion (except at infinity where it
has a simple pole) and the right of (A3) is analytic in the exterior
of the unit circle in the é-plane (except at infinity where it has a
pole of the degree N) D(z) is analytic in the exterior of the
inclusion (except at the point at infinity where it has a pole of the
degree N). Therefore, the auxiliary function D(z) complying with
the condition (2.5) and (2.6) exists.

To determine the asymptotic expansion of D(z) at infinity, let us
assume that

N
D)= D, bt |z » »

k=—0

(A5)

where b, (k = N, N — 1,...) are some complex constants.
Combining (A2), (A3) with (A4) yields

)\ N N N k
7t 2 GE= 2 bk[mw > cng‘"} . (A6)

k=—o0 n=0

The coefficients b, (k = N, N — 1, ...) can be determined by
equating the coefficients for like terms of £ In particular, the
polynomial P(z) is related to only (N + 1) coefficients b, (k =
N, N — 1,...0) and then can be determined easily. In what
follows, some examples serve to illustrate the details.

Elliptic Inclusion

Let the ellipse have the semimajor axes g and the foci 2d (2d <
a). Assume that the center of the ellipse is located at y = y, (with
x = 0) and its principal axes are parallel to the coordinate axes.
Thus, the required conformal mapping and its inverse can be given
by (see Muskhelishvili (1963) and Ru and Schiavone (1996))

1
2= 0§ = d(R§ + k?) + iyo,

VI S 1 I . 2d °
§=07@) = LR s (A7)

where
a+ a7 ad
R=—"r7—
2d
Thus, using (A4) and (A7), the function D(z) is of the form

> 1. (A8)

d
D(z) = R*(z.— iy,) + R (1-RY@0 ™ '(z) — iy, (A9)

where o ~'(z) is given by (A7). Obviously, from (A6), (A9), P(z)
is easily obtained as

R*+1

Z .
P(z) = N T (A10)
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Hypotrochoidal Inclusions
Next, let us consider the hypotrochoids defined by

1
z=w(§)=p<§+g)+iyo, p>0, O=m=_ (All)

with |£ = 1. It is known that the mapping (A11) maps the outside
of the hypotrochoid onto the exterior of the umit circle (see
Muskhelishvili (1963) and England (1971)). Further, for the hy-
potrochoids (A11), we have

) .
7= p(g-i- m§"> —iye, zE€T, lg=1,
Thus, the function D(z) is given by
m?p
2= iy~ po~'(2)
where the inverse » '(z) should be determined by (A11). The

asymptotic expansion of D(z) can be obtained through (A6). For
example, when y, = 0, it is easy to verify that

1
D(z) = P(w—1(z) + ) =iy, (Al2)

m
b():bl:...=bN_1=0, bN:F (A13)

then

mz
P(Z) = pn—l .

(Al4)

Rectangular Inclusion

Finally, let us consider the rectangle, centered at the origin and
with the sides parallel to the coordinate axes. In this case, the exact
mapping function w(£) includes infinite terms and, therefore, a
truncated polynomial mapping function should be used. To the
lowest-order approximation, the exterior of a rectangle can be
mapped onto the exterior of the unit circle by the mapping function
(see the formula (1.26) of Savin (1961))

B B +1!>+1r31+(}>—13)21
Z—w(g)_(:§ 2 g 24 53 s

c>0, P=e¥" (Al5)

with |§ = 1, where ¢ and k are two real numbers determined by the
size and aspect ratio of the rectangle, respectively. In particular,
the corner in the first quadrant is identified by e™". Thus, the
rectangle becomes a square when & = }. In this case, the mapping
function (A15) reduces to (A11) with n = 3 and m = § through
a rotation of the coordinate system.

It is seen from (A4) and (A15) that

D(z)

1 P+P _ - (P-P?
=c w—_l(zj-i-—i——w (Z)"’T[‘U (Z)] (Al6)

where w~'(z) is the inverse of (A15). Further, it can be verified
from (A6) that

i o : P+1“31 (P - P)?
(@) =gz o+ 8

j}z. (A17)
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fluid, hydrated biological tissues and other porous media may exhibit macroscopic
coupling between solid deformation, fluid, and electrical flows. In the present manuscript,
we develop a variationally motivated finite deformation continuum theory for describing
such coupled phenomena. The theoretical formulation combines descriptions of poroelas-
tic and electroquasistatic subsystems along with a continuum electromechanical coupling
law, and leads to a five-field finite element formulation. Several axisymmetric problems

are presented as examples of mechanical-to-electrical and electrical-to-mechanical trans-
duction phenomena in common experimental configurations.

1 Introduction

Models for saturated porous media are often used to describe
the mechanical response of hydrated biological tissues, includ-
ing articular cartilage (Mow et al., 1980; Eisenberg and Grodz-
insky, 1987), blood vessels (Kenyon, 1979; Simon and Gaballa,
1988), corneal stroma (Friedman, 1971; Eisenberg and Grodz-
insky, 1987), intervertebral disk (Simon et al., 1985), and skin
(Oomens et al., 1987). In such continuum formulations, micro-
structural fluid-solid interactions are represented by macro-
scopic coupling between tissue deformation, fluid pressuriza-
tion, and fluid flow. Although this approach accurately
represents tissue behavior over a wide range of physical situa-
tions, other microstructural interactions of electrical or chemi-
cal origin may produce additional macroscopic behaviors be-
yond the scope of such theories.

The solid matrix of articular cartilage, which occupies ap-
proximately 20 percent of the total tissue volume, is composed
of a complex network of biological macromolecules, primarily
collagen and aggregated proteoglycans (Fig. 1). The proteogly-
cans contain a large number of sulfated glycosaminoglycan side
chains which are negatively charged at physiological pH. Prin-
cipally due to these molecules, the solid matrix contains a high
negative fixed (or immobile) charge density on the order of 0.2
M (Maroudas, 1979). Conversely, the interstitial fluid contains
an excess of positively charged dissociated ions in order to
maintain tissue electroneutrality at a macrocontinuum length
scale. Microstructurally, these ions form electrical dipole layers
(double layers) with the fixed charge groups of the solid matrix.
Because the microstructural arrangements of solid, fluid, and
ionic constituents must satisfy both microscopic and macro-
scopic balance laws, the macroscopic mechanical, electrical,
and chemical fluxes are all coupled. Manifestations of such
coupling mechanisms include the phenomena of streaming po-
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tential and streaming current, (mechanical-to-electrical) elec-
troosmosis (electrical-to-mechanical), and osmotically induced
swelling (chemical-to-mechanical) (Dukhin and Derjaguin,
1974).

A number of continuum theories have been proposed to
describe these macroscopic couplings in porous membranes and
biological tissues, including single continuum (Helfferich,
1962; Eisenberg and Grodzinsky, 1987; Frank and Grodzinsky,
1987b; Simon et al., 1996) and multiple continuum mixture
theory (Swenson, 1979; Lai et al., 1991; Snijders et al., 1992;
Gu et al., 1993; Huyghe and Janssen, 1997) approaches. Al-
though analytical solutions are possible for simple geometries
and material property distributions, treatment of more complex
physical situations requires a numerical implementation. To
date, the majority of such implementations have been restricted
to situations where boundary conditions are primarily mechan-
ical or chemical in nature and macroscopic electric fields are
assumed to have negligible impact (Snijders et al., 1995; Simon
et al., 1996). In the present study, we address a different class
of problems in which boundary conditions are primarily me-
chanical or electrical in nature and macroscopic chemical con-
centration gradients are assumed to have negligible impact on
the electromechanical phenomena of interest. Analytical (Neev
and Yeatts, 1989) and finite element (Lewis and Garner, 1972;
Massé and Berthier, 1996) approaches have been introduced for
modeling electrokinetic coupling in geomechanics, but these
methods have been primarily restricted to rigid or infinitesi-
mally deformed solids and deformation-independent material
propetties. In contrast, consideration of the effects of finite
deformation and deformation-dependent material properties is
required for many practical problems in the mechanics of gels
and biological tissues.

In the present study, we derive a finite deformation theory for
analysis of coupled fluid and electrokinetic flows in deformable
porous media. In Section 2, we develop the continuum theory
within the variational framework of the principal of virtual power
by combining descriptions of finite deformation poroelasticity,
electroquasistatics of deformable media, and continuum electro-
mechanical coupling. In Section 3, we then discuss numerical
implementation of the theory using the finite element method,
resulting in a five-field mixed finite element formulation. Finally,
in Section 4 we utilize the model to examine several case studies
of electromechanical coupling in a sample of articular cartilage
during commonly used experimental configurations.
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Fig. 1 Microstructural makeup of articular cartilage. The aggrecan mol-

ecules contain a large number of sulfated glycosaminoglycan subunits,

which contribute to the highly negative fixed charge density of the solid
matrix.

2 Theory

2.1 Continuum Mechanics Preliminaries. In the following
treatment, we consider a porous medium to be a single continuum
defined by the boundaries of the solid matrix. As a preliminary, we
state some standard definitions from continuum mechanics (Erin-
gen, 1967; Marsden and Hughes, 1994).

Let the volume , C R* bounded by the surface T', be the
Lagrangian reference configuration for the solid matrix and let X
indicate the material coordinates of a particle in €}, (Fig. 2). Let
oX, 1) Q, X [0, t] = R represent the invertible deformation
map from Q, to the present Eulerian configuration {},. The spatial
position of a particle in ), is given by

x(X, ) =X, ) =X+ ulX, ) m

where ¢ is a continuously differentiable, invertible mapping and u
is the solid displacement. The invertible deformation gradient F
and its Jacobian J are defined as

d¢
F=-< )
J=detF 3

where det is the determinant operator. The Jacobian J must be
strictly positive to prohibit self-penetration of the continuum. The
right Cauchy-Green tensor C and its inverse, the Piola deformation
tensor B are defined as

C=F'F @
B=F F7 )

where the superscript 7' indicates transposition.

A vector a and its divergence V - a defined on (), are related to
their respective Lagrangian “images” on {2, by the Piola transfor-
mation and Piola identity,

A=JF ' a, (6)
DivA =JV - a, N

where V - and Div are the Eulerian and Lagrangian divergence
operators, respectively. Likewise, the Eulerian and Lagrangian
gradients of a scalar b are related by

Grabp b =FT- Vb, (8)
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where V and GrAD are the Eulerian and Lagrangian gradient
operators, respectively.

The spatial time derivative is defined as the partial time deriv-
ative holding the spatial position x fixed,

0 d

Eriaiev I %)
X

Likewise, the material time derivative is defined as the partial time
derivative holding the particle X fixed,

d

)= =2y v
O=7 =—+v'V,

T

(10)

a
at
where the solid velocity v = dx/dt is the material time derivative

of the spatial position. Finally, the convective time derivative of a
is defined as

.9
=22 v.(Va)+aV.v—a-(Vy).

at (an

If a is an objective vector field, then 4 isan objective rate.

2.2 Variational Framework. In the subsequent sections,
we motivate our theoretical formulation within the variational
framework of the principle of virtual power (PVP) (Penfield and
Haus, 1967; Maugin and Eringen, 1977). We first define a power
balance functional ¥ for the medium

d

\If(d, ('1) — iz_Eim + Pdiss — Pext (12)
where E™ is the internal energy in the medium, P®* is the
dissipative power, and P is the external power supplied across
the boundary. In a quasi-static formulation, ¥ depends on the
independent variables d and their time derivatives (or generalized
velocities) d. In addition to the requirement that ¥ itself be
identically zero (as implied by the first law of thermodynamics),
we require the first variation of ¥ in a generalized virtual velocity
field to vanish,

d . R

8V = an ¥(d, d + néd)|,, =0, (13)
where the virtual velocities 8d represent arbitrary admissible vari-
ations in d and 7 is an arbitrarily small parameter. For a nonequi-
librium open system, this condition is analogous to requiring the
first variation of the Gibbs free energy to vanish for thermody-
namic equilibrium of a closed system. Enforcement of Eq. (13)
will directly imply the local governing equations for the physical
system of interest.

To apply this formalism to the electromechanically coupled
porous medium, we must identify appropriate forms of E™, P,
and P™, as well as a consistent set of independent variables d. In
the present study, this will be achieved by uniting descriptions of

o« ﬂ(X,f), ﬁ(X;’) 1—;

x(X,1) a(x,t), a(x, 1)

=

Fig. 2 Kinematic relationship between the Lagrangiari reference config-
uration 2, and the Euierian present configuration 2,
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interacting poroelastic and electroquasistatic “subsystems” such
that

V=V, +V,, (14)

Additionally, we will introduce a continuum electromechanical
coupling law describing interactions (energy transfer) between the
subsystems.

2.3 Poroelastic Subsystem. Kinematic descriptions of po-
rous media are often posed within the framework of continuum
mixture theory, where the porous medium is treated as the super-
position of two interacting continua simultaneously occupying the
same physical space (Bowen, 1980; Kwan et al., 1990; Thomas,
1991). In the present treatment, we adopt an alternate approach
(Biot, 1972), viewing the porous medium mechanically as a single
continuum defined by the boundaries of the solid material and
considering area-averaged fluid flow (or volumetric flux) relative
to the solid. Under assumptions about the mixture commonly
invoked for biological tissues (e.g., immiscible, nonreactive, iso-
thermal, quasi-static), the two finite deformation formulations are
mathematically equivalent (Simon, 1992; Levenston et al., 1998).

We previously utilized the PVP to generate a three-field mixed
poroelastic formulation appropriate for finite deformation analysis
(Levenston et al., 1998) when electrokinetic phenomena have
minimal influence on the mechanical response. In that formulation,
we modeled quasi-static deformations of an isothermal,’® saturated
porous medium in which both the solid and fluid constituents are
treated as intrinsically incompressible. The combination of the
saturation condition (i.e., the sum of the solid and fluid volume
fractions must be 1) with intrinsic constituent incompressibility
produces a constraint on the relationship between solid and fluid
dilatations,

J—-1—-&=0, (15)
where £ is defined as the change in fluid volume content,
E=—-DivW, (16)

and we have introduced W as a Lagrangian, fluid “displacement”
relative to the solid. Physically, W represents the net volume of
fluid that has passed through a unit area since the medium “left”
the reference state. Consequently, W is the Lagrangian relative
fluid velocity (or volumetric flux).

Thus, Eq. (15) states that any change (J — 1) in the volume
occupied by an initially undeformed continuum region must be
accompanied by an equal change (£) in the fluid volume content.
This constraint implies the mass continuity equation for the porous
medium,

Ve(v+w) =0, (17)
where the relative fluid velocity W is the convective time derivative
of w, the Eulerian relative fluid displacement. Note that W, repre-
senting the fluid volumetric flux relative to the solid, is objective.

By introducing the scalar fluid pressure p and treating it as a
Lagrange multiplier enforcing Eq. (15), we formulated the internal
energy of the porous medium as

Ey= f [U(C) = p(J = 1 = £)]dQ2. (18)
Q

0

The (Lagrangian) hyperelastic stored energy density U(C) repre-
sents the energy stored through deformation of the solid matrix

* We assume that the rate of dissipation is small with respect to the characteristic
thermal conduction rate and that the medium resides in an infinite bath of constant
temperature (typically, ~37°C for biological systems). Thus, we do not explicitly
model the heat conduction “subsystem,” and instead assure that the system remains
isothermal,

Journal of Applied Mechanics

irrespective of any fluid pressurization.” Likewise, we wrote the
dissipative* and external powers as

Py = _J GraD p + WdQ (19
Qo

P = f (f-v—pW-N)dl' (20
I

o

where f and N are, respectively, the traction and surface normal
vectors defined on the Lagrangian boundary I',.

Were we to consider this subsystem in isolation, we would close
the poroelastic formulation by combining Eqgs. (12), (18), (19), and
(20) and explicitly introducing Darcy’s law (defined in the Eule-
rian configuration) relating fluid flow to the gradient in fluid
pressure,

W= —k,(u) - Vp, 21

where k, is the deformation-dependent rank-two permeability ten-
sor. For a total Lagrangian formulation, we considered (u, W, p)
to be the set of independent variables, with (8v, SW, 8p) as the
corresponding generalized virtual velocities.

2.4 Electroquasistatic Subsystem. We consider the electro-
quasistatic (EQS) subsystem to be governed by the electroquasi-
static form of Maxwell’s equations for an electrically linear di-
electric medium (Haus and Melcher, 1989);

VXE=0; E=-V&

(Faraday’s law) (22)

V:€¢E = p, (Gauss’s law) (23)

s}
VXH=j,+ r €E + VX (P Xv) (Ampére’slaw) (24)

where @ is the scalar electrical potential, E is the electric field
intensity, p, is the net macroscopic density of unpaired charges, €
is the dielectric permittivity for the medium, H is the magnetic
field intensity, j, is the unpaired current density (not associated
with polarization), and P is the polarization density.

The EQS energy balance (or Poynting’s theorem) for such a
system may be written in a fixed (or *“laboratory”) spatial frame as
(Haus and Melcher, 1989; Penfield and Haus, 1967)

f {%(}mz) +E-[ju+v><(P><v)]}dﬂ
O

+L

where n is the surface normal vector on I',. In this laboratory
frame, 5 €E - E represents the spatial density of energy stored in the
electric field, E - [j, + V X (P X v)] represents the spatial density
of electrical dissipation, and E X H (the Poynting vector) repre-
sents the flux of power into the spatial region.

Utilizing Eqs. (22)—(24), Stokes’s theorem and the divergence
theorem, Eq. (25) can be rewritten as

(EXH)-ndl'=0, (25)

'

3 For a porous medium with compressible constituents, the “total” energy density
would be the sum of &(C) and a term describing the energy stored through dilatation
of the individual constituents by the fluid pressure. Because we treat both the solid and
fluid constituents as incompressible, this second term becomes p(J — 1 — §), an
energy of constraint which is identically zero. See Simon (1992) or Levenston et al.
(1998) for a more thorough discussion of this point.

* The “dissipative” power P{** for a given subsystem actually represents the total
rate of energy transfer out of the subsystem, not merely the dissipative power.
Consequently, PP for any given subsystem may be negative. However, the net
dissipation for the system (obtained by summing the contributions from all sub-
systems except the heat transfer subsystem) must be non-negative.
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au
f (cp—apt——w-j“)dn+f ®j,-ndT =0. (26)
Qy Ty

In this form, ®(ap,/dt) represents the rate of capacitive energy
(density) storage in the dielectric medium. We next consider a
pointwise Galilean transformation from the laboratory frame to a
frame moving with the solid medium at a velocity v. Under this
transformation, Eq. (26) becomes

f (PP, — VO - j)dd +f
0 T

1

®jndl’ = 0, @7

where the scalar convective time derivative f),, and the free current
density relative to the solid j are defined as

Pu= 0t PV - V) )

i=dv—pwv 29

Note that the relative current density j, representing the net charge
flux relative to the solid, is objective.

We now define g (with Lagrangian image G) representing the
net “displacement density” of charge relative to the solid, such that

po=-V-g p,=-DvG (30)

i=8& I1=6 31

where p, and J are the Lagrangian charge density and relative
current density, respectively. The charge displacement density
vector g can be interpreted as describing the net amount of charge
that has passed through a unit surface since the medium “left” the
reference state. Equations (28)—(31) imply three equivalent state-
ments of charge continuity:

dp,
Voejut apt = (total current, spatial frame) (32)
V:j+p,=0 (relative current, spatial frame)  (33)
Dwv ]+ p, =0 (relative current, material frame)., (34)

Strictly speaking, we now view p, as the change in charge density
relative to the undeformed reference state. If we stipulate macro-
scopic electroneutrality as an initial condition, then p, is also the
present charge density. The Lagrangian form of the energy balance
can now be written as

f Dp,dQ + f
0 0,

o

— Div® - JdQ)

—J (—=®J)-Ndl' = 0. (35)
T

o

Finally, we consider the limiting case of a medium with no
macroscopic capacitive energy storage. In this situation, the elec-
tric potential becomes mathematically decoupled from the charge
density,” and we can write the energy balance for the EQS sub-
system as

d
v,, = EJ D p,dQ + f (~Div @ - J)dQ
Qo Q,

- j (-®])-NdT' =0 (36)
T

® This is analogous to the decoupling of the pressure and the volumetric deforma-
tion when incompressible elasticity is viewed as a limit of compressible elasticity.
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where ® now functions as a Lagrange multiplier enforcing con-
tinuum electroneutrality as a constraint,

pu= 0. (37
The three integrals in Eq. (36) represent the rate of energy storage,
dissipative power, and external power supply, respectively, for the
EQS subsystem. Were we to consider this subsystem in isolation,
we would close the formulation by introducing a constitutive law
(e.g., Ohm’s law) relating the current density to the potential
gradient. We consider (G, ®) to be the independent variables for
this subsystem, with (8J, 6®) as the corresponding generalized
virtual velocities.

ReMark 1. A distinction should be noted between our macro-
scopic notions of electroneutrality and zero capacitive energy
storage and the underlying microstructural picture. Clearly, elec-
troneutrality will be violated microscopically within the double-
layer region of the fluid adjacent to a charged region of the solid.
With Eq. (37), we require that the charge in the double layer
exactly balance the solid charge, so the net charge at a continuum
length scale is identically zero.

Likewise, maintenance of this charge distribution requires that
energy be stored in the double layer. Deformation of the solid
matrix alters the spatial density of matrix fixed charge, and con-
sequently alters the double-layer charge distribution and the
double-layer energy. In the present treatment, we view these
phenomena as functions of the solid deformation, and incorporate
this energy storage into the hyperelastic stored energy function for
the solid (see Eq. (18)). Thus, microscopic double-layer interac-
tions are manifest as contributions to the macroscopic solid elas-
ticity. By considering the medium to be noncapacitive at the
continuum level, we adopt the view that the establishment of a
macroscopic electric field within the material will negligibly alter
the microscopic double-layer energy. As the microscopic electric
fields are typically in the range of eight orders of magnitude higher
than the macroscopic fields associated with streaming potentials,
this assumption is reasonable.

2.5 Electromechanical subsystems

have now been formulated in such a way that the pairs (5kv, Vp)

and (j, VD) are sets of conjugate fluxes and thermodynamic

“forces.” To close the formulation, we introduce a phenomenolog-

ical coupling law relating the fluxes % and j to the forces Vp and

V& (DeGroot and Mazur, 1969; Frank and Grodzinsky, 1987b):
k»(C)

W . —k,(C) Vp

il [ ka(C)  —knp(C)|| V[
where the k; are deformation-dependent rank-two coupling ten-
sors. This coupling law plays the role that Darcy’s law plays in the
poroelastic formulation,® with the first line representing a gener-
alized Darcy’s law and the second line representing a generalized
Ohm’s law. The tensors k,, and k,, represent the “short circuit”
permeability and the effective electrical conductivity at zero pres-
sure gradient, respectively, and the off-diagonal tensors represent
electrokinetic coupling. Statistical thermodynamic arguments us-
ing the property of “time reversal invariance” lead to Onsager’s
reciprocity theorem (DeGroot and Mazur, 1969), a basic theorem
of nonequilibrium thermodynamics implying that the macroscopic
coupling matrix in Eq. (38) is symmetric. Consequently, k,, and
k., are symmetric tensors, and k,; = ki,. Additional relationships
between the macroscopic coupling tensors can be derived from
microstructural models or from macroscopic constitutive models
(see Section 4).

Coupling. The two

(38)

& Under open circuit conditions { j = 0), an “effective” Darcy permeability can be
derived for use in Eg. (21):

k= ki — (Kik3'ka). 39)
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Table 1 Local equations implied by the global variational equation (Eq. (46)) for an electro-
mechanically coupled poroelastic medium. Note that 5 and ® are values prescribed on portions
of the boundary and the total first Plola-Kirchoff stress T is defined in the text (Eq. (48)). The
reference configuration must be defined such that the mass and charge conservation con-

straints are initially satisfied.

Linear momentum balance DivT = 0 inf,
Mass conservation J=1-¢ = 0 inf
Charge conservation fu = 0 inQ,
Generalized Darcy’s law GRADp+ 11 - W+ ri2 ju = 0 inQ
Generalized Ohm’s law GRAD® + 7191 * W+ r2:ju = 0 infl
Traction boundary condition N:T-f = 0 onl,,
Pressure boundary condition p—p = 0 onl,,
Potential boundary condition &-% = 0 onl,,

The coupling relationship can be posed in an equivalent La-

grangian form as
w) K,; 1[ Grab p
J| - —K,, | |GraAD @ | *
where the Lagrangian forms of the coupling tensors are given by

K, =JF 'k, F 7. 1)

_Kn

K, (40)

Inversion of Eq. (40) leads to expressions for the Lagrangian
gradients of pressure and potential,

_RIZ {W}

Ryl T

GraDp |
Grap @ | —
where the inverse coupling tensors R;; are functions of the K

n = (K — K12K2“21K2I)"I

-Ry,

_R. (42)

i
2= (Ky — KKK ™!
R, = R|1K12K2ﬁ21

R, = RzszxK;z1 =R, (43)

2.6 Variational Formulation for a Coupled Medium. The
power balance for the electromechanically coupled porous me-
dium can now be stated as

v = %f [U(C) ~ p(J — 1 — &) + ©pJd0
O

o

—J (GraD p * W + GraD @ * J)dQ
Q

0

—J (fv—pW:-N—®J Nl =0. (44)
I,

o

We require the first variation of ¥ with respect to the generalized
virtual velocities to vanish:

ad . .
E\P(u, W, G,p, ®, v+ ndv, W+ ndW, J + ndJ,

p+ ndp, & + ndd)|,.o=0. (45)

After explicit introduction of the electromechanical coupling law,
we obtain the following variational equation:
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f [$(S°—pJB) : 6C + p8&+ (W R, + J- R\ - 6W
1,

+ ¢8p, + (W-RL, + J - RL) - 8]

—8p(J =1 — §) + 8bp,1dQ

—j (t+8v — pN-8W — ON-8J)dl = 0, (46)
I

o

where 8C, 8¢, and 83, are defined consistently with &v, SW and
8J, respectively, and S° is the elastic (or “extra”) second Piola-
Kirchoff stress tensor, defined by

aU(C)

S¢=2 5C

)
As the virtual velocities are arbitrary and independent, Eq. (46)
implies the local equations shown in Table 1. Note that we have
defined the total first Piola-Kirchoff stress T as
=(8°—pJB)-F'=T*— pJF !, (48)
indicating that the total stress on the medium is carried by a
combination of solid matrix deformation and fluid pressurization.
Thus, the variational formulation implies the appropriate govern-
ing equations for our coupled medium, and requires only the
specification of the geometry, boundary conditions, and constitu-
tive relations for a fully posed problem.

REMARK 2. A discussion of boundary conditions is appropriate at
this point. In this formulation, we must specify boundary condi-
tions on ', for the porous medium as a whole. Thus, we must
prescribe either the solid displacement u and corresponding ve-
locity v on T, or the traction £ on I',,, where T',, and T, are
complementary portions of T',:

r,=r,ur,, r,nr,=a. 49
Likewise, we must prescribe either the relative fluid displacement
W and corresponding relative fluid velocity W on T',, or the
pressure p on I',,, where T',, and T, are also complementary
portions of T',:

r,=r,ur,, r,nr,=a. (50)

Finally, we must prescribe either the relative charge displacement
density G and corresponding relative current density J on T, or
the electric potential ® on I,,, where I“L,A and T ,, too are
complementary portions of T,
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r,=T,uUrl,, T,NT,=2a. 1)

In general, the solid, fluid, and electrical boundary partitions need
not coincide.

3 Finite Element Implementation

Finite element matrix equations for a total Lagrangian imple-
mentation are derived from the variational formulation in the usual
manner. We approximate the reference domain (2, as the union of
n,, nonintersecting elements ;, and spatially discretize the pri-
mary variables and their real and virtual velocities. Within an
element

w" =N“yu, v"'=N*, B&v'=N*“8uy,
Wh=N""W, W'=N"W, 8W'=N""sW,

G"=N#G, J'=N¢J, 8J'=N¢#38J,

p"=N"p, p"=N"p, B8p"=N""dp,
Oh=N*Pp, P'=N*"d, 8d"=N*sd, (52

where ( )" indicates a discretized approximation to the corre-
sponding variable; ( ), indicates a vector of nodal values; and N“,
N*, N¢, N7, and N® are the element shape functions for the solid,
fluid, current density, pressure and potential, respectively. As is
typical of mixed finite element formulations, the pressure interpo-
lation will generally be of lower order than the solid and fluid
interpolations, and the potential interpolation will generally be of
lower order than the current density interpolation. We require C,
interelement continuity for the vector interpolations, but the scalar
interpolations (pressure and potential) may be discontinuous. Ad-
ditionally, the solid displacement is isoparametric with the element
coordinates
X" = N"X,. (53)
Introduction of the discretizations into Eq. (46) produces a
semi-discretized nonlinear system of equations that must be solved
via an iterative method (e.g., modified Newton-Raphson). Appro-
priate linearization produces the following matrix equation for
iteration (i) of the present loading increment:

K“ 0 0 Kv 0 |9fAz)®

0 0 0 K»” 0 AW

0 0 0 0 K& AG

K?" K”" 0 0 0| |Ap

0 0 K2 0 0 | (AD
0 0 0 0 0 (i)’A;j 0] R* (i)
0 C™ C* 0 0| |AW RY

+0 Cc=" c# 0 0 AT} = -{R* (54)
0 0 0 0 0 Ap R’
0 0 o0 o0 o) (ad R®

where A(7) and A(") indicate iterative updates to the correspond-
ing vector of nodal variables and their respective velocities. The
stiffness terms K are derived from the internal energy expression,
the damping terms C are derived from the dissipative power
expression, and the force terms R are derived from the power
supply expression. All global submatrices and vectors are defined
in Appendix A.

In the present study, we discretized the linearized system in time
using the backwards Euler algorithm. This produced a fully dis-
cretized linear system:
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AK™ 0 0  AK® 0 |Yfap)¥
0 cw o C" AK” 0 AW
0 cre’ 0 AK#*| §AJ
ArKeT AKT?T 0 0 0 Ap
0 0 AKET 0 0 Ad
R* ®
RW

= | R¢ (55)
R?
R®

where At is the time-step and the iterative updates to the general-
ized displacements are computed as

Al @) A:[‘} (6]

AW AW

AG =ar{ ] (56)
Ap Ap

AD AdD

For each time increment, iteration continued until the norm of the
residual vector fell below a specified tolerance. We utilized mod-
ified Newton-Raphson iteration in the current study, retaining the
initial stiffness and damping matrices for each time increment.

As with any mixed method, care must be taken to choose
element configurations that are numerically well behaved. Because
the saturation/incompressibility constraint acts on two vector fields
(u and W) while the electroneutrality constraint acts on only one
vector field (G), an interpolation scheme that satisfies the inf-sup
(or Babu8ka-Brezzi) condition (Brezzi and Fortin, 1991) for one
constraint may not be suitable for the other. )

In the following examples, we utilize a simple Q1/P0Q element
formulation that does not satisfy the inf-sup condition, yet still
performs adequately for a large class of problems. Specifically, we
utilized axisymmetric, quadrilateral elements with bilinear inter-
polations of solid, fluid, and current variables and constant (within
an element) values of the pressure and electrical potential, for a
total of 26 degrees-of-freedom per element. A simple constraint
count (Hughes, 1987) indicates that the inf-sup condition is not
satisfied for the EQS subsystem, and this element may be prone to
the development of spurious electrical potential modes analogous
to pressure modes in the incompressible elements. Exploration of
alternate interpolation strategies or enhanced-strain-like ap-
proaches may lead to more generally optimal element formula-
tions. As a practical matter, the axisymmetric Q1/PO elements
appear to perform adequately in our example problems.

4 Numerical Examples

4.1 Constitutive Models. Although the formulation is ame-
nable to the use of anisotropic material models, in the present study
we restrict our analysis to isotropic (on {},) constitutive laws with
material parameters chosen to be representative of articular carti-
lage (Maroudas et al., 1973; Armstrong and Mow, 1982; Frank and
Grodzinsky, 1987b). We consider homogeneous samples of tissue
with an initial solid volume fraction ¢; = 0.2 and corresponding
initial fluid volume fraction ¢/ = 0.8. The initial matrix fixed
charge density (expressed as matrix charge per unit fluid volume)
was chosen as p,, = —16 MC/m® (~0.17 M). Note that the
constraint of continuum electroneutrality implies that p,, = —p;,
where p; is the charge density inthe ionic fluid (expressed as the
net ionic charge per unit fluid volume). Due to the intrinsic
constituent incompressibility, the solid and fluid volume fractions
and the matrix fixed charge density vary as functions of the
volumetric deformation:

(57)
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J—1+¢!

P=1-¢'= 7 (58)
A J?,
Pu = (W) Pm, = (m) P 59

For the present study, we utilized the following hyperelastic
energy density function for the solid matrix (Holmes and Mow,
1990):

expla(I; — 3) + oy(l, — 3)]

u(c) =8 [ ) (60)
where the three principal invariants of C are defined as
I =uC, 61)
I,=detCtrC™', (62)
I, =detC = J?, (63)

where tr is the trace operator. The positive constants o, a,, and 3
were assigned values of 0.2333, 0.0333, and 0.4261, respectively,
corresponding to a reference state linearized Young’s modulus of
0.5 MPa and a Poisson’s ratio of 0.1. This function produces an
experimentally observed stiffening at large compressive deforma-
tions (greater than ~20 percent) and maintains monotonicity in the
nominal stress-deformation relationship for large compressive
strain magnitudes.

Relationships between the macroscopic coupling tensors of Eq.
(38) can be derived if we consider the free current density to be the
sum of Ohmic and convective currents:

j=—0 VO +pW, (64)
where o is the rank-two conductivity tensor for the medium.
Combining Equations (38) and (64) yields

ki, = ky = —piky1. (65)

ky = o+ P?kn- (66)

We modeled the deformation dependence of the isotropic short-
circuit permeability k,, using an approximation to a unit-cell-based
microstructural model (Happel, 1959; Eisenberg and Grodzinsky,
1988). Over a reasonable range of volumetric deformations, this
model can be approximated quite well by a two-parameter qua-
dratic function in J:

k() — g U eI =6
e AR
where k, is the permeability in the undeformed state, vy is a unitless
constant, and 1 is the rank-two identity tensor. Note that k,,
vanishes as the fluid volume fraction goes to zero (Eq. (58)). For
the present study, the fit parameters had values of k, = 5 X 107"
m*%N — s and y = 1.08.

Macroscopically, we can view the conductivity of the medium
as proportional to the effective mobility of the ionic solutes, which
in turn depend on the volumetric deformation through a “tortuos-
ity” factor (Mackie and Meares, 1955; Helfferich, 1962). Conse-
quently, the deformation-dependent isotropic conductivity can be
modeled as

(67)

o(C) =

52 — &)
{(J = ¢o)(1 + d)f,)] :
= o, 1.

(2 — /)72
m[d@ ¢0}1
XA O

where ¢, is the conductivity in the undeformed state, taken to be
1 S/m for the present study. Note that the solid matrix itself is
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e
(confined compression) e —————

(current generated stress)

Fig. 3 Geometry and finite element mesh for confined compression and
current generated stress. In the confined compression configuration, the
chamber walls and base are rigld, impermeable and nonconducting, and
a displacement d is applied via the rigid porous platen. In the current
generated stress configuration, the chamber base and platen are con-
ducting and the porous platen is held in position while an imposed
current density j is applied through the tissue. The finite element mesh
(not shown to scale) contained 30 quadrilateral elements, with mesh
spacing biased towards the porous platen.

considered to be nonconducting, with all conduction taking place
in the ionic interstitial fluid. The remaining coupling coefficients
were determined using Egs. (65), (66), (59), (67), and (68).

4.2 Example Problems. We first examined two one-
dimensional test configurations that have been used to assess
material properties of articular cartilage and other biological tis-
sues (Frank and Grodzinsky, 1987a). The first, “confined compres-
sion,” demonstrates mechanical-to-electrical transduction under
finite deformations. The second, “current generated stress,” dem-
onstrates electrical-to-mechanical transduction, with large internal
deformations. We then examined the two-dimensional example of
“unconfined compression,” which has been utilized in experiments
investigating the effects of mechanical stimulation on the biolog-
ical activity of live tissue samples (Sah et al., 1989).

4.2.1 Confined Compression. In the confined compression
configuration, we modeled a disk of cartilage (3-mm diameter, |
mm thick) placed in a confining chamber with rigid, impermeable,
nonconducting walls and compressed by a rigid, highly permeable
porous platen (Fig. 3). The pressure and electrical potential were
taken to be zero (ambient) at the top surface, allowing free flow of
fluid through the platen. Note that these boundary conditions
ensure that no net current flow will occur in this configuration. A
30 element mesh was utilized, with mesh spacing biased towards
the loaded surface where the highest strains are expected. A 50 um
compressive displacement (or five percent nominal strain) was
applied at the platen in a 60 s constant velocity ramp, followed by
a 300 s hold (or relaxation) period. A uniform time-step of 1 s was
used during the ramp, and a variable time-step from 0.01 s to 10 s
was used during the relaxation.

Application of the constant velocity displacement required a
monotonically increasing compressive stress at the platen (Fig.
4(a)). At the end of the ramp, the matrix deformation and fluid
velocity profiles were highly nonuniform, with the greatest defor-
mation (over 20 percent compression) and fluid flow occurring
beneath the platen (Fig. 4(b)). In regions with little matrix defor-
mation, the majority of the load was carried by fluid pressurization
(Fig. 4(c)). During the hold period, the total stress decayed to a
lower steady-state value (Fig. 4(a)). As no further fluid exudation
occurred during the hold period (because the total sample volume
was constant), this relaxation period represents gradual internal
redistribution of fluid (and matrix deformation) and a correspond-
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Fig. 4 Simulation results for the conflned compression example: {a)
total stress at the platen as a function of time during the 60 s ramp and
300 s hold, (b) axial deformation gradient and fluid velocity profiles at the
end of the ramp displacement, and (¢) fluid pressure and electrical
potential profiles at the end of the ramp displacement

ing decay of the fluid pressure. At steady-state, the fluid carried no
pressure and the entire load was equilibrated by uniform matrix
deformation, This predicted mechanical behavior is typical of
porous media, but additional electrokinetic effects are predicted by
our model. Because the fluid carries a net positive charge, con-
vection would tend to create a net charge imbalance within the
tissue. To oppose this, an induced electrical potential (and associ-
ated internal electrical field) was generated within the tissue (Fig.
4(c)). Like the pressure, this induced electrical potential decayed to
zero at steady-state. The large variations in matrix deformation
(Fig. 4(b)) produced corresponding variations in the strain-
dependent material properties. Consequently, the temporally
evolving relaxation phenomena predicted by our model were more
complicated than those predicted by previous linear or noncoupled
models.

4.2.2 Current Generated Stress. The current generated stress
configuration is similar to that of confined compression, with
different mechanical and electrical boundary conditions. Although
the walls of the confining chamber were still modeled as rigid,
impermeable, and nonconducting, the base of the chamber was
modeled as a conducting electrode used to drive current through
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the sample. The porous platen (also conducting) was held in a fixed
position, and a constant amplitude current density (2 mA/em?) was
applied through the tissue (from the platen towards the base). The
same mesh was used as in the previous example, and a constant
time-step of 10 s was utilized.

The electrical-mechanical coupling in this configuration can be
seen by examining the stress required to hold the platen in its
original position (Fig. 5(a)). Application of the. current density
immediately required the application of a compressive stress,
which increased in magnitude with time and eventually reached a
steady-state value. In the absence of this restraining stress, the
specimen would tend to expand under this applied current. An
examination of the tissue sample at steady-state reveals the mech-
anisms responsible for this transduction phenomenon.

To impose this current density, it was necessary to induce an
electrical potential gradient across the tissue (Fig. 5(c)). If the
boundaries at both ends of the sample were permeable, this
current flow would have induced an electroosmotic fluid flow
due to drag between the ions and the solvent fluid. Because the
base was impermeable and the specimen volume was fixed,
however, no fluid flow could take place across the porous
platen. Consequently, a fluid pressure gradient was induced
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Flg. 5 Simulation results for the current generated stress example: (a)
total stress required to hold the platen In its original position as a
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Fig. 6 Unconfined compression example. () Geometry and finite ele-
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atlve fluid velocity. (c) Electrical current density distributions at the end
of the ramp displacement. Streamlines have been included to aid In flow
visualization, and results are displayed only for the meshed quadrant of
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within the tissue to prevent any net fluid flow (Fig. 5(c)). This
in turn required a gradient in stress supported by the solid
matrix (so that the total stress was a constant), producing a
nonuniform deformation field within the sample (Fig. 5(b)).
This matrix deformation varied from approximately 30 percent
compression at the porous platen to approximately 30 percent
tension near the specimen base. Thus, imposition of the current
flow through the tissue produced deformations (and correspond-
ing changes in strain-dependent material properties) beyond the
range of a linear model.

4.2.3 Unconfined Compression. To examine electromechan-
ical interactions in a two-dimensional setting, we considered “ra-
dially unconfined compression” of a disk of cartilage (3-mm
diameter, 1 mm thick) between two rigid, impermeable platens
(Fig. 6(a)). To approximate the effects of boundary friction, we
considered the bounding case of perfectly adhesive platens (no
radial displacement at the platens). The fluid pressure and electri-
cal potential were taken to be zero (ambient) on the radial surface,
allowing free flow of fluid and current along this boundary. For the
analogous purely mechanical problem, linear analytical (Kim et
al., 1995) and nonlinear numerical solutions (Spilker et al., 1990;
Levenston et al., 1998) are available, allowing verification of the
mechanical predictions of the model. Taking advantage of geo-
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metric and material symmetry about the midplane, we modeled
only the upper quadrant of the sample with a mesh of 120 quad-
rilateral elements. A 25 wm compressive displacement was applied
at the platen (50 pm total compression) in a 60 s constant velocity
ramp. A uniform time step of 3 s was utilized during the ramp.

As would be expected for any poroelastic medium, a monoton-
ically increasing compressive stress was required to apply the
constant velocity platen displacement. Because very little fluid
exudation could occur during the displacement ramp, the material
effectively responded as a nearly incompressible hyperelastic
solid. Due to the physical restraint imposed by the adhesive platen,
a two-dimensional deformation field was produced within the
specimen. Consequently, two-dimensional profiles developed in
all of the mechanical and electrical phenomena. At the end of the
ramp, the predominant pattern of fluid flow was radial, with
maximal flow near the radial edge (Fig. 6(b)). Superimposed on
this, however, was an axial flow distribution, with fluid flowing
from the relatively constrained material beneath the platen to the
relatively unconstrained material near the midplane. Similarly, the
pressure field (not shown) developed two-dimensionally, with both
radial and axial pressure gradients. The pressure was maximal in
the center of the sample beneath the loading platen, and dropped
off to ambient at the free radial edge. The electrical potential
distribution (not shown) was qualitatively similar to the pressure
distribution, with the lowest electrical potential coinciding with the
highest fluid pressure.

Interestingly, while the total current across the specimen bound-
ary was zero, the current density was not zero at every point in the
sample (Fig. 6(c)). Relatively high current densities were produced
beneath the loading platen at the radial edge (where the largest
deformation occurred),” and were equilibrated by lower, more
distributed current densities towards the midplane. This produced
an overall circulating pattern of current flow. We note that this
solution satisfied the requirements of a divergence-free current
density (Egs. (34) and (37)) and a curl-free electric field (Eq. (22)).

Examination of the electromechanical coupling relationship (Eq.
(38)) provides some insights into the induced current density field.
In this example, the physical restraint at the platen gave rise to
two-dimensionally varying deformation field. Because the various
coupling coefficients depended on the deformation through differ-
ent relationships, the induced gradients in pressure and potential
were themselves no longer collinear. Consequently, the resulting
convective and migration current densities were no longer col-
linear, and a nonzero net current arose, Utilizing Eq. (38), the curl
of the current density can be written (for isotropic k) as

VXj=(V kyXVp—V-KkyX VD)
+ (ky* VX Vp — kyy* VX VD). (69)

The second grouping in this equation vanishes, and the first van-
ishes if the coupling coefficients are spatially uniform. The first
grouping also vanishes if the divergences of k, and k, are
collinear with the pressure and potential gradients, respectively.
This was the case in the confined compression example, where all
variations were purely axial. In this unconfined compression ex-
ample, however, the deformation-induced inhomogeneities were
not collinear with the pressure and potential gradients. Conse-
quently, the induced current density distribution was not curl-free.
We note that the same analysis applies to baseline inhomogeneities
in the undeformed material properties. For example, if the material
properties varied with radial position in the confined compression
example, we would also expect induced current patterns to arise.
This may be of biological relevance to adult articular cartilage,
which is known to have a highly inhomogeneous composition and
material properties (Maroudas, 1979).

Overall, the mechanical predictions of this model were consis-

7 If the purpose of this example were to accurately predict the current patterns near
the platen edge, we would need a much finer mesh (or alternate formulation) to
capture the boundary layer behavior.
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tent with previous purely mechanical analyses (Spilker et al., 1990;
Kim et al., 1995; Levenston et al., 1998). None of these previous
models, however, could represent the induced current patterns
found in the present study. We note that other physical situations
where the forced boundary conditions are primarily electrical (i.e.,
electroosmotic flow or the current generated stress example dis-
cussed earlier) fall entirely outside of the realm of the previous
mechanical models.

5 Summary

In the present study, we developed a variational theory for
quasistatic analysis of coupled electrokinetic and fluid flow in
porous media with intrinsically incompressible constituents. Uti-
lizing the principle of virtual power, we combined mathematical
descriptions of poroelastic mechanical behavior, electroquasistat-
ics, and continuum electromechanical coupling. This produced a
five-field mixed finite element formulation, with the fluid pressure
and electrical potential acting as Lagrange multipliers enforcing
the mechanical saturation/incompressibility constraint and the bulk
electroneutrality constraint, respectively. As examples, several ex-
perimental configurations involving finite deformations and elec-
tromechanical coupling were considered.

For a restricted class of problems with specific combinations
of boundary conditions and material homogeneities, this for-
mulation is equivalent to purely mechanical theories (with
appropriate post-processing for electrical potential distribu-
tions). The confined compression example (with homogeneous
properties) is one such problem, and the model predictions
agree with those of previous poroelastic analyses. However, for
general problems with complicated boundary conditions and/or
inhomogeneity patterns, the new formulation predicts addi-
tional coupling phenomena that earlier approaches could not
represent. In the current generated stress configuration, an im-
posed current flow through the tissue induced large tensile and
compressive deformations within the sample despite the fact
that the overall specimen size was held fixed. In the unconfined
compression example, inhomogeneities induced by the spatiaily
varying deformation field led to the development of circulating
current distributions, although the boundary conditions ensured
that the total current into the specimen was zero. The phenom-
ena described in the latter two examples are beyond the scope
of earlier formulations, and can only be predicted by a model
that includes electromechanical coupling while accounting for
finite deformations and deformation-dependent material prop-
erties. This new formulation may be of use in analyzing geo-
metrically and materially complex problems in charged porous
media in the fields of biomechanics, membrane physics, and
geomechanics.
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APPENDIX

The following are general definitions of the global vectors and
matrices in the incrementally linearized matrix equation (Eq. (54)),
which are assembled from the corresponding element vectors and
matrices in the usual manner. These definitions are applied using
the appropriate compacted matrix forms, depending on the spatial
order of the particular implementation. Following Einsteinian in-
dicial notation, repeated subscripts imply summation. Uppercase
subscripts indicate material coordinates, lowercase subscripts in-
dicate spatial coordinates, and Greek superscripts indicate a global
node number. Components of the consistent tangent elasticity
tensor for the solid are represented by Dy, and components of
the rank-two identity tensor are represented by §&,,.
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Axisymmetric Bodies

A finite element methodology to solve steady-state thermochemical problems is presented
in this paper, where axisymmetric geometry is considered, and small strain and small
rotation are assumed for the mechanical problem. Both thermal and mechanical problems

are formulated in the Eulerian frame with the finite element method. The heat transfer
problem is solved with the Petrov-Galerkin method due to the convection-diffusion nature
of the governing equation, and the virtual work principle is applied to the equation of
motion to obtain the finite element formulation. To determine the inelastic deformation, an
additional system of equations is formed by applying the Petrov-Galerkin method to the
material derivatives of the inelastic strain rates. Studies in this paper focus on continuous
axisymmetric problems with quenching examples. Generally, the computational time with
the steady-state (Eulerian) method presented in this paper is significantly less than that
with transient (Lagrangian) approaches.

1 Imtroduction

Many industrial processes involve continuously heating and
cooling in a product line, where the product experiences various
mechanical deformation such as that in the continuous rod and
tube quenching processes. During the quenching process, a certain
level of cooling rate must be maintained in order to obtain proper
material properties. The cooling is generally performed in a cool-
ing chamber or cooling region, and the quenched body continu-
ously passes through the cooling region. Because of the nature of
the cooling process, the temperature in the quenched body is not
uniform, consequently, high thermal stresses may result. The
stresses in the body after the quenching process (residual stresses)
are undesirable because they may cause a finished product to have
excess distortion. In addition, the residual stresses may have a
deleterious effect on fracture and corrosion performance. There-
fore, it is important to understand the stress evolution in order to
control the stresses and have quality products.

Thermomechanical analysis of the quenching process can be
performed with a transient (Lagrangian) approach by including a
large computation domain to ensure that steady-state conditions
are reached. Examples for transient (Lagrangian) analyses of non-
continuous quenching problems can be found in the references by
Fletcher and Lewis (1985), Zabaras et al. (1987), and Becker et al.
(1994).

The transient approaches may not be desirable to simulate the
continuous quenching process because a significant amount of
computational time is required. To overcome the drawback of the
transient approaches, a steady-state method is developed in this
paper to perform the thermomechanical analysis of continuous
processes such as the continuous quenching process.
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2 The Heat Transfer Problem

The heat transfer for the steady-state quenching problem is

governed by the advection-diffusion equation, that is

pcV-VT =V kVT rz€A ¢}
where p, ¢, and k are the density, specific heat, and conductivity,
respectively; r and z are the radial and axial coordinates (Fig. 1);
the gradient operator and the velocity vector are V = rd/dr +
zd/dr and V = rV, + 2V, respectively, where r, and z are the unit
base vectors in the cylindrical coordinate system and V, and V, are
the steady-state radial and axial velocity components, respectively;
and A is the control volume. In this paper, the component related
to 9/80 is dropped because only axisymmetric problems are con-
sidered.

Generally, the quenched material is solution heat treated at a
uniform temperature, 7', to allow solute elements to defuse into
the solid solution. Then the material is quickly cooled to retain the
solute in the solid solution. Therefore, at the upstream of the
control volume, the temperature is

I(r,z) =T, r,z€ 094, @)
and the convection and radiation boundary conditions can be used
to represent the cooling effect at the surface of the axisymmetry
body, i.e.,

—k 8T/dn = W(T — TH+R (T*~T%) 1, z€0A. (3
where 4 and R are the convection and radiation heat transfer
coefficient, respectively; and 7. is the environmental temperature
(the temperature of the cooling medium). Here dA . represents the
surface of the body where it is cooled and dA, denotes the
upstream boundary of the control volume.

3 The Mechanical Problem

The equations that governs the mechanical deformation for the
axisymmetric problem are as follows:

DV,

1 d(ra,) d0,, oy
Bz T rTP Dy

_——— szb

r or 9z

“
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Fig. 1 Schematic diagram of the quenched axisymmetric body

DV

Z

~ P p; (5)

where o,, 0,, 0, and o, are the components of the vector form
of the Cauchy stress tensor.

The relationship between the stress and elastic strain is governed
by Hook’s law, that is,

o = D(T)e" (6)

where ¢ is the Cauchy stress tensor with the vector form, o = (o,
a, 0, 04)7, €” is the elastic strain sensor, D(T) is the temperature-
dependent elastic constant tensor and the matrix form of I(T) is
given as

1—v v 0 v
v 1-v 0 v
D=__€L (1-2v)
(1 + v)(1-2v) 0 0 — 0
v 7 0 1—-v

Q)

where E(T) is the Young’s modulus and v is the Poisson’s ratio.

Because small strain and rotation problems are studied here, we
can assume that the total strain tensor € can be additively decom-
posed into the elastic, €”, the thermal, €”, and the inelastic, €,
part, respectively, that is

e=¢€e"+e"+ eV (8)

where € is total strain tensor, whose vector form is € = (€, €, €,,
€, and €" have the same form as € does. The total strain tensor
can be calculated through the displacement field as €, = ou,/d7,
€, = 0uJldz, € = udr, €, = 05 v, = 0.5 (du,/oz +
du,/d r).

The thermal strains are dilatational and can be expressed as

T

/(1) = (1) = ey(T) = J a(v)dv, €, (T)=0 (9

Tr
where a(T) is the temperature dependent thermal expansion coef-
ficient and T is the reference temperature at which the thermal
strains are zero.

The inelastic deformation can be represented by the following

generalized constitutive equation;
eV=1F(c, eV, T,...) (10)

where ¢" is the inelastic strain rate tensor.
4 Finite Element Formulation of the Heat Transfer

Problem

Since standard Galerkin method may lead to unstable solutions
for convection-diffusion problems with high Peclet numbers, the

Journal of Applied Mechanics

Petrov-Galerkin approach is used for the heat transfer analysis.
With the trial and test functions, 7, T € V = {v € H,}, where
H! is a Soblev space, the following variational statement can be
derived from the governing equation for the heat transfer problem,
Eq. (1):

J’ peV - VT(T + 8- VT)dA + j kVT:VTdA
A

A

—J’V-kVTé-VTdA—f KVT-nTdl =0 (1D
A A

where & is the function of the element size and velocity, dA =
rdrdz and dT' = rds (ds* = dx* +dy?).

The control volume A can be divided into E elements and N
nodes, and the temperature in the domain is represented with
interpolation functions. The interpolation function for the temper-
ature can be expressed as T = 3T, P, (a = 1, 2, ..., M), where
T, is the nodal temperature, and @, is the isoparametric finite
element shape function. The function T can also be expressed with
the finite element shape function as 7 = 3T, ®,, where T, is the
nodal value of T. Based on the element size and steady-state
velocity, the function & in 'Eq. (11) can be defined as & =
0.5(coth Pe-1/Pe)sV/IVI, where s is the element size and Pe =
0.51Vis/k (Zienkiewicz and Taylor, 1991). After the finite element
discretization, the following system of equations can be obtained:

KT=F (12)

where K and F are the stiffness matrix and load vector, respec-
tively; and T is the vector of temperatures at nodal points. The
components of K and F are

Kab = f pc(q)a -+ 8 * V(I)a)V * V(I)hdA
A

+ f VD, - Vb, dA — j V- kVD,5: VD, dA
A

A

+j (h + alT, T))D D, dl' (13)
dAc

F,= f (T, + alT, T)T.)® dT (14)
A

¢

where a (T, T.) = R (T* + T2)(T ~ T.). Notice that when & is
constant, some of the high-order terms in Eq. (13) will vanish
when the linear or bilinear elements are used. More discussions on
the calculation of the high-order term can be found in the book by
Johnson (1987).

5§ Virtual Work and Finite Element Formulation for
the Stress Problem

Applying the virtual work principle to Eqgs. (4) and (5), we can
derive the following weak formulation:

f a(u):e(n)dA = J 7-udl + J p(b + DV/Dg) - udA

(15)

where u (u = (u, u,)") is the displacement field and @ is virtual
displacement field, dT" = rds, and dA = rdrdz. The body force
and the acceleration term in Eq. (15) can be neglected when their
contribution to the mechanical deformation is negligible.
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Although the finite element analysis of the stress problem can be
performed with the same discretization as that used for the heat
transfer analysis, we consider a general case with a different finite
element discretization for the stress problem. Assuming that the
control volume is discretized with N nodes and E elements, we can
express the displacement field with isoparametric shape functions
N as d = Nu. The corresponding strain and stress field are € = Bu
and ¢ = DBu, respectively, where B is derived through differen-
tiation of the shape function N. After the discretization and using
Eqgs. (6) and (8), we can derive the following system of equations
from Eq. (15):

AU=P (16)

where A is the stiffness matrix, U is the vector of the nodal
displacement field, and P is the load vector. The components of A
and P are

A=f BDBJA amn
A

P=j NTTdF-i—J- B'D(e” + e")dA
a4 4

+f NTp(b + DVIDt)dA (18)
A

6 Calculation of the Inelastic Strains

To obtain the inelastic strain, we employ the concept of the
material derivative. The material derivative of the inelastic strain
can be expressed as follows:

eV = 9e™at + V-Ve, 19

Substituting Eq. (19) into Eq. (10), we can derive the following
equation:

deMar+ V-Ve'=f(c, e, T,...) r,zEA. (20

For the problem considered here, Eq. (20) involves four indepen-
dent scalar equations corresponding to the inelastic strain compo-
nents, €/, €, €, €}, and represents the evolution of inelastic
strain with time. For a steady-state process, to an observer in the
Eulerian frame, d€"/9¢ = 0. In this analysis, the term 9€"/d¢ is
kept for the purpose of iteration.
Before the quenched body enters the quenching chamber, it has
a uniform temperature. At this stage, there is no deformation in the
body. Therefore, the value of the total inelastic strains at the
upstream of the control volume A is
e"=0

r,z € 0A,. 2D

To obtain the inelastic strains, a weak formulation is applied to
Eq. (20) on the control volume A. The Petrov-Galerkin method is
also used here to stabilize the algorithm. The variational statement
of Eq. (20) employing the Petrov-Galerkin method is as follows:

f e at(w + yEV - Vw)dA

A

+ J VVeM(w + y€V - Vw)dA
A

= f flo, ¥, T, ... )(w+ véV-Vw)dA (22)

A
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wherew € V = {v € H,} (H. is a Soblev space), v is a constant,
and £ is the element parameter which represents the element size.
Equation (22) can be considered as the summation of two equa-
tions with the standard Galerkin method for two different test
functions, i.e., w and (y&V * Vw).

Equation (22) can be discretized with the finite element inter-
polation functions for the inelastic strains, €¥, and the function w
as €' = Zef Wy, w=3w¥y (B =1,2,..., L), respec-
tively, where L is the number of nodes, €} is the nodal value of the
inelastic strain tensor, and ¥, is shape function which may be the
same as, or different from those used for temperature and displace-
ment interpolations. Generally, integration of the inelastic strains
can be performed with the mesh used for thermal or stress analysis.
With the finite element interpolation functions, the following equa-
tion can be derived:

f (Vo + yEV - VU )W odAdep/dt

A

+f (W, + v&V- V¥ )V - V¥ dAe}
A

= f (U, + yEV- V¥ )M(o, €, T, .. .)dA. (23)

A

Equation (23) can be written in the following compact form:
Cé+Qe=g¢g (24)

where the vector e contains inelastic strains, the components of the
matrix C and Q are

Cop = f (W, + yEV VU )W edA (25)
A

Qs = J (W, + yEV - V¥V V¥ 4dA (26)
A

and the components of the vector g is
8a = f (P, + vEV- VO )M(o, ¥, T, .. )dA. (27)
A

Equation (24) can be integrated with the backward Euler scheme
as

¢ + =g < et 28
Ar Qje"=¢ Ar® -8
where n represents the current step number.

The term Ce" ™' in Eq. (24) is the inelastic strains at the previous
step. When the term Ce"™' is combined with the load vector g to
form a modified load vector g*, the following equation can be
obtained:

C [
v +Qle"=g 29)
where the components of g* are
ga= f {(Wo + vEV V¥, )(f(a, €%, T, .. )
A
+ (eMy""YAr}dA.  (30)
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Fig. 2 Temperature variation along the moving direction of the
quenched rod

Matrix Q and C are independent of the inelastic strains, When At
is constant, the stiffness matrix will be constant. In this case,
matrix forward elimination during iterations may not be needed.

7 Implementation Procedure

The methodology presented in this paper can be implemented
with the following steps:

A. Solve the system of Eq. (12) to obtain the temperature filed.
B. Apply thermal loading.

B.1. Divide the thermal loading into m increments so that
A€ = €'im.
Apply the thermal loading incrementally, i.e.,
(€, = (e, + Ae” with (), = 0, where i is
the increment number. If the full thermal loading is
applied to the system (i.e., i = m), go to step C;
otherwise, go to step B.3.
Solve the system of Eq. (16) by substituting (&7), for
€’ to update the stress field.

B.2.

B.3.

150 T T T
[ Steady State Solution 1
Foor=0.0052m r=0.0147 m 5l
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Fig. 3 Stress distribution along the moving direction of the quenched
rod
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Fig. 4 Surface temperature variation aldng the moving direction of the
quenched tube

B.4. Solve the system of Eq. (29) to update the inelastic
strains with the updated stress field, then go to step

B.2.
C. Iteration.
C.1.  Solve Eq. (16) to update the stress field with the full
thermal loading.
C.2. Solve Eq. (29) to update the inelastic strains with the
updated stress field.
C.3. Check convergence. If convergence is achieved, i.e.,

a€"/9t ~ 0, stop iteration; if not, go to step C.1 with
the updated inelastic strain obtained from step C.2.

Generally, the step B is necessary when a process, such as the
quenching process studied here, involves a fast evolution of in-
elastic strains. Generally, the convergence tolerance should be
small. In this paper, it is 1077, that is, iterations stop when 9€"/
dt < 1077, where €" is the effective inelastic strain and is defined

as € = Viele].
8 Results

The material considered here is an aluminum alloy. The thermal
conductivity of the material is k = 222 W/m-°C, the specific heat

50
1 1=0.0256 m
- 0‘_
40 - ——0,
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—— @,
30 6
=
[a 9 4
2 20
> |
w
&
vy -
10
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0.00 0.10 0.20 0.30 0.40 0.50
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Fig.5 Stress variation along the moving direction of the quenched tube
in the surface of r = 0.0256 m
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Fig. 6 Stress variation along the moving direction of the quenched tube
in the surface of r = 0.0299 m

is ¢ = 904 J/kg-°C, and the density is p = 2650 kg/m’. The
Young’s modulus of the material varies with temperature, that is,
E(T) = 7310-48.6T MPa if T = 340°C and E(T) = 103000-
139T MPa if 340°C < T =< 540°C; the Poison’s ratio is v = 0.37.
The thermal expansion coefficient of the material is o(7) = 25.5
um/m,

The inelastic deformation of the material obeys the following
hyperbolic sine law:

sy

el =filo, " T, .. Ae T2 sinh Bg]" 31)

_ 3
=3 T
where A, B, C and n are the material constants, o is the effective
stress defined as & = V3 8,8 ;. (s are the deviatoric stresses and
Sy =0y — 4 048;;.) The temperature T is in degrees Celsius. The
parameters of the hyperbolic-sine law are A = 8.557 X 107
sec”!, B = 0.03223 MPa™', C = 21320°K, and n = 4.75

(Becker et al., 1994).

To verify the methodology presented in this paper, a steady-state
rod quenching problem is studied and the results are compared
with a transient solution. The diameter of the rod is 0.03 m. The
control volume is as shown in Fig. 1, where R, = 0.015 m and
R; = 0.0 m, and the length of the control volume is L = 0.7 m.
The rod moves at a steady-state velocity, V = (0, 0.15) m/sec and
is water cooled from z = 0.06 m to z = 0.46 m with the cooling
heat transfer coefficient 1 = 14200 W/m>-°C. When the rod is
outside of the cooling region, it is cooled by the surrounding air
with & = 30 W/m’-°C. The temperature of the water and air is
T. = 25°C. Before the rod is quenched, it has a uniform temper-
ature, 7, = 510°C. With the assumption of uniform cooling
around the rod surface, axisymmetric conditions can be applied to
the rod. In addition, traction-free conditions are applied to the rod
surface and ends with the point at (0, 0) fixed to eliminate rigid-
body motion.

In the quenching problem studied here, the mechanical defor-
mation is induced mainly by temperature gradient in the quenched
body and the velocity due to mechanical deformation is negligible
compared to the rigid-body velocity (steady-state moving velocity
of the quenched body). Therefore, the rigid-body velocity can be
used in Egs. (12), (24), and (29).

With the steady-state methodology, the control volume is des-
cretized with 455 elements (seven elements in the radial direction).
Stress elements are quadrilateral with eight nodes and four inte-
gration points and thermal elements have four nodes and four
integration points. The computational time is about 1.5 CPU hours
on an HP 750 machine.

With the transient (Lagrangian) method, the rod 1 m long is
selected to ensure that the solution can reach steady-state and end
effects can be eliminated. Nine hundred ninety-five quadrilateral
elements are used to descretize the domain with five elements in
the radial direction. The stress elements have eight nodes and four
integration points and the thermal elements have four nodes and
four integration points. In addition, the elements are carefully
generated to minimize the level of computation. To simulate the
process, the cooling zone is fixed and the quenched body is
moving. The transient analysis is performed with the commercial
program ABAQUS (1995). The run time for this problem is about
30 CPU hours on the same HP 750 machine.

The steady-state and transient solution for the rod quenching
problem are given in Figs. 2 and 3. Figure 2 shows the comparison

Inelastic Strain Rate (1/sec)

0.00 0.10 0.20

~—-r=0,0256 m
—4—1=0.0299 m

0.30 0.40 0.50
z (m)

Fig. 7 Variation of the inelastic strain rate along the moving direction of the

quenched tube
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of temperatures of the quenched rod. Figure 3 shows the stress
variation at two locations, i.e., » = 0.0052 m (close to the rod
center) and r = 0.0147 m (close to the rod surface). The agree-
ment between the results obtained from the two methodologies are
good. But the computational time is significantly less with the
steady-state approach.

A tube quenching problem is also solved with the steady-state
method presented in this paper. The same aluminum material is
also used. The inner diameter of the tube is 0.05 m and the outer
diameter is 0.06 m with 0.005 thick wall (i.e., R, = 0.030 m and
R, = 0.025 m). The length of the control volume is also 0.7 m.

The tube moves at a constant velocity, V = (0, 0.15) m/sec and is_

water cooled from z = 0.1 m to z = 0.4 m with the cooling heat
transfer coefficient 2 = 14200 W/m?*-°C. Outside the quenching
area it is cooled by the surrounding air with & = 30 W/m’-°C. The
the water and air temperatures are 7., = 25°C. Before the tube is
quenched, it has a uniform temperature, 7, = 510°C.

Figure 4 shows the surface temperature variation along the tube.
Figures 5 and 6 show the stress evolution along the tube at r =
0.0256 m and r = 0.0299 m, respectively. Figure 7 illustrates the
variation of the inelastic strain rate at r = 0.0256 m and r =
0.0299 m, respectively. Figures 8 and 9 show the variations of the
inelastic strains along the tube at » = 0.0256 m and r = 0.0299
m, respectively.

9 Conclusion

The steady-state method presented in this paper is effective and
efficient to analyze the stress evolution involved for a continuous
thermomechanical process. Test problems have shown that the
results obtained with the steady-state (Eulerian) approach agree
well with those obtained with the transient (Lagrangian) method.
With the steady-state methodology, a significant amount of com-
putation time can be saved. It is advantageous when repeated
computation is required such as in an optimization procedure.

Generally, inelastic deformation occurs in a short period of time
and it requires a fine mesh and small time steps to integrate the
inelastic strain rate. With the transient method, the time step must
be kept sufficiently small through the entire simulation and the fine
mesh is needed in the entire domain. But with the steady-state
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Flg. 8 Inelastic strain variation along the moving direction of the
quenched tube in the surface of r = 0.0256 m
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approach, a fine mesh is only needed in the region where the
inelastic deformation occurs. .

The control volume should be selected larger than the region
where the stresses need to be determined. According to the Saint
Venant principle, the boundary conditions at the upstream and
downstream of a control volume will only affect the local stress
distribution. Once the computation region is large enough, the end
influence to the stresses and deformation can be neglected.

In the examples studied here, the magnitude of the inelastic
strain increases quickly at the beginning of the quenching process,
then stays at almost constant level during the rest of cooling
process. Axial and Hoop stresses in the region close to the outer
surface are tensile at the beginning of the quenching process, and
change from tenstle to compressive at the early stage of the process
and stay compressive. In the center area or near the inner surface,
axial and Hoop stresses are compressive at the beginning and are
tensile later on,

The inelastic deformation contributes significantly to the resid-
ual stresses of the end product. Therefore, the region where the
high inelastic strain rate occurs must be studied carefully in order
to minimize the residual stresses.

The methodology presented in this paper can also be applied to
other steady-state processes with small deformations, i.e., small
strains and small rotations.
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Method to the Transient
Thermal Stresses Response in
Isotropic Annular Fins

This paper presents the transient stress distribution in a perfectly elastic isotropic annular
fin. The nonlinear transient conduction-convection-radiation heat transfer annular fin
equation is solved by the hybrid method of the Taylor transformation and the finite

difference approximation. The temperature distribution curve is employed by the natural
cubic spline fitting. The stress distribution is directly integrated to obtain the transient
thermal stress distribution.

1 Introduction

Fins are employed to enhance the heat transfer between the
primary surface and its convective, radiative, or convective-
radiative environment, Annular fins (thin annular disk) are exten-
sively used in various industrial applications (Kern et al., 1972).
For proper prediction and control of the performance of a fin, it is
necessary to know the dynamic response of it when an expected or
unpredictable change occurs. Naturally, the plane-stress ther-
moelasticity problems of radial heating of annular fins are impor-
tant in engineering practice (Boresi et al., 1974).

In this paper, the nonlinear conduction-convection-radiation
heat transfer equation is solved by the hybrid method, which
combines the Taylor transformation and the finite difference ap-
proximation. For the transient temperature distribution curve, we
use the natural cubic spline fitting. Since a spline is a flexible strip,
according to the law of beam flexture, it passes through each of the
given points and moves smoothly from one interval to another. It
is particularly advantageous when we want to find derivatives to
the data. In the stress field of the annular fin, the ratio of the
thickness, W, to the outer radius, r,, is even smaller compared with
unity. Therefore, we can make a statement that the annular fin is
plane-stress field and the end faces are free of traction (Misra et al.,
1983). We use the direct integration method to obtain the transient
thermal stress distribution.

2 Analysis

Transient Heat Transfer Problem. We consider one-
dimensional conduction of an annular fin with base radius, r,, tip
radius, r,, and uniform thickness, W. The heat transfer coefficient,
h, along the peripheral surfaces and at the tip surface of the fin is
constant and uniform. The fin is a homogeneous, isotropic constant
property material with thermal conductivity, k. Thermal genera-
tion is not considered. We assume that the heat dissipates from the
fin surfaces with convection and radiation to the surrounding area.
The fin initially is uniform in thermal equilibrium with the sur-
rounding at temperature T,. At time ¢ = 0, the fin base temper-
ature is suddenly changed to 7, and kept constant thereafter.
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Referring to the Fig. 1, the energy equation with the aforesaid
initial and boundary conditions of the fin is

%0 106 . 4 1 660
W 75;'“}11(9—1)—”(66 —a98)=a;§,
t>0, r,<r<r, 0=0(r1, (1)
6=1, t=0, r,<r=<r,
0=10, >0, r=mn,

Y
———=P(0— 1) + U(eb* — ab?),

>
ar >0,

r=re, (2

where m = 2h/kW, n = 20To/kW, P = hik, U = oTu/k, o* = kipc,,
0=7T/T, 08, =T.IT, 6, = T,T, and ris the radius of the fin, # is the
time, p is the density of material, and ¢, is the constant pressure
specific heat. T is the temperature of the fin, T, is the effective
temperature of the radiative surface except for the fin, « is the
absorptivity of the fin, € is the emissivity of the fin, and o is the
Stefan-Boltzmann constant. In order to consider the effect of possible
differences in the emitting and absorbing spectra, the emissivity €, and
the absorptivity «, are not taken to be equal.

After taking the Taylor transformation (Chen et al., 1996; Yu et
al., 1997) with respect to time domain ¢, Egs. (1) and (2) become

d®(r, k)

a*0(r, k)
* dr

pR = m(0(r, k) — 8(k))

1
7

k ¢
—n(eE@)(r,k—f)E@(r,e—s)

£=0 s=0

X > 0(r, s — Q)O(r, ) — ab8(k))

q

1 k+1
:&;T®(F,k+ 1), (3)
O 0)=1, 4)
BO(r,, k) = 6,8(k), &)

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



oT,
A
Tvlo 1 2
! ®- - f w
- Ho le H,
L . v
B ole L -
|-t |
r
€ -
Fig. 1 Rectangular profile annular fins

dO(r,, k)

= P(O(r, b — 3(K)

k

4
+UE D Orp k=€) D 0(r, £ ~s)

£=0 s=0

XD O, s — )O(r,, q) ~ abid(k), (6)
q=0
where

1 fork=20
8(k) = {0 otherwise,

and O is the Taylor spectra of 8, H is the time interval, and k is the
transformation parameter. The fundamental properties of the Tay-
lor transformation are given in the Appendix.

For the finite difference approximation with respect to r in Egs.
(3)-(6), in this paper the region r, = r = r, (Fig. 1) is divided into
two equal subregions and each of the thickness, §, is given by

re— 1y
S_T' @)

Equations (3)-(6) are discretized by using the second-order accu-
rate central difference formula for both the second and first deriv-
atives (Ozisik, 1994). We obtain

Gi—l(k) - 2®i(k) + ®i+l(k) + 1 ®i+l(k) - ®i—l(k)
8?2 r, + 08 28

k ¢
— m(0,(k) — 8(k)) — ne >, Ok —€) D, O,£ —s)

£=0 $=0
i k+1
X E O,(s — 9)0{q) + nablsk) = o H O,k + 1),
¢=0
i=1, @8)
0,0)=1, i=1,2, )]
O,(k) = 0,8(k), 10y,
0,(k) — O,(k d
- -—@—23—2 = P(8,(K) — 8(K)) + Ue 2, @y(k = £)

£=0

[4 5
X 2 0,6 = 5) > Ous — q)Oy(q) — Uabid(k). (1)

5=0 4=0

Now, to eliminate the fictitious spectrum ®,(k) by utilizing the ex-
pressions obtained from Eq. (8) with i = 2 and Eq. (11), we obtain
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1 2 :
Os(k + 1) = 5 (P(O(k) = 8(K)) + Ue 3, @,k — €)

a*H
€=0

4 5
X 2 0,(€ — 5) D (s — 9)8,(q) — Uab?s(k))

s=0 q=0

N 2(0,(k) — 0,(k))
§° r, + 28

(P(®,(k) — 8(k))

k [4 5
+ Ue 2, 0,(k — €) 2, 0,(¢ —5) >, By(s — 9)0,(q)

£=0 5=0 g=0

k

— Uabis(k)) — m(®,(k) — 8(k)) — ne >, @,k — €)

=0

X 3 0, ~5) S Oss — )Ou(q) + nabs®), (12)

§=0 4=0
where H is the time interval. Take k = 0, 1,2, ..., 5, and i =
0, 1, 2; we may obtain (k) as follows:
0,(0) = 0,, 13)
0,0) =1, (14)
0,(0) =1, (15)
0,(1) =0, (16)
(1) = a*H< 0,(0) - 2@)812(0) + ©,(0) N ®22(;)()rb—+®;§0)

~m(0,(0) — 1) — ne®(0) + na03>, 17)

2P P
0,(1) = a*H<<?+ PRy i m>(®2(0) = 1)
2U U . 2(0,(0) — 8,(0))
- <T€+ PR +€25 + ne>®2(0) B E— :
22Uk Ua 4
(T+m+na)96), (18)
0,(2) =0, (19)
a*H{Bo(1) —20,(1) + 0,(1)  0,(1) — By(1)
0:(2) = =~ 52 28(r, & )
-m® (1) — 4ne®|(1)®?(0)), (20)
a*H{ (2P P
0.0)= (5 + - 55 m)eatt)
2Ue Ue s
- 4(T + r,,_+—25+ n6>®1(1)®1(0)
N 2((91(1)6; ®2(1))>, o
8,(3) =0, (22)
0,(3) = a*H{ 00(2) —20,(2) + 0,(2)  0,5(2) — B,(2)
i3 =3 \ 82 268(r, + 8)

— mO,(2) — ne(40,(2)03(0) + 6@%(1)@%(0))), 3)
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Table 1 Nodes temperature of convection and radiation

time (s) 75 (K) 75 (K) T3 (K)
10 600 469.30 436.56

20 600 525.41 507.72

30 600 547.72 536.02

40 600 556.51 547.16
steady state 600 561.31 553.24

Table 2 Nodes temperature of pure convection

time (s) T% (K) T (K) T3 (K)
10 600 470.53 43791
20 600 529.09 512.18
30 600 553.65 543.37
40 600 563.96 556.46
steady state 600 570.10 564.26
Table 3 Nodes temperature of pure radiation
time (s) T5 (K) T} (K) T3 (K)
10 600 475.50 442.84
20 600 539.31 523.44
30 600 566.90 558.29
40 600 578.69 573.16
steady state 600 585.81 582.14
® _a*H( (2P P )@
B =5\t s )0
2Ue Ue 03
- T‘Fm"‘ ne (4@1(2) I(O)
2(0,(2) — 6,2
T R A
0y(4) = 0, 25)
0,4) = (x*H( ®o(3) ~20,03) + ®2(3) ®2(3) - ®0(3)
IR 82 28(r, + 8)
~ m®,(3) — ne(40,(3)03(0)
+120,(2)0,(1)83(0) + 4®?(1)®1(0))>, (26)
® _ a*H{ (2P P )@
W=\ s )OO
2Ue Ue ©.(3)8?
“\ 5 T, 2s T ne)  (40.(3)64(0)
+120,(2)8,(1)01(0) + 407(1)8(0))
2(0,(3) — 6,03
N (0,( )52 o ))’ on
04(5) = 0, (28)
a*H(0y(4) —20,(4) + 0,(4)  0,(4) — 0,(4)
0.(5) =3 ( 52 T80, 8)

~ m®,(4) - ne(40,(4)03(0) + 607(2)07(0)
+120,(3)0,(1)0}(0) + 120,(2)0i(1)0,(0)

+ ®7(1))>, (29)
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Fig. 2 The transient temperature response of annular fins with convec-
tion and radiation boundary conditions
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Fig. 3 The transient temperature response of annular fins with pure
convection boundary condition
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Fig. 4 The transient temperature response of annular fins with pure
radiation boundary condition
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Fig. 5 The transient radial thermal and radiation heat transfer
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Fig. 6 The transient tangential thermal stresses of annular fin for con-
vection and radiation heat transfer

From Egs. (13)-(30), we may obtain ®,(k); i = 0, 1, 2, k = 0,
1, 2, 3, 4, 5, for each time interval.

Now, from the inverse Taylor transformation formula (Chen et
al,, 1996), the temperature of the ith node and the jth time interval
0,(1) is

5 ' X
0, =2 (E) 0,k), H_. =1=H,
k=0 e

31)
5 Y )
0,(5) = D, (ﬁ) 0,k), H, ,=t<H, (32)
k=0 N
and
5
8,00 = >, ©,.,(k), (33)
k=0
5
0,,(0) = Y, ©,,,(k). (34)

k=0

Thermal Stress Analysis. The stress associated with a radial
temperature field, T(r, ), is independent of the axial dimension.
Also, the temperature is symmetrical about the center. For the thin
annular disk, the temperature does not vary over the thickness of
the disk. We may assume that the stress and displacement due to
the heating also do not vary over the thickness. For thin annular
disk/fins (W/r, < 1, Fig. 1), it is an axisymmetrically plane stress
problem (Timoshenko et al., 1970).

In the absence of body forces, the equation of equilibrium is
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Fig. 7 The transient radial thermal stresses of annular fin for pure
convection heat transfer

do(r, t) N alr, t) — oy(r, 1) 3

dr r 0 (35)
and the strain-displacement relations are
du(r, 1)
elr, )= ar
u(r, t)
€ir, t) = ;
Yrors 1) = 0 (36)

where o, is the radial stress of the fin, o, is the circumferential
stress, €, is the radial strain, €, is the circumferential strain, v, is
the shear strain, and u is the radial displacement,

In this case of plane stress, the applicable equations of stress and
strain are as follows:

oflr, t) = T—E—Vz (e,(r, 1) + vey(r, £) — (1 + V)a**T(r, 1))
37

aylr, t) = l—fj7 (eg(r, 1) + ve(r, 1) = (1 + V)a**T(r, 1))
(38)

where v is the Poisson’s ratio, a** is the coefficient of linear
thermal expansion, and E is the modulus of elasticity.
The equation of equilibrium, Eq. (35) is now
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Fig. 8 The transient tangential thermal stresses of annular fin for pure
convection heat transfer :
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Fig. 9 The transient radial thermal stresses of annular fin for pure
radiation heat transfer
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Fig. 10 The transient tangential thermal stresses of annular fin for pure
radiation heat transfer

r % (e,(r, 1) + vey(r, 1)) + (1 — v)(e,(r, t) — €4(r, 1))

— o+ . dT(r, t) 19
= +v)ar*r—r—. (39
Introducing Equations (36) into Eq. (39), we obtain
dulr,t) 1du(r,t) u(r,t) dT(r, t)
dr? v dr 7 (1 + v)ar dr
which may be written as
d [1d(ru(r, 1)) dT(r, 1)
Il LA N *o
dr (r dr {1+ va dr (40)

Integration of this equation yields

1 [ c
u(r, 1) = (1 + v)a** ;j rT(r, t)dr + c\r + 72 41

b

where r, is the inner radius of the annular fin,
The stress components are now found by using the solution (41)
in Eqgs. (36) and substituting the results into Eqs. (37)—(38). Then

1 r
alr, t) = —a**E ﬁf T(r, t)rdr

E 1
t1o2 (01(1 + v} —cy(l —v) ;5) (42)
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1 r
ayr, t) = a**E ;ij T(r, Ordr — «**ET(r, t)

ry

E 1
+ ‘I‘T;*z (Cl(l + V) + 02(1 - V) r—z') 43)

In this article, the constants ¢, and ¢, are determined on the basis
of the boundary conditions (¢,),,, = 0, and (,),., = 0. Equation
(42) thus gives

(1 — v)a**x [
¢ = rT(r, t)dr

re— Ty
b

(1 + v)ax*rl [ :
¢, = *rz—_——r—i— rT(r, t)dr.

Iy

From Egs. (42), (43), the stresses are therefore

1 r
or, 1) = a**E( - TZJ rT(r, t)dr

rh

e ot ar |, e
(i 1) rT(r, )dr|, (44)

3

1 r
oolr, 1) = a**E( ~T(r, t) + ’jj rT(r, t)dr

b

r2+r?

-+ WJ’ rT(r, t)dr) . (45

rb

Now, let S,(r, t) = o,(r, )/a**E, §,(r, t) = o4(r, )/a**E,
then, for radius interval [r,, r; = r, + 8], the two kinds of stress
distribution are, respectively, given below

1 r
Sr, ) = — PJ rTo(r, t)dr

f rTo(r, £)dr +j rT,(r, t)dr),

N r?—rl
ST
rh ri

r=r=r, (46)

1 r
S(r, 1y = =To(r, 1) + FJ‘ rTo(r, t)dr

rb

(f "rTolr, t)dr + J rT(r, t)dr),

ri

N r2 4+ r?
TS
r=r=r. @7

The radius interval [r; = r, + 8, r.], and the stress distribution
are as follows:

1 r
SAr, t) = — 2 (["'}*To(r, tydr + f rT(r, l)dr>

i

+ - r[27 "y T, dr + "’
PeTO R rbr o7, Bdr rT\(r, )dr],

i

risrsrea

(48)
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1 r
S(r, t) = —=T\r, 1) + P f’?To(r, t)dr + j rTi(r, t)dr
th "

th

+ m ¥Tolr, t)dr + rT\(r, dr ],

r=r<r, 49

where T, is the temperature distribution between nodes 0 and 1,
and T, is between the nodes 1 and 2. From Egs. (46)—(49), we may
obtain the radial and circumferential stress distribution.

3 Numerical Results and Discussion

In order to illustrate the foregoing analysis, numerical calcula-
tions have been carried out. We take the following values, for
example.

Material properties:

p = 2700 kg/m®, ¢, =925 J/kgK, k=186 W/mK,

a=108 e€=0238.
Dimension of annular fin:
r,=002m, r,=0.06m, W=0.004m
Convection condition:
h =50 Wim®K.

Given temperatures:

T,=300K, 7,=300K, T,=600K

Time-step interval:

Radiation parameter:
o=5.67x 108 WmK*

The different nodes of temperatures after calculation as shown in
Tables 1, 2, and 3 (T%: node 0, TF: node 1, T3: node 2). The transient
temperature response for convection-radiation is shown in Fig. 2, pure
convection in Fig. 3, and pure radiation in Fig. 4. From Eqs. (46)-
(49), the transient thermal stress for convection and radiation is
presented in Figs. 5 and 6, pure convection is presented in Figs. 7 and
8, pure radiation is presented in Figs. 9 and 10.

It appears that the hybrid method, which combines the Taylor
transformation and finite difference approximation, is one of the
most useful methods for solving nonlinear heat transfer equations
for annular fins with nonlinear boundary conditions. Although the
temperature distribution solution requires numerical calculations,
the solution is a closed-form series (See Eqgs. (31), (32)).

4 Conclusions

We have described the hybrid method for the transient annular
fin heat transfer problem with homogeneous isotropic material in
constant thermal properties, and also formulated the transient
linearly elastic thermal stress distributions for the traction-free
annular fin.

From the results of the analysis, it appears that the present
method is a useful and practical method, and the solutions can
predict quite accurately the dynamic performance of an annular fin
in a transient state.
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APPENDIX

If x(¢) is analytic in the T domain, then the spectrum of x(r) at
t = t; in the K domain can be represented as

a*x(2)
at*

X(k)=d>(t,-,k)=[ ] , VkEK. (AD)

=1

If x(#) can be expressed by the Taylor series, then x(¢) can be
represented as

PPN
w=3 (—t—.t‘—)—X(k).

k=0

(A2)

Table 4 shows the Taylor transformation. The symbol “/\”
denotes the differential operator, and “*” denotes the convolution
operation in the K domain.

The operation properties of Taylor transform are as follows.

If f(r) and g(¢) are two uncorrelated functions of ¢, and F(k),
G(k) are the corresponding Taylor transformations, respectively,
then the basic properties of the Taylor transform are shown as
follows (T denotes Taylor transformation):

1 Linearity:

If Ftk) = T[AD], Gk) = T[g(®)], and ¢, and ¢, are
independent of ¢ and k, then T[c f(1) + c.,g()] =
c Fk) + ¢,G(k).

2 Convolution:

If 2(1) = f(ng(®), Ay = T"'[F(k)] and g(t) = T™'[G(k))

then
Table 4 Operation in K domain
_H* (6"x(f)>
Spectrum X(k) X(k) = PRSI Y

function x(z)

Y
*0) =2 (—,;,) X(k)
k=0

Convolution X(k) * Y(k) = E X(€)Y(k — ¢€)

€=0

k+1
Derivative AN X (k)= TX(k +1)
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Tz(n] = T{Ang(1)] = Fy (k) * Fk)

X .
= F(k) » Gk
(k) = Glk) = > Fi ' (O)F(k— €). (Ad)
k =0
= ;0 F(O)Gk ~ 6) 3 Derivative:
‘ . If A7) and its derivatives f'(2), f'(t), ..., f*(¢) are con-
_ E F(k — £)G({) (A3) tinuous functions for interval [0, H], then
e=0
d"f(¢
” . - T —in) = N "F(k)
Therefore, the Taylor transform of f”(¢), where m is a positive dt
integer, can be obtained as ) (k+ Dk +2) ... (k+n)
T17"(0)] = Fi(R) =TT e Pkt 49
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Moving Mechanical Sources on
a Half-Space Governed by Fully
Coupled Thermoelasticity

The two-dimensional steady-state analysis of rapidly moving mechanical sources over the
insulated surface of a thermoelastic half-space is extended by allowing surface heat
convection. An exact transform solution based on the fully coupled (dynamic) equations
of thermoelasticity is obtained, and robust asymptotic expressions for the surface dis-
placements and temperature change are extracted, Convection is manifest in these

expressions in terms of a positive dimensionless parameter of small magnitude, and
results in a surface response that is more complicated than that for the insulated surface.
In particular, surface temperature changes decay less with distance from the source, and
convection effects can dominate all surface responses at low and near-critical speeds.

Introduction

The study of rapidly moving forces over the surface of an elastic
half-space sheds light on processes of contact, tribology, and
impact. Isothermal steady-state analyses can be found in work by
Cole and Huth (1958) and Georgiadis and Barber (1993). When
thermal effects are included, analyses generally use un- or partly
coupled thermoelasticity theory (Boley and Weiner, 1985), mini-
mize inertial (dynamic) effects, and treat the motion of heat
sources alone over the surface (e.g., Ling and Mow, 1965; Mow
and Cheng, 1967; Barber, 1984; Bryant, 1988).

Brock and Georgiadis (1997), therefore, considered the steady-
state motion of a line mechanical/heat source over the surface of a
half-space governed by fully coupled (dynamic) thermoelasticity
(Biot, 1956; Chadwick, 1960). A two-dimensional plane-strain
model was assumed, and exact bilateral Laplace transform solu-
tions obtained. Asymptotic forms of the solutions, valid when the
distance from the moving line surface source was large in com-
parison with a thermoelastic characteristic length, were then in-
verted analytically, and evaluated on the half-space surface. Be-
cause, however, the length is of order O(10™*) wm, the results
were robust. They showed, in fact, that thermoelastic coupling
influences the surface displacement and change in temperature,
especially when source speeds are high.

However, that work treated an insulated half-space surface, i.e.,
no surface heat flux occurred except at the heat source itself. Such
models are common, e.g., in contact problems (Brock, 1996a), but
neglect heat exchange with the medium surrounding the solid.
Moreover, even if such heat exchange is negligible, manufacturing
processes give surfaces that may differ in microstructural detail
(Bayer, 1994) from the material underneath. Such a de facto
surface layer might not affect the elastic properties of the solid, but
any surface layer with a significant Biot number can give rise to
surface heat flux by convection (Boley and Weiner, 1985).

As a first step, therefore, in examining the effects of surface heat
convection in the response to dynamic loads of a solid that obeys
the laws of fully coupled thermoelasticity, this article extends the
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work of Brock and Georgiadis (1997) by treating the steady-state
motion of mechanical line sources over a half-space surface which
now allows a surface heat flux. This effect is represented (Chad-
wick, 1960; Boley and Weiner, 1985) by a proportionality law
between the heat flux and the temperature change at surface points.
To highlight the effect, no heat source is included, and only
subcritical source speeds are considered. As in the earlier work,
robust asymptotic expressions for the surface displacements and
temperature change are obtained. It will be seen that convection
modifies the solution response observed by Brock and Georgiadis
(1997). This first-step approach allows a clear comparison of an
insulated and a convective surface in terms of basic Green's
function solutions.

Problem Formulation

Consider a thermoelastic half-space defined in terms of the
Cartesian coordinates (x, y, z) as y > 0. The half-space is initially
at rest at a uniform (absolute) temperature 7, > 0 when normal
and tangential line loads of magnitude (P, S) are applied to the
surface. These loads are then moved across the surface in the
positive x-direction at a constant subcritical speed v, so that a
steady-state situation is eventually attained.

This process is two dimensional, so that z-dependence can be
ignored, and Fig. 1 used as a schematic representation. As depicted
there, it is convenient to fix the xy-axes to the sources, i.e., (x,
y) = 0 always locates them. The boundary conditions for y = 0
can then be written as

- =0

3; i (la-c)

o= —88(x), o,=-P8(x),
In (1), &) is the Dirac function, € is the change in absolute
temperature from 7T, and h, > 0 is a characteristic length (Chad-
wick, 1960; Boley and Weiner, 1985), while the line loads (P, )
have the same meaning in the work by Brock and Georgiadis
(1997). The convection law (1¢) allows A, to characterize either
the effects of heat exchange with the surrounding medium or, in
terms of the dimensionless Biot number

B = @

the effects of heat flux through a de facto effective surface layer,
where [—here assumed to be of microscale order—is the layer
thickness.
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l v
7/ X
Yy
Fig. 1 Line sources moving at constant speed on a thermoelastic half-
space

The two-dimensional steady-state problem involves only 6, dis-
placement components (u,, u,), and tractions (o,, gy, O,).
Furthermore, these field quantities depend only on (x, y), and time
derivatives in the absolute (inertial) frame reduce to the form
—~v3()/3x. Thus, from Chadwick (1960) and Brock (1996b), the
governing field equations of fully coupled thermoelasticity for y >
0 are

2
Vz—mch—a‘ ( )
ax2) ey

d
+ (8x 6y>[(m — DA+ x0]=0 (3a)

m’e
hV 6+05~<0—#~A) (3b)
1 _E)u); du,
_;;0.”—- dy | ax’
auy
~(0,n a,) = (m? —2)A+x6+2 R (3¢)

In (3), (V2, A) are the two-dimensional Laplacian and dilatation,
and

kv,
pme.,’

TO 7'2
X = X.(4 = 3m?, e=—(Xr:>, h=

Uy v 4
m = v, ’ c= Uy ( )
where (x,, ¢, k, w) are the thermal expansion, coefficient,
specific heat, thermal conductivity, and shear modulus. The pa-
rameters (v,, v,) are the rotational and isothermal dilatational
wave speeds while (e, k) are the dimensionless thermoelastic
coupling constant and thermoelastic characteristic length. It can be
shown (Chadwick, 1960; Brock, 1992) that for many materials
€~0(107%), h=~0(107% pm, m> 2. )
In addition, we expect (o, o0,, o,, 0) to vanish as
Vxt + y? - o, y > 0, and for these fields to be nonsingular
everywhere except perhaps aty = 0, x = 0.
At this point we define subcritical source speed to be that which
does not exceed v,, ie., 0 < ¢ < 1/m.

Exact Transform Solution

To consider this problem, the bilateral Laplace transform oper-
ator pair (van der Pol and Bremmer, 1950)

g* =L(g) =j glx)e dx,

348 / Vol. 66, JUNE 1999

1
=7 Yok} == — * pPX
g =L"(g") =5~ f g*e”dp (6a,b)
is introduced, where p is generally complex and integration in (65)
is along the Bromwich contour. Application of (6a) to (3) in view
of the boundedness conditions noted above gives the transform
solution set

u*
Lol T o 1 q[Ae
p? =1 w, w. 0 A_e o (Ta)
1 —Kp ~Kp -2 Be ™ ®
*
— o0
w7 |
u¥ -

1 a6% ooy [ e
p* dy { p} —o_A_e %
= w, w. 0 p
1. 2 22 Kp ]| —Bew

up ”j

(7b)

for y > 0. Here the coefficients (A ., B) are as yet undetermined
functions of p, while

at=at\/—_p\/];, B:b\/:;\/—’

2

+= = -c?-dl 8
W+ X ( ¢ ai) (8a)
ax 1+—(7+ )% b= 1 - m?
K=m%>-2 (8b)
1Y e m'cle
27y = \/(\/_CP“—“W> Yo Wr0- = (8¢c)

where branch cuts must be chosen so that Re(e-, 8) = 0 in the cut
complex p-plane.

Operation on (1) with (6a) and use of (7) then gives the equa-
tions necessary to find

1
WpR A, = o_ <a + )(2BS KpP) (9a)
1
upRA_ = w+<a+ + 17) (KpP — 28S5) (9b)
R, 1
uwp B B = er(oz+ + h—) (KpS + 2a_P)

1
—w_<a + )(KpS+2a P}y (9¢)

where R, is the thermoelastic Rayleigh function defined by

1 1
R, = w+<a+ + E)]L — (u_(a\ + E)RM
R.=4a.B+ K2 (10)

It should be noted that letting h, —  in (9) gives forms that,
appropriately, agree with those obtained by Brock and Georgiadis
(1997) for the insulated surface case.

With (7)-(10) available, the problem solution is complete, and
inversion of (7) can be performed by means of (6b). As noted at the
outset, however, the inversion process will be carried out for
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robust asymptotic forms of (7)-(10), and the results evaluated on
the half-space surface y = 0. This will result in more tractable
expressions and, more importantly, allow a direct comparison with
the results of Brock and Georgiadis (1997) in order to discern the
effects of convection.

Development of Asymptotic Forms

Brock and Georgiadis (1997) used the fact (van der Pol and
Bremmer, 1950) that the asymptotic form of a bilateral Laplace
transform valid for small }Ap| gives an inversion that is valid for
large |x/h|. The results were solutions in the form of analytic
functions that were, as demonstrated by the behavior of # in (5), in
fact, robust. The same basic approach is adopted here: When y =
0, (7) and (9) show that the expressions for (u*, u*, 0%) are
essentially ratios of functions of p, where R, is the common
denominator. Expansion of each numerator and R, as Taylor series
in the dimensionless variable hp, where |hp| < 1, produces the
asymptotic forms

R 1 \ hp
wout=—— NP - m?2ihS +—
h hpD vhp

A 1
X[ 1+ — e
< ye(l + €) —hp)
2Abce P \—hp o .

R -1 V—hp
Dok 2.2
g Uy hpD(NS+mcaP W)
x (14 s )
Je(l 4+ €) J—hp
Ace 1 —hp
+ 0t e? Wé {(K+ 2b)P — 2bS —\/[f?[; ]
+0(lhp| ' (110)
mice 1 \/—hp>
= — - +
wRO IR (KP 2b8 \/E O(lhp)) (11¢)

whose inversions will be valid for y = 0, |x/a{ = 1. In (11) the
dimensionless quantities (A, R, N, a) and the transform function

D are given by
)\—Ll = 41 *—62
T h a= 1+¢€’

R=4ab~K? N=2ab+K (12a)

s A 1 . 4Abce \—hp
B \/c(l +€) —hp (1+¢€°R \/P—l]—J

where A is the dimensionless convection parameter, the positive
real constant g is a manifestation of the asymptotic thermoelastic
(adiabatic) dilatational wave speed v, V1 + €, and R = R(c) is
the asymptotic thermoelastic Rayleigh function. It can be shown
(Brock, 1997) that R has zeros at ¢ = (0, *¢,) in the cut c-plane,
where 0 < ¢; < 1/m. The zero c,, which is the asymptotic
thermoelastic Rayleigh speed nondimensionalized with respect to
vy, can be obtained as

1 1
e 2 _ ——
cx 2(m 1+ e) m*G,’

1 f Ve gy
InG,=— —
™

D (126)

; (13a)
im
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AT+ €= 12 fm%?
\/1 + e (m2?—2)?

¥ = tan~ (13b)

To avoid singular behavior, we now define, finally, the subcriti-
cal range of source speeds to be

0 <c¢<cp (14)

The forms of (11) demonstrate that, despite the Taylor series
expansions in Ap, the existence of two characteristic lengths (A,
k) allows in effect two sets of lowest-order terms that differ by
O(lhp|"?). In the insulated surface limit (h, — %, A — 0), the
lower of these two orders disappears.

Transform Inversions

In view of (8a), (11) and the requirements on (a., B) in the cut
p-plane, the radicals (Vp, V= p) must exhibit branch cuts along,
respectively, the lines Im(p) = 0, Re(p) < 0 and Im(p) = 0,
Re(p) > 0. Because D = 1 in the insulated surface limit, it is
worthwhile to obtain the inverses of (11) as convolutions of the
inverses of (1/D, 1/hpD) with those terms that multiply them. A
glance at (11) indicates that these factors are of the four types

) NP 1 1
3 p £l \/I; k) \/; .
Substitution of each element of (15) into (6b) and use of Cauchy

theory to simplify the resulting integrations leads to, respectively,
the inversions

(15)

H(x) H(—x)
\/7—7;’ J—mx

where H( ) is the Heaviside function. In view of (16); the inversion
of (11a), for example, takes the form

1
8. —. (16)

R
p,ﬁuX=NPG(x) + [mzczbS
2Abce » 1 (* G 4
(1 +e¢? T r—x %

*  G(r)de

A
BNED {NP J Jh(i =)

G(t)dt

2.2 *
mcbS le Jah(x — 1) (17)

where f denotes Cauchy principal value integration and

G(x) =L"]( (18)

513) '
A direct substitution of (18) into (6b) and use of the Im( p)-axis
as the Bromwich contour yields the formal result

hG(x) = 1 r e dq
x) = —Im ,
T ), VasS(q)
i4\bce et
S(q)=[]—(1+€)2R]\/a+ c(l + €) (19)

where q is real. Assuming that the order of the (g, £)-integrations
in (17) can be interchanged, use of Cauchy theory and standard
tables (Gradshteyn and Ryzhik, 1980) gives the relations
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* elidy )
P ime'd” (20a)
o iqt
e"'dt = \/E ei(qx+(7r/4))
t - x q ’

x iqt
efdr _ \/Eei(qx—m»'
X =t q

In view of (19) and (20), each of the terms in (17) can be written
as real integrals with respect to ¢. Because S(g) has no zeros in the
cut g-plane, these integrals can be simplified by use of the Cauchy
theory. Upon introducing the dimensionless variables

(200)

_F s P LS '
g—hv - 1 _I'Lh’

T @n

it can then be shown, finally, that (17) and its counterparts for (u,,
0) give the forms

2Abce _

(a+ )2P]gp(§)

R _ _
U= NPg(§) + [mzczbS -

A _
X T(l\/—_‘*‘_—?) [NPg.(&) — m*c?bSg_(&)] (22a)

R Ace _
o Uy T [m (K +2b) — N]Pg(g)

+ 22P+2Abceg ®
mc*a DK 8,(€

[NSg,(&) + m*c*aPg_(£)] (22b)

B c(1+ ¢€)
mZ 2
x(1 +
fory = 0, |£ ® 1. When £ > 0O the dimensionless functions in
(22) are given by

wRO = YA+ e [KPf(E) + 2bep(§)] (22¢)

Abce “e ™[ —u
A9, g&] = mﬁ) TYT[_E—’ l]du (23a)
[fp(g)f gp(g)] = f ( \/C—(—1+—E \[) |: }du
(23b)

—u

.
[g+(6). g-(8)] = VE f 7;—

—4A\bce
(1+ €)?R’

A £
+\/c(1—+E)\Hdu (23¢)

o
\/c(l + €) u
y [:ﬂ

é s

while for £ < 0 the forms

“e " 4b
GRGIE Af - ((1 Tl
0

1 } du (24a)

350 / Vol. 66, JUNE 1999

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

(6). 8/0)) = J i

0

[g.(8)., 5-(8)] = J—EJ -

X i1 A \/jgd 24
’ T T e Vu |0

govern, where in the integrands we have

4Abce
(1+ €)’R

4rbce

2 \/’ 2
S+=[m] u -+ l:\/_+ r————(1+ ):| (€>0) (25a)
S~=u+)\|i4bce\f J-¢€

2
] (£<0). (25b)

(1+€)?’R \/c(l + €)
It should be noted that (12a) exhibits the behavior
c—0: R=2({m?- ! c? (26a)
’ 1+e
c—=cp: R=2m*c}Grlcp— ),
In Gy = 2 [ v 26b
nGg= = 2 C%e ( )

Um

where (cp, W) are given in (13). In view of this result and
(22)-(25), it can be shown that (u,, u,, 6) become unbounded at
line surface source speeds near the critical (Rayleigh) value.

Effects of Convection

The Egs. (22) correspond to the formulas numbered as (36)—(38)
in the paper by Brock and Georgladls (1997) when their heat flux
term Q = 0. The latter results are in terms of analytic functions,
while (22) involve simple quadratures. Despite the differing for-
mats, the present results (22) show clearly the contributions due to
convection. Indeed, appearance of the convection parameter A in
both (22) and the expressions (23) and (24) indicates that convec-

second-order effects.

In view of (5) and (12a) it is reasonable to assume that A < 1.
This assumption allows a more direct comparison of (22) and the
results of Brock and Georgiadis (1997): By manipulating the
numerators of the integrands in (23) and (24), expansions to the
first order in A can be obtained that do not exhibit the denominator
terms S.. Such expansions can be integrated exactly, and the
results are that, for y = 0, |x/h| > 1(A <€ 1),

R N_
& =5 Prgn(d)

m2ch [
— S+

l: -NS (1+ )2P:| sgn (§)

2Ace K _
(1+¢)? R

] In|g + 0(AY) (27a)

2Ace bK )
[ (l T 6)2 In |¢| + O(AY)  (27b)
micle 2b [ - 20ce K _71
Re—mXKPB(g) - I:S“l'—-"—(]_i_e)zEP]E

Ace H(§) H(-§)
(1+)[2bS\[— KP\/—
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When A = 0, (27) agrees with the results of Brock and Georgiadis
(1997), save that the S-terms in their formulas (36) and (38)
exhibit, through typographical error, the wrong sign. In (27), the
result 2H(§) = 1 + sgn (&) has been used, and it is noted that
(27a, b) are correct only to within an arbitrary rigid-body motion.

The expressions (27a, b) also show that convection does not
alter the functional response of the surface displacements, but does
couple the moving source components (P, S) more fully into that
response. Equation (27¢) for the temperature change induced on
the surface, however, indicates that the nature of the functional
response is altered. In particular, the last two terms in (27¢), which
are convection effects, show less decay at large distances from the
moving line sarface source. That is, allowing convection produces
a temperature change field that is more prominent far from the
source than for an insulated surface. Equation (27¢) also shows,
however, that this effect depends on the loading and whether or not
an observer is located ahead or in the wake of the moving source.

It is seen that the convection parameter A in (27) always forms
the product Ae. This demonstrates that, to the first order, convec-
tion effects are proportional to thermoelastic coupling and, because
A <1 and (5) holds, suggests that the effects are small. However,
(26) and the coefficients of the In |g-terms in (274, b) and the
1/§-term in (27c) demonstrate that the effects can actually domi-
nate solution response at low (¢ =~ 0) and nearly critical (¢ ~ ¢;)
source speeds.

Some Closing Comments

This study extended the work of Brock and Georgiadis (1997) on
rapidly moving sources over the insulated surface of a thermoelastic
half-space by allowing: surface heat convection. An exact transform
solution for the associated two-dimensional steady-state problem
based on the fully coupled (dynamic) equations of thermoelasticity
was obtained and, following the procedure of the earlier work, robust
asymptotic forms extracted. Inversion of these forms for the displace-
ments and temperature change engendered on the half-space surface
gave expressions as simple. quadratures.

Comparison of these with corresponding results by Brock and
Georgiadis (1997) indicated that convection is manifest in terms of a
positive dimensionless parameter that can reasonably be taken as
much less than unity, and that it results in a more complicated surface
response. A first-order expansion of the expressions in terms of this
convection parameter produced analytic results that, upon comparison
with those of Brock and Georgiadis (1997), showed that the convec-
tion effects are proportional to the well-known (Chadwick, 1960)
thermoelastic coupling constant, and more fully couple the compo-
nents of the applied surface line loads into the solution response. More
importantly, convection effects produce a surface temperature change
that decays less rapidly with distance from the moving loads than in
the insulated surface case. The small magnitudes of the radiation
parameter and coupling constant suggested that the convection effects
may numerically be small. However, it was found that at both low and
nearly critical line load speeds, the effects can actually dominate
solution response.

As noted at the outset, the Biot number given in (2) is a
characterization of surface convection due to an effective surface
layer. Clearly, the model used here of a layer which does not affect
elastic properties of the solid requires a small effective layer
thickness I, while some conclusions about convection effects were
drawn on the basis of the dimensionless convection parameter A

Journal of Applied Mechanics

being small, If, for example, [ =~ O(10™") um and A ~ O(107%),
then (2), (5), and (12a) lead to the result that B, ~ O(10), which
is a typical (Boley and Weiner, 1985) value.

Brock and Georgiadis (1997) considered a combined mechanical/
heat source, and super-critical source speeds, while the present first-
step analysis, in order to focus on convection effects, treated only line
forces, i.e., mechanical loads, and subcritical source speeds. Work is
proceeding which will extend the present results to the more general
cases. Moreover, studies that illustrate surface convection effects in
the mechanical treatment of surfaces and in fracture are under way.
While the problem treated here exhibited unmixed boundary condi-
tions, the studies under way involve both mixed thermal and mechan-
ical boundary conditions. Nevertheless, their Green’s function solu-
tion nature make the present results useful in formulating the newer
problems, and the comparisons made here with the insulated results of
Brock and Georgiadis (1997) demonstrate that convection effects
should indeed be noticeable.
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This paper focuses on a boundary value problem governing the equilibrium of a slender

cable subject to thrust, torsion, and gravity. In the absence of field (gravity) loading, this
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boundary value problem is integrable and admits periodic solutions describing planar
and spatial equilibrium forms. A bifurcation analysis of the integrable problem reveals the
conditions controlling local stability of periodic solutions and the existence of two limiting
(bounding) homoclinic solutions. The addition of field (gravity) loading renders the
boundary value problem nonintegrable. This effect is first investigated through perturba-
tion of the limiting homoclinic solutions for weak graviry loading. Approximate existence

conditions for aperiodic and spatially complex forms are determined using Melnikov’s
method. The effect of field loading is then re-evaluated through numerical solution of the
original problem. Spatially complex solutions are determined that might mimic the loops
and tangles sometimes found in underwater cables.

1 Introduction

A large variety of biological, chemical, and structural systems
may be described by the mechanics of rod elements. Here, the term
rod follows that used by Antman (1972), and describes a one-
dimensional solid whose deformation depends on time and a single
spatial variable. A comprehensive review of rational rod theories is
described in Antman (1972, 1995) including the original contri-
butions by Clebsch and Kirchhoff. Their efforts led to the ‘clas-
sical’ rod theory (Love, 1944) in which the three-dimensional
deformation of a rod is described by the differential geometry of a
space curve with superimposed twist. As reviewed below, the
classical theory has enjoyed substantial utility in diverse applica-
tions ranging from the fields of structural mechanics to biochem-
istry. As discussed by Antman (1972), such “technical” theories
form special cases of more general theories for one-dimensional
continua. More general, higher-order theories have subsequently
followed from modern treatments of the subject (see, for example,
Green et al., 1967; Green and Naghdi, 1970; Antman, 1972; Green
et al., 1974, Coleman et al., 1993; Rubin, 1996).

Of primary interest here are the potentially complex deforma-
tions realized by rod-like elements under steady loading condi-
tions. Within the field of structural mechanics, such deformations
may characterize the response of slender structural elements such
as pipelines and marine risers (Bernitsas, 1982) and mechanical
(Zajac, 1962) and electromechanical (Liu, 1975) cables. The
curved and three-dimensional geometries realized in these struc-
tures may bear remarkable similarity to those observed in certain
biological tissues. Consider, for example, the spiralling collagen
bundles forming tendons (Woo and Buckwalter, 1988) and super-
helical DNA molecules which, following Benhan (1987, 1989),
may be modeled as hyperelastic symmetric rods. The use of
Kirchhoff’s theory of elastic rods has recently been employed to
investigate the structure of looped DNA segments (Coleman et al.,
1994, Tobias et al., 1995). The complex writhing forms of DNA
molecules also motivated a recent study by (Thompson and
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Champneys, 1996) who note that such forms follow from a dy-
namic jump from spatially localized forms. Spatially complex
forms may also characterize the response of marine cables and
particularly under low-tension conditions. Low-tension conditions
naturally arise in cable laying operations where the tension is
reduced as the cable is supported by the sea bed. Prior analysis of
cable laying (e.g., submarine cables, instrumentation cables and
fiber optic cables) have focused on how loops (often referred to as
“hockles”) form under low tension; refer to (Zajac, 1962;
Rosenthal, 1976; Yubata, 1984, Coyne, 1990; Tan and Witz, 1993;
Lu and Perkins, 1994). Recent experiments by Welch and Tulin
(1995) suggest that spatially complex forms are created for rapid
cable payout rates.

Models of low-tension cables have been proposed starting with
the classical theory of the elastica. The “kinetic analogy” between
the temporal response of the classical pendulum and the (static)
spatial response of the elastica was known to Kirchhoff in 1859
(see Love, 1944). Recognizing this, global/local bifurcation tech-
niques developed for time-dependent ordinary differential equa-
tions (Guckenheimer and Holmes, 1983; Ioos and Joseph, 1980;
Wiggins, 1992) may also be brought to bear in evaluating the
spatial bifurcations of the elastica. To this end, Mielke and Holmes
(1988) determined the existence of spatially chaotic planar equi-
librium states for nonlinear hyperelastic rods using Melnikov’s
method. This analytical study is complemented by numerical in-
vestigations of spatial chaos and localization phenomena of (lin-
early) elastic rods undergoing large deformations (Thompson and
Virgin, 1988). Further numerical studies include chaotic soliton
models of elastic chains (El Naschie and Kapitaniak, 1990) and
spatial chaos forming in long elasticas having (spatially) periodic
changes in cross section (Davies and Moon, 1993). Recently
Champneys and Thompson (1996) demonstrated that the loss of
integrability of an infinitely long noncircular rod subject to end
tension and moment implies a multiplicity of localized buckling
modes. These studies have important implications for the study of
marine cable hockling for which only periodic solution forms have
been analyzed to date.

The purpose of this paper is to extend prior analyses of cable
hockling to include spatially complex forms that may also be three
dimensional. The existence of spatially complex forms is already
known from the limiting case of planar deformations (Mielke and
Holmes, 1988). For marine cable applications, the addition of
torsion may very well lead to three-dimensional solutions exhib-
iting spatial complexity. These complex forms may provide further
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insight into the loading required to induce marine cable hockling
and tangling.

This manuscript is organized as follows. Section 2 reviews the
equilibrium boundary value problem of Lu and Perkins (1994)
which governs the globally large static response of a cable subject
to boundary and field loading. Section 3 examines an integrable
form of the boundary value problem describing a cable subjected
to uniaxial torque (m,) and thrust (f;). Analysis of this unper-
turbed problem reveals the bifurcation structure governing planar
and spatial periodic solution forms. Evaluation of the fixed points
of the spatial system for this integrable case further reveals coex-
isting elliptic and (hyperbolic) saddle solutions for various com-
binations of boundary loads described by the torque/thrust pair
(mq, fo). Two limiting cases are identified which are governed by
a homoclinic bifurcation: (1) a planar system (m, = 0), and (2) a
spatial system where the geometric torsion is proportional to half
the internal torque. Section 4 considers a nonintegrable form of the
boundary value problem realized through the addition of (small)
field loading as an approximation to the cable weight. Approxi-
mate existence conditions for aperiodic and spatially complex
forms for the perturbed problem are determined via Melnikov’s
method. Numerical solutions of the original boundary value prob-
lem with field loading are presented in Section 5 and support the
analytical findings of Section 4.

2 Equilibrium Boundary Value Problem

We start with the (nondimensional) equilibrium boundary value
problem derived in Lu and Perkins (1994) which describes the
two-axis flexure and torsion of a slender cable of circular cross
section employing classical Kirchhoff assumptions for rod defor-
mation. The resulting equilibrium equations, describing globally
large three-dimensional equilibrium forms, govern the principle
curvature x(s) and geometric torsion 7(s) of the cable centerline as
well as the resultant cable tension p(s) and internal torque h(s):

[ A—

p'=—kx' =gl

Py

K'=(p+r—hne+qgl,
kT = (kh) —2k'T+ g,
h' = 0. 08}

Here, (') denotes differentiation with respect to the independent arc
length variable s measured along the equilibrium cable centerline,
g denotes any steady external force/length and (/,, [,, [,) denote
the Serret-Frenet triad defined by the equilibrium centerline; refer
to Fig. 1. The relationship between the Serret-Frenet triad and the
Cartesian triad (é,, é,, é;) of Fig. 1 is determined via the Euler
angle transformation matrix (cf. Greenwood, 1988).

I
( I, ) = [D]( ) @
13 3

L TIRONENY
0 .

where
cyref —siich s0
[D] = ( sed + cfsOsd  cfcd ~ shsOsdp  —cBsd ) 3)
sisp — csBcd  cyisd + sysOcd  clcd

and ¢ and s denote sine and cosine, respectively, of the Euler
angles defined in Fig. 1.

Two forms of the equilibrium boundary value problem are
subsequently evaluated. The first of these is the integrable form for
which g = 0 which defines the unperturbed problem of Section 3.
The second of these is the nonintegrable form for which g # 0
which defines the perturbed problem of Section 4. The perturbation
considered represents the addition of cable self-weight, thus
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where vy represents the cable weight/length (refer to Appendix A
for nondimensional scaling).

2.1 Equilibrium for Three-Dimensional (Spatial) Forms.
We recast the equilibrium Eqs. (1) with (2) and (4) in state-space
form:

p'=—kpt g, 0, $)
K'=pu

p'=(p+ 1= h1)k = yg(, 6, ¢)

;o M’ 7 g3(d]a 0; (b)
Tes(h-2m) —y )
where 7 is the constant internal torque (A" = 0 in (1)) and
g, = —sin {r cos 0
g2 = cos Y cos ¢ — sin ¢ sin 6 sin ¢
g3 = cos s sin ¢ + sin ¥ sin 6 cos ¢ 6)

are the components of &, resolved along the Serret-Frenet triad.
We complete the state-space formulation with the Euler angle
evolution equations (Greenwood, 1988):

Y’ = —k cos ¢ sec 6
0' = —«k sin ¢
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¢' = —7+ Kk cos ¢ tan 0. ©)

The boundary conditions considered here are those considered
by Rosenthal (1976) and Lu and Perkins (1994) and describe the
response of a cable subject to uniaxial torque re, and thrust fq
directed along the &,-axis in Fig. 1. From Lu and Perkins (1994),
the boundary conditions at s = O are

Kk(0) = mq sin (0), w(0) =0
p(0) = fo cos Y(0),  7(0) = mq cos Y(0) — folmy  (8)

from which the constant internal torque becomes h = h0) = m,
cos y(0). The same boundary conditions hold at s = 1 by sym-
metry.

2.2 Equilibrium for Two-Dimensional (Planar) Forms.
Planar forms result from the special case of 7 = O (vanishing
geometric torsion) and 8 = ¢’ = 0. Consequently, 8 and ¢ are
constants and  is related to the principle curvature through ¢ =
—«. Thus, (5)~(7) reduce to

'

p' =~k — ysiny

W=~k ©

The boundary conditions at s = 0 for the planar forms (7 =
h = 0) are
x(0) =0,

p(0) = fo cos P(0). (10)

3 Solutions of the Unperturbed System

In the absence of domain loading, (y = 0), the system (5) can be
integrated (incorporating boundary conditions) and reduced to a
second-order equation governing the curvature k(s) (see Lu and
Perkins, 1994, Eq. (14) or Coleman et al., 1993, Eq. (4.9)).
Following Lu and Perkins (1994), this is achieved by

(i) integration of p’ = —kk' to yield p = —k’/2 + d,
where d, = p(0) + k*(0)/2;

(ii) multiplication of k7' = k'(h — 27) by «k and integration
to yield 7 = h/2 + dy/x’ where d, = k*(0)[7(0) —
h/2]; and _

(iii) substitution of p and T into k” = (p + ©° — hT)kK.

Thus, the integrable structure of the unperturbed boundary value
problem is revealed to be that of a nonlinear autonomous Hamil-
tonian system:

. oH

K = _W
. ©? By  oH 1"
re= 2T MG T T bk (an

where

2 4 2

n K oK B
Hiop) =% g~ "o a2

and (o, B) are parameters obtained from the boundary conditions
defined by the uniaxial torque/thrust pair ( fo, m,)

20 EZ
a=p(0)+K§)—<5)

(13)
and
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.12

B = [7(0) - —Z—] k*0) = 0. (14
Note that for 8 = 0, the system returns the (spatial form of the)
classical Hamiltonian Duffing equation that has either a unique
center (at the origin of the -« phase plane) for o = 0 or a saddle
at the origin coexisting with a center at (x, ) = ((2a)'?, 0) for
a > 0. Two limiting forms lead to the Duffing equation: (i) all
planar forms (for which the torque m, = 0), and (ii) a special
spatial form for which 7(0) = A/2. In either of these limits,
(11)~(12) reduces to

K3

K'"—ak+ =0

2 (15)

where the parameter « for either planar or spatial forms is obtained
from (13). For the planar forms, k(0) = (1) = 0 and 7(s) = 0.
Consequently,

a = p(0) = fo cos $(0). (16)

For the limiting spatial form, u(0) = (1) = 0, 7(s) = h/2, and
h = 2fy/m,. Recall that & = m, cos Y(0). Thus, cos Y(0) =
2fo/mi and from (8), p(0) = 2(fo/me)*. Consequently, the initial
curvature is k(0) = m, sin Y(0) = (mi — (2fo/me)*)"* and

r\? kX0) mj 2
() O m ()
2 2 2 mg
We consider further these two limiting forms and provide closed-
form periodic solutions and an associated homoclinic solution that

serves as a lower bound to the planar form and an upper bound to
the limiting spatial form.

an

3.1 Planar Forms. The solution of (15) with « from (16) is
found in terms of the following Jacobi elliptic function

k(s) = ken[K(1 = 25)], K, = 4 {mK 18)

where m and K = K(m) are the parameter and quarter-period of
the Jacobi elliptic function (Abramowitz and Stegun, 1970). Con-
sequently, the derivative of the curvature (u(s)) can be determined
as well as the internal axial force p(s) = u'(s)/k(s) employing
(9). The value of the parameter a (and corresponding applied
thrust f,) can be determined from p(0) or by integrating «(s) from
k(©) = 0to k() = k,,. Thus,

a=402m - 1)K? f,=4K>~ a9

Note that apriori knowledge of p(0) enables solution of (15) as an
initial value problem as opposed to the boundary value problem
evaluated by numerical shooting in previous studies (cf. Rosenthal,
1976).

w(0) = 8[m(1 — m)]"?K2, 0)

The u-k phase plane of (15) with o (19) and initial conditions
k(0) = 0 and w(0) (20) is illustrated in Fig. 2 (for m = 0.99: f, =
54.63). Note that above the bifurcation threshold a = 0 (corre-
sponding to m = ), the planar solutions are bounded from below
(m — 1) by the homoclinic solution (separatrix) of (15).

Integration of x(s) enables the determination of i(s) for later
use in the perturbed problem of Section 4; namely,

Y(s) = 2 cos " {dn[K(1 — 25)]}. 3]

We define the projection of the tangent (I,) at midspan (s = )
onto the loading axis (¢,) as ¢, = (I, * €,),, = cos P(3) cos 6(3)
as illustrated in Fig. 1, and note that for planar forms ¢, = 1. Thus,
using the value of cos Y(3) = 1 from (21) results in cos 63) = 1.
However, the angles 6(s) and ¢(s) are constant for the planar
forms with their values determined by (7) from cos 6(s) = 1 and
cos ¢(s) = 1.
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Fig.2 Phase plane for unperturbed planar solution (f, = 54.631, m, = 0)

Substitution of the curvature and its derivative into the Hamil-
tonian energy function yields the following relationship:

E= l M2+K4 Kld 32m(1 K*Y (22
= > g oy jds= m( m)K*.  (22)
0

Note that E = u’(0)/2. Consequently, solution stability can be
determined by calculation of extreme values in the w(0)-f, pa-
rameter plane. Furthermore, as f, increases monotonically with m,
we differentiate w(0) with respect to m (cf. Lawden, 1989 for
dK/dm) and determine that u(0) achieves a maxima for the
following criterion:

8K
dpl0) _ —~(2E~K) =0 (23)

dm J1 =

Solving E(m*)/K(m*) = 2 for m* results in m* =~ 0.82611,
which provides an upper bound for the system energy correspond-
ing to a critical thrust value f § = 4K*(m*) =~ 21.549. This result
coincides with the stability findings obtained using variational
(Maddocks, 1984) and numerical (Lu and Perkins, 1994) methods
and describes a configuration where the two ends of the cable
meet; that is d = 0, where d denotes the separation of the ends as
depicted in Fig. 1.

3.2 Limiting Spatial Form (7 = h/2). The solution of (15)
with o from (17) for w(0) = w(1) = 0 is found in terms of the
following Jacobi elliptic function:

k(s) = kond(2Ks), 1 — mK. 24)

As before, the derivative of the curvature (u), the internal axial
force (p), and the geometric torsion (7) can again be determined.
The value of the parameter « and corresponding applied thrust f,
and torque m, are determined by integrating «(s) from k(0) = k,
to k(3) = «,, which yields

K0=4

a=42-mK? fo=8mK? m,=4K. (25

The equilibrium problem (15) can again be solved as an initial
value problem with k(0) = k, and w(0) = 0. This solution
coincides with the stability limit for periodic spatial forms found
by Lu and Perkins (1994). The stability limit describes spatial
forms for which the tangent at the midspan is orthogonal to the
loading axis; ie., ¢, = ([, * €)1, = cos Y3 cos () = 0.
Moreover, this stability limit is asymptotic to f, = mg/2. The
phase plane of (15) with a (25) and initial conditions k(0) = «,
and w(0) is illustrated in Fig. 3. Note that the spatial solutions are
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bounded from above (m — 1) by the homoclinic solution (sepa-
ratrix) of (15).

The Euler angles for the spatial forms can not be determined
explicitly but are determined implicitly as follows. Observe that
the solution ¢(s) to (7) (for 7 = h/2) may be decomposed as

h
d(s) = ¢(s) + Pals), b (s) = — 2 s+ B (26)

with
bi(s) = K cos ¢ tan 0. @27

Consequently, 0(s) and ¢s(s) are obtained as functions of x and
v

(28)

o o
6(s) = tan (K o5 d))

and

P(s) = ~f V(K cos ¢)2 + (oh) %ds. (29)

The arbitrary constant B in (26) can then be determined using the
condition ¢, = cos Yx(3) cos 8(3) = 0. In order to determine ¢/,
we differentiate 8 from (28) and equate the resulting expression
with the second Euler angle Eq. (7), namely 6’ = —k sin ¢. The
result is the nonlinear second-order differential equation for ¢'y:

o+ (2 an $)($h)7 - (gm o+ %) o
+ k%sind cos =0 (30)

where h = 4v/mK and ¢ = ¢, + ¢y with ¢, given by (26).

As with the planar limit, substitution of the curvature and its
derivative into the Hamiltonian energy function yields the follow-
ing relationship:

E =32(1 — m)K*. @an

Consequently, solution stability can be determined by differentia-
tion of E with respect to m:

dE 64K’
am = W [2E - (2 — m)K] = 0. (32)
100.0 [ e
50.0 s ==
Koot >><
-50.0 | . .
-100.0, — 100 53 s S0

k

Fig. 3 Phase-plane for unperturbed spatial solution (f, = 108.714, m; =
14.783)
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Fig. 4 Stability diagram for unperturbed periodic forms: d = 1, -1
solution by Greenhill (Timoshenko and Gere, 1961); ¢, = 0 solution given
by Eq. (25); asymptotic limit to ¢, = 0 given by f, = mj/2; shaded areas
denote regions of stable petiodic spatial forms

Solving E(m*)/K(m*) + m*/2 = | for m* reveals that a critical
value for the energy is achieved only for m* = 0 which corre-
sponds to fy = 0 and m, = 2 using (25). We summarize these
results in the stability diagram of Fig. 4. Stable periodic spatial
forms exist in the two regions that are shaded:

(i) one is the region for m, > 2, bounded from above by the
condition ¢, = 0 and from below by the fundamental
(linear) buckling condition (d = —1) fo = (me/2)"* - 7
obtained by Greenhill (1883);

(ii) another is the region for 0 < m, < 2, bounded from
above by the condition d = 0 (Lu and Perkins, 1994) and
from below by the same fundamental buckling load (d =
1). Note that the region for stable periodic planar forms
(my, = 0) is bounded by the condition d = 0 (f; =
21.549) and the Euler buckling load (f, = 7).

3.3 A Limiting Homoclinic Solution. . Solution of the spa-
tial Hamiltonian Duffing Eq. (15) for an orbit including the saddle
at the origin, results in the classical homoclinic orbit (cf. Gucken-
heimer and Holmes, 1983)

k%(s) = 2 Ja sech [ \/a(s = so)]

wo(s) = F2a sech [ \/&(s — 5¢)] tanh [\/E(s —s0)] (33)

where a is given by (16) and (17) for the planar and limiting
spatial (7 = h/2) forms, respectively. We note that this solution is
valid for the integrable boundary value problem on an infinite
domain; that is for —© < s < o and describes a saddle orbit
originating from and returning to the origin in the u-« plane. This
homoclinic solution serves as both (i) a lower bound for the
periodic solution (18) obtained for the planar forms (Fig. 2), and
(ii) an upper bound for the periodic solution (24) obtained for the
limiting spatial form (Fig. 3).

4 Global Bifurcation of the Perturbed System

Having established an integrable structure for the unperturbed
system, we now integrate the spatial system (5) including the
steady field loading terms yg,(s). This is achieved by

(i) integration of p’ = —kk' + yg(s) to yield p =
—Kk*2 + vyG(s) + d, where G,(s) = [ g,(s)ds and
d, = p(0) + k*(0)/2 — vG,(0);

(ii) multiplying k7' = k'(h — 271) — 7ygs(s) by k and
integrating to yield 7 = A/2 — yG4(s)/x* + d,/x* where
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G.(s) = [ k(s)gs(s)ds and d, = K*(O)[7(0) — h/2] +
vG5(0); and ~

(iii) substituting p and T into k" = (p + T — ATk —
v82(8).

These steps lead to the following parametrically and externally
forced differential equation:

K' = pu
p' = —R(k) + yFi(x, 5) + y*Fa(x, 5) (34
where
K* B
R= 5 oK = P

G5(s) — G5(0
Fi=[Gi(s) = G(0)]x — ga(s) —2\B [—(flkg—()]

F,= [G3(s) ;363(0)]

(335)

with g,(s) given by (6) and with

Gi(s) =f gi(s)ds,  Gs(s) =J’ Kk(s)gs(s)ds.  (36)

Next, we consider the case of weak field loading (y < 1) and
neglect the second-order term ( v*F,) in (34). Furthermore, we cast
the spatial system as a perturbation of the two limiting cases
evaluated in the Section 3. Thus, the (nonintegrable) spatial struc-
ture of the perturbed boundary value problem is governed by a
nonlinear nonautonomous Hamiltonian system

;o _ aHO
T
i’ B
pr=—lgTak)+y Filk,s) +—
dH, 0H,
R TIERAFTY G7
where B = yB < 1, and
! Kk K2
Hok, ) =75 +5 - a5 (38)
K2
H(k, s) = [G,(0) — G(s)] 3 + g.(s)k
B+2 -
L B+ 2JBlG,0) - G(5)] 39

2k?

The spatial system (37) consists of a (spatially dependent)
Hamiltonian perturbation (y[F,(k, s) + B/«’]) of the (spatially
independent) Hamiltonian («*/2 ~ k) which has a homoclinic
orbit to a hyperbolic saddle (see Section 3.3). We investigate the
boundary value problem where weak field loading (y <€ 1) may
break the global unperturbed bifurcation structure. We formulate
the Melnikov function for the system via integration of the Poisson
bracket {H,, H,} utilizing the unperturbed homoclinic orbit of
Section 3 (cf. Guckenheimer and Holmes, 1986).

M(s) = f " {H,, H))ds

- J u°(x>[m(x°<x>;x+so) +ﬁ]dx (40)

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



where x = (s — s,) and (x°, u’) denote the homoclinic solution
(33). Simple zeros of M(s,) imply transverse intersections of the
separatrix manifolds leading to spatially complex solutions of the
boundary value problem for boundary conditions near the unper-
turbed separatrix.

In order to obtain an analytic formulation for the weak pertur-
bation, we estimate the forcing terms (F,) for the two limiting
cases evaluated in Section 3. In the following we consider: (i)
planar perturbations of the planar solution (eg., m, = 0); (i)
spatial perturbations of the planar solution (eg., m, small); and (iii)
spatial perturbations of the limiting spatial solution (7 = h/2)
(eg., perturbations from the stability limit ¢, = 0).

4.1 Planar Perturbation of Planar Solutions. In this case
consider planar perturbations of the planar solutions near the
separatrix. Recall that for the unperturbed planar system, 8(s) =
0 and ¢(s) = m. Consequently, G;(s) = 0 and the perturbation
(F(k, s)) reduces to

Fi=[G(s) = Gi(0)]k — 82(8);
G, = —f sin Y(s)ds, g, = cos ¥(s). (41)

Substitution of Y(s) from (21) yields

_m

K
g, =2dn’[K(l —25)] — 1

G = en[K(1 — 2s5)],

(42)

The Melnikov function can then be determined by substitution of
(41) and (42) into (40).

[l
M(sy) = — w0(x) K k%x)en (8 — 2Kx)

+ 2men¥ (8 — 2Kx) + (1 — 2m) |dx  (43)

where 8 = K(1 — 2s,) and (x°, u°) are given by (33). The Jacobi
elliptic functions in the integrand can be approximated by a series
representation in terms of the nome (¢ = exp[ — 7K'/K]) and the
argument (7x) (Abramowitz and Stegun, 1972). The integrals of
the first two terms can then be evaluated using the method of
residues and the integral of the third term vanishes as u° is odd.
The resulting Melnikov function

T
M(sp) = Q, sin [5 (1= 280)} (44)
is obtained where @, is an infinite series (see Appendix B for
details). Hence, M(s,) has simple zeros implying that perturbation
of a planar solution with boundary conditions near the separatrix
(33) results in transverse intersections for a sufficiently small
gravity field perturbation.

4.2 Spatial Perturbation of a Planar Solution. We con-
sider next spatial perturbations of planar solutions for small torque
(B < 1 for m, small). The planar solution enables estimation of the
forcing F,(k, s) that is identical in form to that of Section 4.1 with
the value of « given by (16). However, as we allow deviation from
the plane, the perturbation (37) consists of y[F,(x, s) + B/x’].
Thus,

M(sy) = f: M"(X)[Fl(KO(x); x + 50} + ﬁw} dx (45)

where the integrals of the first three terms are identical to those of
(43). Moreover, the integral of the fourth term vanishes (integrand
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is odd). Consequently, the result (44) remains valid for three-
dimensional perturbations from the plane for small m,,.

4.3 Spatial Perturbation of a Limiting Spatial Solution
(7 = h/2). This last case considers perturbations of the limiting
spatial solutions (7 = h/2) near the separatrix (33) with o given
by (17). To this end, we require the Euler angles for the unper-
turbed problem which, as discussed in Section 3.2, cannot be
determined explicitly; refer to (26)—(30). Thus, we resort to ap-
proximations of ¢(s) (which is antisymmetric about s = §). A
candidate form is ¢(s) = ¢, + ¢y = B ~ (h/2)s — tan”’
(J(2Ks)) where (h/2) = 2K+\/m and J is a combination of
elliptic functions. This approximation enables estimation of the
remaining Euler angles 6(s) and (s) (which are symmetric and
antisymmetric about s = %, respectively) from (28) and (29).
Substitution of the angles into the forcing components (6) and
subsequently into the perturbation (35) and (36) yields the Melni-
kov function

M(sq) = J Mo(x){[GI(X; 8) = Giplk(x) — g5(x; &)

3 2 \/E[Gg()ﬂ 8) — Gao] B }
W) ) (o)

where G ;(x, 8), £.(x, &) can be approximated by a series
representation and § = (2Ks,). The integrals of the first, third, and
fourth terms can be evaluated using the method of residues
whereas the integrals of the second, fifth and sixth terms vanish as
@10,30 are constants and . is odd. We verify that the result (44)
remains valid by numerical simulation. Here, as in the previous
cases, M(s,) has simple zeros implying that the perturbation of the
limiting spatial solution (7 = A/2) with boundary conditions near
the separatrix, results in transverse intersections for sufficiently
small gravity perturbation.

5 Numerical Results

Numerical results are presented to highlight the major conclu-
sions of Section 4. These resuits are obtained by numerical ap-
proximation of the spatial system (5)—(7) and the planar system (9)
when subject to weak field gravity loading. The initial conditions
(s = 0) remain close to those of the limiting unperturbed problems
of Section 3 and are chosen so that the numerical solution satisfies
the symmetric end conditions (s = 1) required for this boundary
value problem. Integration of the spatial system is achieved via a
sixth-order Runge-Kutta method where an adaptive step size is
determined (to accuracy imposed for the end conditions) by simul-
taneous solution of the unperturbed system and monitoring its
(constant) Hamiltonian function. In order to discern whether a
solution is periodic or aperiodic (e.g., quasi-petiodic or a stochastic
layer), the simulation is continued in space enabling construction
of a Poincaré section (sampled at s = 1). Results are depicted in
the (u, ) plane where a finite set of points on the perturbed phase
plane defines a periodic solution and an infinite set of points
defining a closed curve represents a quasi-periodic solution. The
emergence of a stochastic (or resonance) layer occurs for boundary
conditions near the unperturbed separatrix as the strength of the
perturbation (vy) increases (cf. Lichtenberg and Liberman, 1992).

5.1 Planar Perturbation of Planar Forms. Figure 5 illus-
trates the evolution of a perturbed planar solution confined to the
plane (for example, f, = 143.6) from a quasi-periodic solution for
v = 0.01 (Fig. 5(a)), to a confined stochastic layer for y = 0.1
(Fig. 5(b)) and to a fully developed layer for y = 1 (Fig. 5(c)).
Note that the Poincaré points of the stochastic layer are immedi-
ately outside the unperturbed separatrix which remains as a lower
bound for determining planar solutions in keeping with the anal-
ysis of Section 3.
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Fig. 5 Poincaré maps (y = 0.01, 0.1, 1) for perturbed planar forms (f, =
143.596, m, = 0)

5.2 Spatial Perturbation of a Limiting Spatial Form. Fig-
ure 6 depicts the evolution of a perturbed spatial solution with
modified boundary conditions near the limiting case of 7 = h/2
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Fig. 6 Poincaré maps (y = 0.01, 0.1, 1) for perturbed spatial forms (f, =
287.18, my = 23

(for example, f, = 287.18, m, = 23.97). As in the planar case,
a quasi-periodic solution for y = 0.01 evolves to a fully developed
layer for v = 1. Note that the Poincaré points of the stochastic
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layer are not confined to the interior of the unperturbed separatrix
defining the limiting spatial case (8 = 0).

6 Closing Remarks

An equilibrium boundary-value problem for a nonlinear cable
elastica with pure boundary loading and perturbed by steady field
loading (gravity) is formulated as a spatial dynamical system with
parameters defined by boundary conditions. Local and global
bifurcation analyses of the boundary value problem, comple-
mented by numerical solutions, are applied to investigate periodic
solutions in the absence of field loading and spatially complex
solutions in the presence of (small) field loading. Two limiting
(homoclinic) solutions of the unperturbed (vanishing field loading)
boundary value problem are found and identified: (i) a lower
bound to periodic planar forms, and (ii) an upper bound to a
periodic spatial form where the geometric torsion is proportional to
half the internal torque. Perturbations of these limits via weak
gravity field loading are performed via Melnikov’s method to
reveal the existence of transverse homoclinic intersections. Sub-
sequent numerical solutions of the original boundary value prob-
lem illustrate spatially complex solution forms and the evolution of
a stochastic layer. Thus, the emergence of spatial complexity in
this boundary value problem arises from steady field loads in
contrast to other generating mechanisms (e.g., initial imperfec-
tions, asymmetric cross sections, periodic boundary conditions)
evaluated in Mielke and Holmes (1988), Davies and Moon (1993);
and Champneys and Thompson (1996). We close by noting that
sensitivity to (finite) boundary conditions implies difficulties in
repetition of numerical (and experimental) results.
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APPENDIX A

Nondimensional Parameters

The following nondimensional parameters are used (Lu and
Perkins, 1994): s = S/L, d = D/L, q = QL'/EI, fo = FoL*EI
mo = M(L/IEI, p = FILYEI, h = M\L/EI, x = K'L, 7 = T'L.

APPENDIX B

Evaluation of Melnikov Integrals

Evaluation of the Melnikov function for a planar perturbation of
the planar solution (43) is achieved via the method of residues with
use of a series representation of the Jacobi elliptic function
(Abramowitz and Stegun 1972): cn(u'm) = Qu/m"*K) 2 A, cos
[2n + D7u/2K]; n = 0, ..., o. The integral of the first term

in (43) is
+oo
I, = K wo(x) i (x)en(8 — 2Kx)dx
—8aT <
=7 2 Ausin (é1,)
n=0
+o

X sech” (n) tanh (n) sin (2,,1)dn

—o

—dt
= T 2 (2n + 1)%A, csch

n=0

[(2n + 1)m?

T] sin ()

B
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where
n+1/2
q

A, =

20+ 0

— K,
qg=exp| =T x|

_1T2+1 1 -2 9_1‘2+]
d)]n_i(n )( SO)’ ln—'\/a(n )

1+g¢g
(B2)

The integral of the second term in (43) is

L= J“” 2mu (x)cn®(8 — 2Kx)dx
= _160”7 E 2 A, jw sech (\/&x) tanh (\/Ex)
X cos [y, — (2n + 1)mx] cos [Py — (21 + 1) wx]dx
_léw EA EA{(n—l)
X sech {(L_\/éi] sin (®,,)
I—1 h M in (@,,) B3
+(n+ )sec[ \/E ]sm 22} (B3)
where

D, = w(n — D(1 — 2sy),

@, = mln +1— 1)(1 — 2s0). (B4)
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Consequently, as the third integral vanishes, the Melnikov function
becomes

M(so) = Q, sin [; (1 - 2so)}

4t =
= [R-Z—(R,J-Sn)] sm[i(l - 2S0):| (B3)

where

2

"2%) (2n + 1)2A, csch (2\/») F\(N)

S, =4 EA,, ZA[ sech (gJ Z)FZ(NZ)

n=0
2

I h(M>F(N) B6
5 sec 2\/5 3(N3 (B6)

and
N, —2
F{N) = (2 cos w)M™" — < ’1 )(2 cos w)M3
+<Nj2_3 )(2cosw)Nf’5+...
T
—‘—‘5(1 _230), N]:211+1,
Ny=2(n—1), Ns=2(n+1-1). BT
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Buckling of an Elastic Ring
Forced by a Periodic Array of
Compressive Loads

We use an analytical technique based on nonsmooth coordinate transformations to
study discreteness effects in the post-buckling state of a circular ring loaded by a
periodic array of compressive point loads. The method relies on eliminating singulari-
ties due to the point loads in the governing equations, at the expense of increasing
the dimensionality of the problem. As a result, the original nonsmooth governing
equations are transformed to a larger set of equations with no singularities, together
with a set of ‘‘smoothening’’ boundary conditions. The transformed equations are
solved by expressing the variables in regular perturbation expansions, and studying
an hierarchy of boundary value problems at successive orders of approximation;
these problems can be asymptotically solved using techniques from the theory of
smooth nonlinear or parametrically varying dynamical systems. As a result, we model
analytically discreteness effects in the post-buckling states of the ring, and estimate
the effect of the discrete load distribution on the critical buckling loads. This effect
is found to be of very low order, in agreement with numerical results reported in an

A. F. Vakakis

Associate Professor,

Department of Mechanical and

Industrial Engineering,

University of Illinois at Urbana-Champaign,
Urbana, 1L 61801

Mem. ASME

T. M. Atanackovic
Professor,

University of Novi Sad,

Novi Sad, Yugosiavia

earlier work.

1 Introduction

We analytically study the buckling of a circular ring that is
loaded by a discrete periodic array of concentrated compressive
forces. The singularities due to the discrete loads in the govern-
ing equations are eliminated by a nonsmooth change of vari-
ables, at the expense of increasing the dimensionality of the
problem. The resulting transformed equations are free of singu-
larities and can be analyzed using techniques from the theory
of smooth nonlinear or parametrically varying dynamical sys-
tems. The method used in this work enables the analytic compu-
tation of discreteness effects in the post-buckling state of the
ring due to the discrete array of compressive loads, as well as,
the estimation of the effect on the critical buckling load of the
discreteness of the load distribution.

The method of nonsmooth transformations employed herein
was first developed by Pilipchuk (1985, 1988), and subse-
quently used by Pilipchuk and co-workers to analyze strongly
nonlinear subharmonic motions of a forced pendulum (Pilip-
chuk et al., 1997), as well as discreteness effects in free periodic
oscillations of a discretely nonlinearly supported string (Pilip-
chuk and Vakakis, 1998). Forced oscillations of this later sys-
tem employing nonsmooth transformations were studied by Sa-
lenger and Vakakis (1998).

The problem of the stability of a circular ring under uniform
hydrostatic pressure has been formulated and examined in nu-
merous previous works; see, for example, (Seide and Albano,
1973) where the bifurcations of circular rings under concen-
trated loads are examined by employing transfer matrices and
solving a linear eigenvalue problem, and (Kabanov and As-
trakharchuk, 1983). In addition, we mention the recent works
by Troger and Steindl (1991), Chaskalovic and Naili (1995)
on rings obeying Bernulli-Euler theory, the works by Kdmmel
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(1967) and Atanackovic (1998) on rings with constitutive laws
accounting for axial compressibility, and the work by Schmidt
(1979) on rings with shear deformation and axial compressibil-
ity. Fu and Waas (1995) studied the effect of ring thickness on
the postbuckling behavior. A review of numerical methods for
studying buckling in thin shells is given by Riks and Rankin
(1997).

2 Governing Equations and Nonsmooth Transfor-
mations

Considering a circular ring with material obeying Bernulli-
Euler beam theory and forced by a periodic array of N compres-
sive loads, the normalized internal force, moment, displacement,
and rotation distributions are governed by the following set of
ordinary differential equations (Atanackovic, 1998):

OES %’r}:zo‘ 5(21: ~ —2”(2’]‘V+ ”) ‘
—n(OI1 + m(1)] (la)
H(t) = g(O[1 + m(r}]
m(t) = —q(t) )
(1) = cos 9(¢t)
v(t) = sin 9(¢) (1b)

B() =1+ m(1)

Complementing (1) there exist the following periodicity condi-
tions:

q(0) = g(2m), n(0) = n(2m), m(0) = m(2x)
u(0) = u(2m), v(0) =v(2m), BHO) =I(2n) +27. (2)

In the equations above, 6(+) represents Dirac’s generalized
function, and the normalized variables are defined as follows:
t = S/R, where S denotes the arc-length of the undeformed ring
axis, and R is the radius of the undeformed ring; ¢ = QR*/EI,
where Q is the shear force, E the modulus of elasticity, and /
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Fig. 1 The circular ring with discrete load distribution

the moment of inertia of the cross section of the ring; n = NR?/
EI, where N is the axial force; m = MR/EI, where M is the
bending moment; X = [2p/(2xR/N)](R*/EI) = NpR*/(wEI),
where p is the magnitude of each of the compressive loads; u
= x/R and v = y/R, where x and y are the horizontal and
vertical deformations, respectively, of an arbitrary point of the
deformed ring; and 9 is the angle between the axial force N and
the horizontal axis in the deformed ring. The discrete forcing
distribution of the ring is depicted in Fig. 1, and the discrete
array of loads are normally oriented to the ring.

The singularities in the first of Eqs. (1a) prevent a direct
analytical treatment of the system. To circumvent this problem
we assume at this point that the discrete forces are densely
placed by requiring that the distance between adjacent forces
is small:

'2-1=G<].
N

For ¢ sufficiently small, we anticipate that the solution of
(1-2) possesses two spatial scales, a long scale ¢, and a short
one t/e. Hence the solution is expressed as, w = w(¢, t/¢), where
w = g, n, m, u, vor 9. We now introduce the following non-
smooth transformations of the long scale as follows (cf. Fig. 2):

T(tle) = 1 arcsin [sin <ﬂ>} ,
s €
e(tle) = sgn [cos <7r?t>] = 7'(tle),

and express the dependent variables of the problem in the fol-
lowing way:

(3

q(t,tle) = Qu(t, T) + eQu(t, 7)
n(t, tle) = Ni(t, T) + eNy(¢, T)
m(t, tle) = Mi(t, ) + eMy(¢, T)
u(t, tle) = U (¢, 7) + els(t, 1)
v(z, tle) = Vi(t, 7) + eVi(t, 7)

(¢, tle) = O (¢, 7) + eOy(2, 7). (4)
Substituting (4) into (1-2), using the chain rule to express
differentiation with respect to ¢ in terms of the short and long
variables, and eliminating singular terms by setting their coeffi-
cients equal to zero, we obtain an alternative system of govern-
ing equations that does not contain any singular terms.

To demonstrate this procedure, consider the first of relations
(1a). Taking into account expressions (4), the first derivative
of g = q(t, t/¢) is expressed as follows: '
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dq ] 8Q1 3Q, 1 ” ] 6Q2 5Q2
==y =g - y-=4 =
dt € Ot ¢ ot € Q.r € Ot ot
where the identity (7')* = e* = 1 was imposed. In the relation

above the term 7" is singular since it is a series of Dirac’s
functions,

e, (5)

7" = —2sgn (1) i 6(% -1- Zk) . (6)

k= —00
A comparison of (6) with the summation of the singular terms
in (1a) reveals that these terms are identical in the domain of
interest (cf. above definition of ¢),

N—-1 N-1
by 6(2;— amzkt 1) ”) -y 5(—2—’ —1- 2k>
k=0 N k=0 €

€

w0

_! Y 6<g—1—2k) for 0 =rt=2nm,
€

€ herw

and, hence, the singularities in (1a) can be eliminated by can-
celing them with the corresponding terms in (5). Indeed, substi-
tuting (4) and (5) into the first of Egs. (1a), setting the coeffi-
cients of terms not depending and depending on e separately
equal to zero, and eliminating the singular terms depending on
7", we obtain the following set of equations:

99 _ ~EQQZ — e[N\M; + N(1 + M))],
or ot
010, 7) = 0,(2m, 7)
% = —€ % — 6[N2M2 + N1(1 + Ml)]a
T ot
(0, 7) = (2w, 7)
Qs ;e = Fel, (7a)
where X = —X/2. The last relation in (7a) is the smoothening

condition that eliminates singular terms from the equations; the
terms in this relation are coefficients of 7" in the transformed
governing equation, and the requirement that they vanish at 7
= =] eliminates the singular effects due to 7" which also appear

1
/) g

o

.5

Zz

N} "1:

e(t/e)

RinpEEE N
—ld - ke

Fig. 2 The nonsmooth coordinate transformations 7(t/€) and e(t/¢)
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at these values of v (cf. Eq. (3) and (6)). The justification for
setting separately terms depending or not on e equal to zero, is
that by replacing the scale /¢ by the two nonsmooth variables
7 and e, quantities in the first of Egs. (la) that originally
depended on ¢/¢ are now partitioned into two independent com-
ponents: One depending only on 7, and the other depending
both on 7 and e (Vakakis et al.,, 1996). As a result, there is
a need to balance separately these two types of terms in the
transformed equations of motion, a requirement that leads to
the two Eqs. (7a). In essence, we ‘‘smoothen’’ the first of
equations (1a) by replacing it with two smoothened equations;
we also note that, whereas the first of Eqgs. (la) possesses
two independent variables, ¢ and ¢/¢, the transformed set (7a)
possesses three, namely, ¢, 7, and e; hence, the appearance of
partial derivatives in (7a). Finally, as pointed out by a reviewer
of this work, the last smoothening condition in (7a) appears to
impose symmetry restrictions on the variable O, . This, however,
does not reflect to the physical buckling state which, as shown
later, can be asymmetric.

Working similarly, we transform the rest of equations in
(1-2) and obtain the following new expressions:

ON ON.
3_7.1 = —€ —8_1‘2 — 6[Q1M2 + Qz(l + Ml)]?
N|(O, T) = N|(27T, T)
ON, ON
87_2 = —c Ftl - E[Q2M2 + Ql(l + Ml)]’
N2(0, 7) = Ny(2m, 7) (7b)
NZl‘r:tl =0
oM oM.
0_T1 = —¢ azz - €@y, M(0,7)=MQ2m 1)
oM, - —¢ % — €@, My(0,7)=MQr, 1) (Tc)
or ot
Mzirle =0
oU _ —€ a—% +el,, U0, 7)y=UQn, 1)
or ot
Qﬂ = —¢ -8& + CR,_,, Uz(o, T) = U2(27T7 T) (7d)
or ot
U2|T=¢1 =0
-@—‘ﬁ = —¢ oV, +ely, Vi(0,7)=V,(Q2m, 1)
or t
% T da‘jl + eR,, Vo(0,7) = V,(2m, 1) (Te)
V2|'r:tl = O
_6_61 = —¢ g@ﬁ + eM,, 0,(0,71) = @1(27T, T) + 27
or ot
98 _ _ 99 kM, 0,00,7) = 0:(2m. 7) (Tg)
or ot

Oyt = 0
where (Pilipchuk et al., 1997)
R, = (1/2)[cos (O, + B,) + cos (O, — O,)],
"L = (1/2)[cos (B, + B,) — cos (B, — 0,)]
R, = (1/2)[sin (O, + ;) + sin (O, — B,)],
1 = (1/2)[sin (O, + ®,) — sin (B, — O,)].
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Comparing the sets (1-2) and (7a—g) we note that by using
the nonsmooth transformations (3) we were able to eliminate
the singular terms from the governing equations. The trans-
formed (smoothened) problem consists of a set of smooth non-
linear boundary value problems (NLBVPs) in terms of the short
variable 7, which can be studied using perturbation methods
from the theory of smooth dynamical systems. At the same
time, the elimination of the singularities was at the expense of
expanding the dimensionality of the problem, with two new
dependent variables replacing each of the old ones. Once the
solutions of the transformed problems are derived, the solutions
of the original problem are obtained using relations (4), and
discreteness effects arising due to the applied point loads are
analytically incorporated in the final expressions. In addition,
we note that the solutions for problems (7d -g) can be derived
by direct integrations once the solutions of problems (7a—c)
are computed. Hence, in the following analysis we will focus
mainly on the solution of the later problems; however, problem
(7g) must be taken into consideration at certain stages of the
following analysis in order to obtain compatibility conditions
necessary for the solution.

Using € as a perturbation parameter, we seek solutions of the
problems (7a—c) and (7 g) in the following regular perturbation
expansions:

Qia(t, 1) = Q9 (e, ) + €@Vt T) + 20t 7) + - - -
Nia(t, ) = Nt 7) + eN(I(t, 7) + NG, 7) + - -
Mo, 7)) = M, 7) + eMB(t, T) + EMEB(, TY+
BO(1, 7) =00, 7) + @t T) + 2O, T) + - -
(8)

Substituting (8) into (7a—c) and matching the coefficients of
equal powers of e we obtain a series of subproblems governing
each of the successive approximations of the solution. In what
follows we discuss the leading-order subproblems separately.

O(1) Subproblem. Considering terms of O(e°), we obtain
the following leading-order approximations for the variables
under consideration:

N=Nho+ €N+ eN+ ...

Q(t, 7Y = Ao(1), Ao(0) = A(2m), QF(r,7) =0
NP, 7) = Bo(t), Bo(0) = Bo(2m), N(t,7) =10
MO (1, 7) = Co(1), Co(0) = Co(2m), ME (2, 7) =0

OOz, 7) = yo(t), Y0(0) = yo(27) + 27, OP(¢, 7) = 0.
(9)

The t-dependent functions in (9) result as constants of integra-
tion with respect to 7, and are determined by considering higher-
order subproblems. Moreover, at this order of approximation
no information regarding the variable (nonlinear eigenvalue) h
is extracted.

O(€) Subproblem. Solving the O(¢') subproblem we ob-
tain

0i(¢, 7) = Ai(), Ai(0) =A(2m), Q5 (1, T) = —NoT
N1, 1) = Bi(1), Bi(0) = Bi(2m), N{’(t,7) =0
Mt 7) = C(n), Ci(0) = Ci(2m), M5 (1, 7)=0

011, T) = yi(1), ¥1(0) = v (2m), B (1, 7) = 0 (10)

as well as the following expressions governing the yet undeter-
mined coefficients of the previous order of approximation,

Ag(1) = =Bo(D[1 + Co(D] + No
Bo(1) = —Ao(D)[1 + Co(1)]
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Co(1) = —Ao(1)
Yol(2) = 1 + Go(1), (11)

with the periodicity conditions in (9) enforced. Note that the
last of the above equations can be decoupled from the first three
ones which constitute a NBVP with \, as the eigenvalue. The
solution of this problem is discussed in Section 3, but at this
point we remark that the NLBVP (11) governs the buckling
problem with uniform ( hydrostatic ) forcing and no discreteness
effects. Indeed, (9) and (11) provide the (1) smooth approxi-
mation to the solution and nonsmooth discreteness effects start
appearing only at higher orders (for example, see the expression
for 04P(¢, 7) in (10)). These discreteness effects will be more
evident in higher order approximations and will be manifested
by the presence of the nonsmooth variables 7(#/¢) and e(t/¢€)
in the solutions. In essence, problem (11) governs the depen-
dence of the solution on the long variable ¢, whereas dis-
creteness effects depend on the short spatial scale #/e.

O(€*) Subproblem. Proceeding to the next order of the
asymptotic analysis, we derive the expressions

(1, 7) = A (1), A(0) = A,(2m), Q¥(1, T) = —NT

NP, 7) = =Nl + Co(1)] % + By(1),

B2(O) = B2(27r)’ N(Zz)(t9 T) = O

2
M@(t, ) = )\o% + Cy(1),

C2(0) = G(2m), MP(1,7) =0
OP(r, 7) = y2(1), ¥2(0) = v2(2m), ¥§(¢, 7) = 0 (12)

and the complementary equations for the coefficients of the
previous order of approximation:

A (1) = =Bo(£)Ci (1) — Bi(O[1 + Co()] + N\,
Bi(t) = —A()Ci(1) + A (D1 + Col
Cu(t) = A1)

Y1i(0) = Ci(1),

with the periodicity conditions in (10) enforced. Note the dis-
creteness effects in terms Q%% (¢, 7), N¥(¢, 1), and M{¥(¢,
7), and the absence of discreteness effects in the remaining
terms. Similarly to (11), the first three equations in (13) form a
parametrically varying linear boundary value problem (LBVP)
with \; as the eigenvalue which will be discussed in the next
section. The last of Eqgs. (13) provides compatibility conditions
for the solutions of the boundary value problems. Relations
(13) govern the dependence of the O(e) approximation on the
long spatial scale, whereas (12) computes O(e?) discreteness
effects in the solution. The unknown ¢-dependent coefficients
in (12) represent constants of integration and for their determi-
nation it is necessary to consider O(e’) terms.

(13)

O(€*) Subproblem. The solutions of this order of approxi-
mation are given by

0t 7) = As(1),  A3(0) = A5(2m),

P, T) = {Bo(t) %9 = Noll + Co()]* — )\2}7
7_3
— {Bo(t) — [1 + Co(z)]z})\(,g
N&(@, 1)=0
MP,7)=0

NP (1, T) = By(1),
M, ) = Cy(1),

B3(0) = B3(2),
G5(0) = Gs(27),
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O (1, 7) = va(1),  ¥3(0) = v;(27),

A
Ot 7) = =2 =7, (14)
and the undetermined coefficients in the previous order of ap-
proximation are governed by the following linear nonhomoge-
neous parametrically varying LBVP:

Ay(£) = —=Bo(1) Cy(1) = By(D[1 + Co(1)]

- %Bo(t) + N[l + Co(D)]% + N,

By(1) = —Ao(1) Co(1) + Ax(D)[L + Co(1)]
Co(1) = —As(2)

a(1) = Colt) + 22,

e (15)

with the periodicity conditions in (12) enforced.

The unknown parameters in (14) are similarly computed by
considering the equations of the subproblem at the next order of
approximation, but this task will not be pursued further herein.
Instead we will now focus on the boundary value problems
(11), (13), and (15) whose solution is required for studying
the discreteness effects in the buckling behavior of the ring.
We also note that by computing the eigenvalues \; and \, we
obtain an estimate of the effect of the discreteness of the load
distribution on the critical buckling loads of the ring.

3 Study of the Boundary Value Problems (11), (13),
and (15)

We first consider the NLBVP (11) which as mentioned pre-
viously governs the buckling problem with no discreteness ef-
fects. The base (unbuckled) state of the ring is obtained by
setting the derivatives in the first three equations equal to zero;
this provides the relation By[1 + Cy] = \y. We then solve the
last of Egs. (11) and enforce its boundary conditions. This
determines uniquely the base state in the following form:

A =0, By=Xo, Co=0, %o(2) = 1. (16)

To analytically study the bifurcation leading to buckling we
introduce the following coordinate transformation in the neigh-
borhood of the base state,

Ao(1) 0 xi(6)
Bo(1) _ Ao oy X () Dl <1 a7
Co(1) 0 x3(t)
Yo(2) t x4(1)

where p is a second perturbation parameter independent from e,
denoting the closeness of the buckled state from the unbuckled
(trivial ) one. Substituting (17) into (11) we obtain the follow-
ing local NLBVP in the neighborhood of the unbuckled state:

X1 = —Noxs — %(1 + px3)

X = x (1 + px3)

X3 = —X
X4 = X3
x(0)=x,2m), i=1,2,3,4. (18)
Seeking a solution in the form
x:(8) = x9(8) + pxiV() + PxP@+ ..., i=1,2,3,4
and Ao = MNP + uA§” + ..., (19)

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



substituting into ( 18), and matching coefficients of correspond-
ing powers of y, we obtain a series of linear, constant-parameter
boundary value problems that can be conveniently solved using
standard linear analysis. Omitting the details of the analysis,
and combining the perturbation solution of (18) with (17) we
obtain the following asymptotic solution to problem (11):

Ag(t) 0 sin jt

By(1) Mo —(1/§) cos jt
o[ o (1/]) cos jt
Yo(1) t —(1/j7) sin jz

(1/25°) sin 2jt
(17459277 — (1 + j?) cos 2jt]
(1/4j*) cos 2jt
(1/8°) sin 2jt

where § is a small parameter defined as in terms of the buckling
load as

5—+ 8j4()\0“l+j2) 1/2
L 3 -A ’

+ 0(8*) (20)

i=2,3 ... (21)

The new perturbation parameter 6 was obtained by expressing
u in terms of A, from the last of expansions (19), and substitut-
ing into the perturbation solutions for Ay(#), By(t), Co(t), and
vo(t). The plus and minus signs in § correspond to the two
bifurcating states of the ring, which at this order are identical.
When we consider higher-order terms below, we show that the
discrete loading gives rise to asymmetries in the buckled states.
We also point out that the periodicity requirements of the last
of Egs. (18) provides compatibility conditions that are neces-
sary to uniquely determine the solutions of the first three equa-
tions.

Observing the solution (20-21) we remark that the critical
buckling loads for the O(1) NLBVP (11) are given by X\, =
—j2+1,j=2,3,..., aresult that is consistent with previous
ones dealing with buckling of hydrostatically loaded circular
rings. The solution with j = 2 corresponds to the first buckling
mode, and will be examined more closely in the next section.
We note that, by construction, the above asymptotic results are
valid only close to points of bifurcation (buckling), i.e., only
forO0<ho—1+j*<1,j=2,3,....

Proceeding to problem (13) we realize that it admits the
trivial solution,

Ai(t) = Bi(t) = Ci(1) = »i(1) = M = 0, (22)

indicating that there are no O(¢) t-dependent coefficients in the
solution. Hence, we focus on the O(e?) LBVP (15) which does
not admit the trivial solution. Taking into account solution (20),
this nonhomogeneous, parametrically varying LBVP is ex-
pressed as

and |6 < 1.

Ay (1) 0 1+ 6(1/j)cosjt 1 —j*— 8(1/j) cos jt Ay (1)
B,(t) ¢ + | —1 — 8(1/j)cosjt 0 —§ sin jt By (1)
Cy(t) 1 0 0 Go(?)

0

¥2(8) = Go(t) + No/6,

Journal of Applied Mechanics

—[(1 = /26111 — j* + 6(1/j) cos jt] + [(1 — j*)/6][1 + 28(1/)) cos jt] + N
0

with the periodicity conditions (12) imposed. We note that
although O(8?) are not shown explicitly in (23), these were
taken into account in the perturbation analysis in order to com-
pute the O(6) approximation for A,.

To obtain the solution of the LBVP (23), we express the
dependent variables and the eigenvalue in formal series in terms
of the small parameter § (for example, A, (1) = AP(r) +
SASV() + ..., = N + XD + .. ), substitute into (23),
and solve the resulting series of LBVPs with constant parame-
ters at each successive order of §. We then derive the following
asymptotic solutions:

Ay (1) = 0 + 0(8%),

Y 2
By == s U 0D i v 006,
6 6
_ 2
G = - QGL) + 0(6%),
y2(2) = 0 + 0(52), =0+ 0(52) 7=2,3,....(24)

From these results we note that the correction to the criti-
cal buckling load due to discreteness effects is at least of
O(e*?, €*), and, thus, small. This is in agreement with the
numerical results reported in (Seide and Albano, 1973), where
it was found that for dense discrete loading distribution the first
critical buckling load is almost identical (actually, is slightly
smaller) compared to that of the uniformly loaded case. In fact,
they proved that for N = 2, 4 discrete loads, the discreteness
of the loading distribution increases the critical buckling load,
however, for N = 5 the discreteness effects result in a slight
decrease of the critical buckling load. The result for N = 4 was
obtained also by (Kabanov and Astrakharchuk, 1983).

In addition, from the expression of B,(¢) we note that the post-
buckled state of the discretely loaded ring depends on the sign
of 6; as a result, the two bifurcating states of the ring correspond-
ing to the positive or negative values of é are not identical (as
in the case of hydrostatic loading), and asymmetries develop in
the buckled shapes. Again, this finding is in agreement with the
numerical results of (Seide and Albano, 1973).

Summarizing, the post-buckling state of the discretely forced
circular ring is approximated as follows:

q(t, tle) = [Ao(2) + O(8?, %67, €*)] + eli—e)xm’

+ 63{[Bo(t) }6—0 - )\0[1 + Co(t)]2 - )\2]7’

- )\O: [Bo(r) — [1 + C,,(z)]z]} + 0(e’8%, 64)]

2
n(t, tle) = [Bo(t) + 62{—)\0[1 + Co(t)] TE + B2(t)}

+ 0(83, €262, 63)} + e[0(e")]

+ 0(8% (23)
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Fig. 3 Numerical results for t € [0, #] and t € [, 2n]: Normalized (a) shear force, (b) axial force,
and (c) bending moment; —— discrete, --- uniform load distribution

2
m(t, tle) = [Co(t) + 62{)\012“ + Cz(t)}

+ O(8°, €262 63)] + e[0(e")]

= =2\ + O(%%, €%, j=2,3,.... (25)

with 7 = 7(t/e) and e = e(t/¢e) defined by (3) and the small
parameter 6 by (21). The remaining variables in (4) can be
determined similarly, taking into account the above solutions.
The nonsmooth effects in the solution due to the point load
distribution are analytically evaluated in (25) by the terms con-
taining the nonsmooth variables 7 and e.

Finally, we observe that in contrast to the normalized shear
force ¢, the normalized axial force n, and bending moment m
in (25) do not possess any e-dependent terms; as shown in the
next section this result is compatible with the presence of C°-
discontinuities in the shear force, but only C”-discontinuities,
p = 1 in the internal axial force and bending moment due to
the applied point loads.

4 Numerical Application

The solutions (25) are depicted in Fig. 3 forj = 2, € = 2%/
20 = 0.3146 and 6§ = 0.5. These parameters correspond to the
first buckling mode of the ring, and a discrete distribution of
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20 point loads, each of normalized magnitude A = —3.0176.
For comparison purposes we also show the results for e = 0,
corresponding to a hydrostatically loaded buckled ring with
identical magnitude of load distribution and no discreteness
effects. Note the C°-discontinuities in the shear force distribu-
tion due to the applied point loads and the C'-discontinuvities
in the distributions of the axial force and bending moment.

5 Conclusions

In this work we employed an analytical technique based on
non-smooth transformations of the short spatial scale of the
problem to study discreteness effects in the post-buckling state
of a circular ring loaded by a periodic array of point loads. The
novelty of this technique is that it eliminates singularities in the
governing equations due to the point loads, at the expense of
increasing the dimensionality of the problem. As a result, the
three nonsmooth governing equations were replaced by six
smoothed ones, together with a set of smoothing conditions. The
transformed equations were solved by expressing the dependent
variables in regular perturbation series, and analyzing an hierar-
chy of boundary value problems at successive orders of approxi-
mation. These problems were asymptotically solved using tech-
niques from the theory of smooth nonlinear or parametrically
varying dynamical systems.

The technique presented herein can be applied to the study
of a more general class of buckling problems, such as the ones
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of circular rings or cylindrical shells obeying more general con-
stitutive laws (for example, allowing ring axis compressibility
(Atanackovic, 1998)) under compressive point loads. Also,
nonlinear effects can be handled conveniently with only slight
modifications of the NLBVPs, Finally, this technique can be
used to validate the results of other buckling studies of such
systems that rely on purely numerical methods.
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Orthotropic Strips and the
Accuracy of Beam Theories

The interior problem of an orthotropic strip subject to any given continuous distribution
of normal and shear loads is solved by means of a polynomial expansion for the Airy
stress function. The polynomial functions defined in the transverse direction are deter-
mined recursively by solving a Fredholm equation of second kind. Explicit formulas for
displacements are given. A sufficient condition for the convergence of the series expansion

is derived. This solution is used to evaluate the error in Timoshenko and higher-order
theories. A new beam theory is finally proposed, whose error has the same asymptotic
Jorm as second-order theories but approaches zero for strips made of strongly orthotropic

material.

1 Introduction

The solution of two-dimensional problems for long rectangular
strips in the form of polynomial series is a classical result in the
theory of elasticity. Usually, the Airy stress function is represented
by a double series expansion in powers of axial and transverse
coordinates, and the corresponding coefficients are obtained from
the field equations and boundary conditions. This technique is used
in Timoshenko and Goodier (1970), Silverman (1964), and Hashin
(1967) for isotropic, orthotropic, and anisotropic strips, respec-
tively. The main drawback of these methods is that the computa-
tion becomes rather involved if the degree of the polynomial load
prescribed on the long sides increases.

A different type of solution can be obtained by a series expan-
sion for the Airy stress function in terms of polynomials in the
transverse coordinate multiplying the top and bottom loading
functions. In this case, the first term of the series represents
classical beam theory, and the next terms are corrections involving
higher derivatives of loading functions. This technique has been
proposed by Donnell (1952, 1976) for an isotropic beams in plane
bending, and extended in Boley (1956) and Boley and Tolins
(1956) to distributed shear forces and thermal loading. Stress fields
for orthotropic strips subjected to uniform and linearly varying
transverse loads can be also found in Tsai and Soler (1970),
Rehfield and Murthy (1982), and Rychter (1988). Duva and Sim-
monds (1990) developed a formal asymptotic expansion in term of
the slenderness ratio, so generating approximate strain and stress
fields of “any accuracy” for orthotropic strips subjected to equal
distributed transverse loads acting on the top and bottom faces.

In summary, the referenced solutions provide for closed-form
solutions for power loading functions, series solutions for arbitrary
continuous loads, or, in some cases, simple improvements on
classical beam theory. However, the problem of convergence of
such series is almost never undertaken. The only attempt has been
made by Duva and Simmonds (1990), who showed that conver-
gence of polynomial series may fail for strips weak in shear.

Polynomial solutions typically refer to long strips, neglecting
pointwise self-equilibrated stress distributions or displacement
constraints at the end sections (interior problem). Nevertheless, it
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is well established that Saint-Venant’s principle must be invoked
with prudence when strongly orthotropic materials are concerned,
because the decay length of end effects can be much greater than
the strip height (Choi and Horgan, 1977; Horgan and Simmonds,
1994; Miller and Horgan, 1995). The solution of elasticity prob-
lems can be decomposed into the interior solution, satisfying
average end conditions, and the boundary solution, which reestab-
lishes the pointwise prescriptions at the beam ends. For the bound-
ary problem several techniques have been proposed, e.g., see the
papers referenced in Kim and Steele (1990), Lin and Wan (1990),
Savoia and Tullini (1996).

In the present paper, a polynomial expansion for the Airy stress
function is derived for the interior problem of orthotropic strips
subjected to any given continuous distribution of both normal and
shear loads. The first term of the polynomial expansions satisfies
the boundary conditions and coincides with classical beam theory,
whereas the other terms are defined in order to satisfy the com-
patibility equation with homogeneous boundary conditions. The
polynomial functions defined in the transverse direction are deter-
mined recursively by solving a Fredholm equation of second kind.
Making use of Cauchy’s criterion, a sufficient condition for the
convergence of the series expansion is derived for both symmetric
and antisymmetric loading conditions. It is shown that for a typical
composite strip the slenderness required for the convergence of the
solution may be more than three times larger than for isotropic
SHYips.

In the second part of the paper, the strip solution obtained is
used as a benchmark to evaluate the accuracy of Timoshenko-like
beam theories and higher-order theories (Hashin, 1967; Tsai and
Soler, 1970; Rehfield and Murthy, 1982; Rychter, 1988). Higher-
order theories can be obtained from the present solution by retain-
ing the first terms only in the polynomial expansion. As H/l — 0,
the actual error (i.e., with respect to the exact solution) is found to
be of O(H*/1*) and O(H*/{*) for first-order (Euler-Bernoulli)
and Nth-order theories, / being a measure of the loading wave-
length (Duva and Simmonds, 1990; Savoia, 1996). Finally, a new
beam theory is proposed, whose error has the same asymptotic
form as second-order theories but approaches zero for strips made
of strongly orthotropic material.

2 Governing Equations

Consider a rectangular strip of length L and height H = 24
and let Ox,x, be a Cartesian reference frame where x, coincides
with the centroidal axis and x, is chosen in the transverse
direction. The strip is made of homogeneous, orthotropic, lin-
early elastic material, with orthotropy axes coinciding with the
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reference axes; the strip is subject to smoothly varying tractions
(for a unit width) q, = (g1, g2,) and q, = (g3, 42,) at the top and
bottom faces and forces and couples F{, F3, M®, F}, F%, M" at the
end sections x; = 0, L (interior problem). Accordingly, the
boundary conditions are (& = 1, 2)

—h) = ~qy atx,=h, —h (1)

atx, =0, L 2)

UQZ(XD h) = qaps O-al(xls

{N’ Q,M}={F1, FZ’M}

where o, are the components of the stress tensor and N, 0, M
are, for a unit width, the axial resultant, shear resultant, and the
bending moment written in term of stresses. The equilibrium
equations with null body forces are satisfied by the classical Airy
stress function F(x,, x,):

oy =Fpn, on=F, o,=-F), (3)

where subscripts « preceded by a comma denotes partial differ-
entiation with respect to x,. The compatibility equation yields the
governing differential equation (Lekhnitskii, 1981)

F,2222+EF,1|22+€2E2F,1|11:0 4

where
E=-————= ¢E'==" 5
Ry R, ©

and constants R; are the usual reduced elastic coefficients. For
instance, Egs. (5) reduce to

Eol_,
F=———2v,,
GI2 12

2p2 o 1
e‘FE E,

©
for plane stress and E,, G,, v, denote Young’'s moduli, shear
modulus, and Poisson’s ratio.

Introducing the dimensionless variables x = x,/L, y = x,/h and
making use of Eqs. (3), the field Eq. (4) and boundary conditions
(1), (2) can be rewritten as

F + pI: + ezsz‘xxxx =0 (7)

WYYy XXYY

Fo(x, £1) = (&g, + p)L¥2, F (x, £1) = (Fq, — p.)hL/2
aty = +1 (8)

{F, F,yF,— F}}IL = {F\h, —F,L, M} atx=0,1 (9)

where p = EWYL?, G0 = Gup + Gai» Pa = Gus — G Equations
(7)-(9) can be conveniently solved by considering the antisym-
metric and symmetric parts of boundary conditions (8), corre-
sponding to loads g, (case I), p, (II) and p, (IID), g, (AV),
respectively (Fig. 1).

3 Two-Dimensional Elasticity Interior Solution

For isotropic strips, Donnell (1952, 1976) solved cases I and II1
of Eqgs. (7)-(9) by means of a series expansion involving deriva-
tives of even order of the bending moment M(x) and polynomial
functions of y; Boley and Tolins (1956) solved all the four isotro-
pic cases. Duva and Simmonds (1990) modified these series solu-
tions for an orthotropic strip under transverse load g, (case I).

In the present section, the solution for an orthotropic strip
subject to the four loading conditions is given. To this end, the
stress functions is cast in the form

Fe(x, y) = ~®0PSy) — 0 p"@ 2 (x)PE(y)

n=1
C=LILIOLIV (10)
where ()™ denotes the nth derivative with respect to the axial
coordinate x and index C stands for the case considered. Function
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R ERE q.,/2

X, py2 X, !

Fig. 1 Nomenclature for the four loading conditions

@ and polynomials P are defined in such a way the first term in
Eq. (10) satisfies boundary conditions (8), (9) and corresponds to
the classical theory, whereas the summation at the R.H.S. fulfils
the field Eq. (7) with homogeneous boundary conditions. These
requirements are verified by the following sets of functions:

1
{®), Dy, Oy, P} = [M(x)s hL J' pi(1)dt,

x

sz (x — Op,(t)dr, hN(x)} an

3y =y’ y—y' L 1-y?
) ()

v, i, 2t Py = |

where

1
N(x) =Fi+1L f q(1)dt,

1
M(x) = M"*— FiL(1 — x) + L? f (x = Dga(r)dr  (13)
are the axial resultant and the bending moment in terms of loading

functions. Moreover, PS(y) are polynomials functions which can
be obtained from the following recursive formulas:

d‘py  d’P§ d‘Py 4P,
P gy =1, =T el
dy dy dy dy
forn=2 (14)
subjected to the following conditions:
B dPE(+1)
P,,(il)=-—dy—=0 forn=1. (15)

Explicit expressions for the polynomials Py will be given in the
following section. The solution (10)—(15) can be readily verified
by direct substitution into Eqs. (7)—(9).

According to Eq. (14), for isotropic strips (¢ = 1) the polyno-
mials P{ are independent of the elastic constants. Moreover,
although four elastic constants characterise an orthotropic strip, the
polynomials P depend on the combined elastic parameter € only.
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With reference to the boundary problem, an analogous conclusion
was drawn by Horgan and Simmonds (1991) for the strip eigen-
functions and corresponding eigenconditions.

Finally, displacement components can be derived from the stress
function, as usual, through the integration of stress-strain relations,
0 obtaining

w

h
w(x, y) = uo(x) = 7 valx)y = L p" @& N ULy) (16)

n=0

a7

2
uax, ) = wl®) + 57 2 p" @@ VER)

n=0
where

N(x)L

uplx) = Ry —— A

e
vi(x) = M(x) + hL pi(t)dt (18)

X
2R12)
US(y) = (1 + —
=) R

drP¢ dus
¢(y) = () N ()

n+1()’)

T +==PSy)  (19)

(20)

and A = 2h, I = 2/3h° are cross-sectional area and second area
moment, respectively. Equations (18) coincide with the basic
equation of classical beam theory, whereas US(y) and VE(y)
represent axial and transverse warpings given by polynomial func-
tions of higher order of y.

Equations (18) must be integrated making use of an appropriate
set of boundary conditions. The boundary conditions necessary to
give a residual solution (both in terms of stresses and displace-
ments) decaying exponentially to zero can be found in Lin and
Wan (1990); this approach provides for the correct value of dis-
placements far from the beam extremities, without requiring the
solution of the boundary problem; nevertheless, it has been pro-
posed for strips under tip loads, and higher-order moments of
residual stresses than those tabulated in Lin and Wan (1990)
should be calculated for more complex loadings. To avoid this
problem, simpler boundary conditions in terms of average trans-
verse deflection and mean rotation (see Section 6) can be pre-
scribed; in this case, the associated boundary problem gives rise to
decaying residual stresses together with an additional (small) term
correcting the displacement field (Horgan and Simmonds, 1991;
Savoia and Tullini, 1996).

4 Polynomial Functions PS(y)

Making use of boundary conditions (15), the following solutions
of the differential Egs. (14) are obtained (Smirnov, 1964, Vol. IV):

{P}, P4, PY, P}

[y =yH? (1l —y)?
- 80 ’ 80

1_22
: 48y)} @D

507

PL(y) = f [Ki(y, DPL-1(1) — €2Ka(y, )P _o(1)]dt

forn=2. (22)

Equation (22) is a Fredholm equation of second kind whose
kernels K,(y, t) for strips subjected to odd and even conditions
(cases I, I and III, IV, respectively) are defined as
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. [yt =R+, 1=y
Kily, 1) = {—yt(3 ~y)2+y, tzy
oo o _ [HL =By =20 = yiH/12, 1=y
K00 =y =023t — 292 = y)2, 1=y
o n o [LFYI2 =y, t=y
Kl(y”)—{(1+y2)/2—t, 1=y
o [ =12y 312, t=<y
Kz(y”)“{(l—t)m+2t—3y2)/12, =y

These kernels are continuous in [0, 1] X [0, 1]; hence existence
and continuity of functions

1 1
A%y) = J |K\(y, 0)|dr,  B*(y) = J Koy, 0)]%dr (24)
0 0

is guaranteed. The corresponding L’-norm in [0, 1], denoted by
|+ Mlo> gives

la<ls = 18115 =

727650°

1Bi5 =

1

210°
! 2
30" (25)

for the four kernels in Egs. (23).

In order to obtain conditions for the convergence of polynomial
representations of the interior problem solution (see the next
section), an upper bound for the absolute value of polynomials P
must be given. Making use of the Cauchy-Schwarz inequality, Eq.
(22) yields the following upper bounds for the absolute value and
the norm of the polynomials Py

1PE| = AOGNP - llo + €BDIPTlly forn=2 (26)

1P %Ml = lAlollPi-illo + €BllollPy-olle forn=2. (27)
Therefore, it can be proved that (see the Appendix)
I1P%lo = A5 + € !PGlly forn=2.  (28)

Finally, making use of inequality (28), inequality (26) reduces to

[Pr)] = (Al (1 + )" |1PGllo

€’ B(y)

The function in brackets at the R.H.S. is less than a constant ¢, for
it is continuous for all € in [0, 1]; hence, the following upper bound
for the absolute value of polynomials P¢ is obtained:

[PEO)| = clA]la (1 + €D |P§lly forrn=2. (30)

5 Sufficient Condition for Convergence of Polynomial
Series

A sufficient condition to establish the convergence of the poly-
nomial series appearing in Eq. (10) can be obtained by analysing
the absolute convergence; this can be done making use of Eq. (30)
and Cauchy’s criterion (Smirnov, 1964, Vol. I). The convergence
condition strongly depends on the kind of loading applied and
degree of orthotropy of the strip. For instance, consider the case of
a stress function F. where ® . is bounded together with all its even
derivatives ®Z". In this case, the following inequality is to be
satisfied:

pllAllo(1 + €% < 1. &)

Substituting Egs. (254, b) in (31), the polynomial representation

turns out to be absolutely convergent when p < 14.49/(1 + €)
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(cases I and IT) or p < 5.48/(1 + €*) (IIl and IV) for antisymmetric
and symmetric loading conditions, respectively.

It is worth noting that, for € = 0, making use of eigenfunction
expansion of the corresponding kernels Savoia and Tullini (1996)
established a wider range, i.e., p < 20.19 and p < 9.87, for odd and
even polynomials, respectively. Unfortunately, due to nonorthogo-
nality of eigenfunctions for orthotropic strips, the same procedure
cannot be applied to the present case.

With reference to a general loading condition, the series re-
ported in Eq. (10) is absolutely convergent if, starting from a given
value 7, the following inequality holds:

P“A”o(l + E2)"\‘|‘:I)(c2")| <1

vrxe([o, 1. (32

If the applied load varies along the beam according to a trigo-
nometric or an exponential law [® . = cos (ax), exp(ax), etc.],
it can be verified that |27 = o™|®|; consequently, Eq. (32)
gives

1 L oAl
<o D
AT+ e 7 4

E(1+€%). (33)
In the isotropic case (E=2€e=9, inequality (336) shows
that a sufficient condition for convergence is established if
L/H > 0.21a and L/H > 0.34« for antisymmetric and sym-
metric loadings; for a typical composite materials (E = 25, €
= 0), L/H > 0.66c and L/H > 1.07a.

Finally, it is worth noting that the estimates presented in this
section hold for the elasticity solution written in the form (10) as
well as for every polynomial representation of the interior prob-
lem.

6 Accuracy of Beam Theories

Timoshenko-Like Beam Theories. In Timoshenko-like
beam theories, two kinematic measures for displacements are
usually employed. Following Cowper (1966), the dimensionless
averaged transverse deflection 1) and the mean rotation ¢ of the
cross section are introduced according to the following definition:

h 1 h
n(x) :‘EJ Uydx,, o(x) = —Tf W Xodx,  (34)

—h —h

Substituting Egs. (16), (17) in (34), the following constitutive
relations are obtained (C = I, II):

w

’ RHL th n
¢ == I [ [ RL22 " Eq)(C2+2)

n=0

, dL/L

o« (I) gllt+l)/L
— — +
TP T kG LA

kiGiA

(35)

where functions @ are reported in Eq. (11), and ®Y/L = @ and
OyW/L = —p,h (see Eq. (35D)) represent the shear force and
distributed moment; moreover,

]
ay = f Pi(y)ydy,
-1

3R,,

C
36

k'(x? 2 R66 a, ( )

are the first moment of polynomials PS and the set of shear

correction factors. For instance, the first correction factor kg, is

equal to

1 .
—7=m{Pﬂw+Uﬂn—

1 6+ R;y/Ry 1 1 + Riy/Rgs
o N
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For isotropic and orthotropic strips, Eq. (37a) gives the shear
coefficients obtained by Cowper (1966) and Dharmarajan and
McCutchen (1973) for a constant or linear shear resultant,
whereas, for strongly orthotropic beams in plane stress, the term
Rp/Re, = —v,G ,/E) is negligible and kg = 2, ky = 5. For case
L, the first terms in Egs. (35) represent the classwal Timoshenko
constitutive equations. The summations contain higher-order cor-
rection terms, where the shear factors k¢ defined in Eq. (36b)
multiply the even derivatives of Q and p, and are required for
nonuniform loads. Hence, Eqs. (35) are useful to establish the
range of validity of Timoshenko classical theory. The dependence
of the shear correction factor on the loading condition has been
already pointed out by Berdichevsky and Kvashnina (1976) in
their asymptotically exact beam theory and by Savoia et al. (1993)
for multilayered beams.

It is worth remembering that only for slender beams the interior
problem alone is meaningful and global parameter of deformabil-
ity can be evaluated with Timoshenko’s beam theory; on the
contrary, for deep beams the end effects may become more im-
portant than higher-order interior refinements. Therefore, even
though Eqgs. (35) suggest the possibility of obtaining a refinement
of Timoshenko’s beam theory, no cross-sectional warping can be
described using two kinematic variables only and, consequently,
no boundary problem can be taken into account in a second step of
analysis.

Higher-Order Beam Theories. A simple way to reobtain
higher-order beam theories is to retain a finite numbers of terms in
the series appearing in Eq. (10). For example, the stress field o™
corresponding to a second-order beam theory for plane bending
(cases I, III)} (Hashin, 1967; Tsai and Soler, 1970; Rehfield and
Murthy, 1982; Rychter, 1988) can be obtained directly from the
first two terms in Eq. (10):

Mhy . 3y —5y°
o= Eqy (38)
1 M' — 6y*+ 5y*
2nd — — —_—
<n ! 3y —y° Ly =2yt E Y’
0% =apatqr gt pgh g (40)

The error of the stress field o™ of the Nth-order beam theory
with respect to the exact interior solution ¢*” derived in Section 3
can be evaluated as

”U’Nlh _ 0.2D”

3D 41)
o]
where || + || is the norm for the stress tensor based on the comple-
mentary elastic energy,

now=th‘J'

With reference to case I, for sufficiently slender beams (i.e., for
values of the slenderness which allow for the Maclaurin’s expan-
sion of Eq. (41) in terms of powers of H/L), the dominant term in
the complementary elastic energy is the axial normal stress oy,. In
fact, by direct inspection of stress field (38)-(40), stress compo-
nents o, 0'1;, 0, can be found to be of O(L*/H?*), O(L/H), O(1),
respectively. Therefore, if the sufficient condition for the conver-
gence of polynomial series representation is fulfilled, the error (41)
can be given the following asymptotic form:

IIM”MI! la2P/dy?|o
Mo ld*Po/dy?lo

(Rlla-%l + Rzzﬂ'%z + 2R 00,09,

+ Reso2)dxdy. (42)

Nth ~

as HIL -0 43)
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where, as before, ||, stands for the L*-norm on [0, 1] or, equiv-
alently,

i E" ld*Pyldy?ly

¢ T AV [a7PYay,

H 2N
<E> as H/IL — 0 (44)
where [ is the characteristic wavelength of the loading, defined as
(D)™ = [IMolM ]l

Equation (44) shows that the error related to the Nth-order beam
theory is of order (H/! 2. A similar result was obtained by Duva
and Simmonds (1990) for the computable error obtained through
the Synge-Prager hypercircle method by using kinematically ad-
missible and statically-admissible strain fields. In addition, Eq.
(43) gives the actual error with respect to the interior two-
dimensional solution, together with the explicit computation of the
coefficient multiplying (H/1,)*". For instance, for the first-order
(Euler-Bernoulli) beam theory and the second-order beam theory
(Egs. (38)—(40)), the following error estimates can be obtained:

E [H\? - H\*
1st ~ f 2nd 2 ¢2nd o
¢ _20@(11> ¢ EYs (E)<lz>
as HIL—0 (45)
where
(37 — 690€? + 34256%) 2
fo(e) = (46)

840033

Strongly Orthotropic Beam Theory. For composite materi-
als with fiber reinforcement in the beam axis direction, the coef-
ficient € of Eq. (6b) approaches zero. Hence, a simple one-
dimensional solution can be obtained setting € = 0 in Eq. (145)
defining the higher-order polynomials. This theory is particularly
attractive, since both interior and boundary solutions turn out to be
particularly simple. For instance, the boundary problem can be
easily solved making use of the eigenfunction expansion proposed
by Horgan and Simmonds (1991) and applied by Savoia and
Tullini (1996) to beams with prescribed displacements and stresses
at the beam ends. For case I, error estimate (41) assumes the
following asymptotic form:

MOy la>Pydy?|e—o — d*PYdy*|o
||M”0 ”d2P é/dyz\lo

(e~0) ~ p

e

as HIL—0 (47)

which can be rewritten in the same form of Eq. (45b), where Eq.
(46) is replaced by

e~y €? 137
S = 1680 33 -

By comparing Eqs. (46)-(48) it can be concluded that the
orthotropy coefficient e strongly influences the accuracy of beam
theories considered here. For isotropic beams (e = 0.5), the
second-order beam theory is more accurate than the strongly
orthotropic beam theory, whereas for € < 0.23 (that is for typical
orthotropic materials) the situation is completely reversed. For
instance, for € — O the error of strongly orthotropic beam theory
approaches zero, whereas this is not the case for second-order
beam theory.

(48)

7 Final Remarks

Figure 2 shows the actual mean square error of stress field
given by first-order beam theory, second-order beam theory and
strongly orthotropic beam theory for a cantilever orthotropic
strip under a transverse load varying with a parabolic law. In
this case, the asymptotic formulas ((45a, (45b), (47)) hold for
L/H > 4.7, that is for this range of slenderness a Maclaurin’s
expansion in terms of power of H/L is possible for the denom-
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eNth = || O-Nth,_o-ZD “/” °-2D H
1

0.1

I|Ill||| | lllillll [T
~

—
[=
&

IIIIU.I.I.| IIHILU] Illlu_l].l 1

107

10—6 [ Illllll T

o1 2 1t P10t 7 10

IlH]IIl |‘|¥|HH|

/H

Fig. 2 Mean square error of stress fields given by the first-order (Euler-
Bernoulii) theory, the second-order theory and the strongly orthotropic
beam theory, for a cantilever orthotropic strip (Ei/Gi2 = 50, Ey/Ez = 25, vy, =
0.25) under a transverse load varying with the parabolic law ¢, = quc.

inator of Eq. (41). First of all, the asymptotic behavior as L/H —
o for the three theories is confirmed, and the error for the
strongly orthotropic beam theory is 9.2 times lower than for
second-order theory. For very short strips (L/H < 1), the
dominant term in the complementary elastic energy (42) is the
transverse normal stress o, and the error approaches a constant
value for all the theories. Nevertheless, the strongly orthotropic
beam theory is still sufficiently accurate (e‘"® =~ 0.1), whereas
ﬁr§t-orderz imd second-order theories are completely inadequate
(e = ™ = 1).
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APPENDIX
Equation (28) can be proved from Eq. (27) by using mathemat-

ical induction, Since |P{]l, < ||Al|o|P5]lo. Eq. (27) for n = 2 reads
as

1P5le = 14131 + eiBlo/MAIDIP S (AD

Further, by direct computation from Egs. (25), it can be verified
that ||B||o/All; < 1, then inequality (28) holds for n = 2. By
assuming Eq. (28) to hold for n, Eq. (27) reduces to

c ntl 2yn-2 2 Bl c
[Peallo = A" (1 + €)"? 1 + € + Tapz [1Pdll a2
for n + 1. Since the term in brackets is less than (1 + €%)?, then
Eq. (28) holds also for n + 1; thus, by mathematical induction, it
is valid for all n.

JUNE 1999, Vol. 66 / 373

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Plastic Buckling of Circular
Cylindrical Shells Under
Nonuniform Axial Loads

Elastoplastic buckling of circular cylindrical shells subjected to piecewise-uniform
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circumferentially varying axial loads is studied within the framework of linear stabil-

ity analysis in conjunction with small strain plasticity. Both J, flow and deformation
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Technion,
Haifa 32000, Israel

theories with arbitrary hardening are used to model material behavior. Donnell-type
equations are solved separately for each loaded segment with the interfacial continu-
ity conditions providing the eigenvalue equation for the buckling parameter. Sample

results are presented for pure bending and for uniform compression over a finite
axial band. In all cases, deformation theory predicts buckling loads smaller than
those obtained from flow theory. Loading nonuniformity becomes appreciable as the
applied stresses concentrate over a narrow axial band. In that context we discuss
the possibility of plastic buckling under the action of concentrated forces. The analysis
is restricted to a membrane prebuckling state of stress and hence applicable to
relatively short shells.

1 Introduction

Elastic buckling of circular cylindrical shells under nonuni-
form (circumferentially varying) axial loads is practically inde-
pendent of the load profile (Libai and Durban, 1973). Unless
highly oscillatory loads are applied (Libai and Durban, 1977),
or the shell is very short (Durban and Libai, 1974 ) or relatively
thick (Durban and Libai, 1976), buckling will occur when the
highest axial stress along the circumference attains the corre-
sponding critical stress value of a uniformly compressed circular
cylindrical shell. These observations follow from a detailed
analysis, using the eigenfunction expansion method, and are
valid within the framework of linear elastic buckling theory
with a membrane prebuckling state of stress. Earlier studies by
Abir and Nardo (1938), Bijlaard and Gallagher (1959) and
Seide and Weingarten (1961) arrived at essentially the same
conclusions.

A particularly interesting work by Hoff et al. (1964) exam-
ines the problem of buckling under axial compression (due to
heating ) distributed uniformly over an axial band of finite width.
No appreciable increase of the critical stress, as compared with
uniform loading over the entire circumference, has been found
unless the width of the compressed band becomes very small.

Much less is known on plastic buckling of circular cylindrical
shells under nonuniform axial loads. While plastic buckling
under uniform compression has been studied in detail (Tver-
gaard, 1983a; 1983b; Ore and Durban, 1992), most available
studies on plastic buckling under nonuniform loads deal with
the important problem of pure bending. Reddy (1979a) per-
formed tests on plastic buckling in pure bending of steel and
aluminum tubes. The experimental data for the maximum com-
pressive stress at buckling correlated to within *35 percent with
J, deformation theory predictions for buckling of uniformly
compressed shells. In a companion paper Reddy (1979b) pre-
sented an approximate bifurcation analysis for pure bending,
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using the J, flow theory. An increase of up to about 35 percent
in the buckling stress as compared to uniform compression was
reported. The importance of considering nonlinear effects in the
plastic bending behaviour and buckling of long cylindrical
shells has been emphasized by Gellin (1980) and by Calladine
(1983). The latter paper presents an original engineering-wise
treatment of plastic buckling of tubes in pure bending. Fabian
(1981) enhanced earlier studies on plastic buckling by examin-
ing the collapse of long tubes under combined bending and
pressure load. A comprehensive investigation on elastoplastic
instabilities in bending of long circular cylindrical shells is
given in (Kyriakides and Ju, 1992; Ju and Kyriadides, 1992).
These studies emphasize the importance of nonlinear prebuck-
ling deformation and examine the details of various bifurcation
modes with the J, deformation theory, though the primary path
has been evaluated with the J, flow theory. For long shells
made of Al 6061 T6 the authors identify experimentally and
numerically three distinct regimes of plastic structural instability
which depend on the radius to thickness ratio.

In this work we report the results of an investigation into the
plastic analogue of the problem studied by Hoff et al. (1964)
for elastic buckling. The basic setting is that of a circular cylin-
drical shell subjected to nonuniform axial compression by
stresses that admit a piecewise-uniform circumferential profile.
Thus, the elastoplastic instantaneous moduli are load dependent
but remain constant within each separate segment. Assuming a
membrane prebuckling state of stress it becomes possible to
solve the governing buckling equations within each segment
by separation of variables representation of the eigenmodes.
Appropriate continuity conditions along the interfaces between
the loaded segments provide the eigenvalue equation for critical
stresses. The analysis is with both J, flow and deformation
theories and accounts for arbitrary hardening. Sample calcula-
tions are presented, for pure bending and for uniform compres-
sion along a finite axial strip, for a number of metals. As ex-
pected, deformation theory predicts buckling loads which are
always smaller than flow theory results. As in the elastic case,
loading nonuniformity becomes important when the applied
stresses concentrate over a narrow zone. Also discussed is the
possible limit, when the loaded band becomes extremely nar-
row, of plastic buckling under concentrated axial forces. While
neglecting the effect of prebuckling deformation the present
paper highlights the influence of load nonuniformity, material
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Fig. 1 Notation for circular cylindrical sheils

nonlinearity and plasticity theory model. The validity of the
present analysis is limited to relatively short shells that buckle
in the classical sense of bifurcation theory, but excludes the
Euler type column buckling.

2 Formulation of the Problem

A circular cylindrical shell is subjected to circumferentially
varying edge loads given by the axial stress resultant

Eh

N\'() = O’xuh = - ) pS(e) (2.1)
4

where, with the notation of Fig. 1, o, is the axial stress, A is the
thickness, E is the elastic modulus, p is the loading parameter
(eigenvalue), S(#)—the piecewise-uniform circumferential
profile of the load suitably normalized by Sy = S(f = 0) =
I and

gt =V3(1 —v?) S (2.2)
with v standing for Poisson’s ratio, and R being the shell radius.
Notice that in (2.1) ¢ = po. where o, = Eh/g? is the
classical elastic bifurcation load in uniform axial compression.

Assuming a simple prebuckling membrane state of stress,
where the only active component is (2.1), we wish to find the
smallest value of p for which buckling is possible. To this
end we employ the elastoplastic version of the Donnell type
equations (Ore and Durban, 1992)

Exxu,xx + GXBM,HH + (Exﬂ + Gx9)v,.r6’ - E\'HW,X =0 (23a)
(Exo + G)lto + Gy oo + Egovgp — Eggwy = 0 (2.3b)

R\,
Exxw,xxxx + 2(Ex9 + 2Gx6) W 66 + EF)HW‘HOUH - 12<;> lExﬁu,x

+ Epfvy — w)] + 4E,g%pS(Dw.,, =0 (23¢)

Here (u, v, w) are the mid-surface velocities (Fig. 1) at buckling
(normalized with respect to R). The instantaneous moduli (E,,,
E.p, Eg, Gyg) are determined by the in-surface constitutive rela-
tions

d.\' = E\'xéx + Exﬂéﬁ (2461)
0"9 = Exgéx + Eg(;ég (2.4]))
T = 2Gxgéxg (240)

where (6., 0y, T.) and (&, €y, €4) are the usual in-surface
stress rates and strain rates, respectively, x is the axial coordinate
(Fig. 1) nondimensionalized with respect to R, and

E

1~ v

E, = (2.3)

2

Note that all three velocity components depend on (x, &).
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The boundary conditions that supplement Eqs. (2.3) are those
of simply supported ends, namely

u, =0 v=0 w=0 w,=0 at x=0
L
d == 2.6
and x = o (2.6)

Material behavior is modelled by the two small strain J,
theories of plasticity. For the flow theory we have, with the
standard notation,

S:jSklékl

2
¢

6y = 2Gey + Noyéy — 3(G — G)) (2.7)

where (G, \) are the Lamé constants, G, is the tangent shear
modulus defined by

1 1 1 |
_=_+3___
G G E E

with F, denoting the uniaxial tangent modulus, S; is the stress
deviator, and o, is the effective stress

(2.8)

2 3
oo =388

(2.9)

Specializing (2.7) for the uniaxial prebuckling state (2.1) we
get the instantaneous moduli

E.=H, 2+ 3 Ey = thf
+2v — 1
Eg=H 1" Gu=G (2.10)
where
4FE E
= > = (21 l)
(5~ 4v)n — (1 - 2v) E,
The rate form of the deformation theory reads
S..S, ¢
&y = 2G&; + Nyew — 3(G, — G) ik;—f“ (2.12)
where (G,, \,) are the secant Lamé-like moduli
E; By
= = - (2.13)
2(1 + vy) (1 +v)(1l —2v)

E, is the uniaxial secant modulus, and the plastic Poisson ratio
is defined by
1 1 E,
vy=——|-—v)—
2 2 E

The instantaneous moduli associated with (2.12) are

(2.14)

l+ 3 N
£, = H, 77_4—‘71' Eg = Hp,
+ —
Eo=H, %V——l Gu = G, (2.15)
where
- AL = E 216
B+ 2 —4v)n — (1 = ) E,

The instantaneous moduli depend on the level of the effective
stress which for our problem is given, via (2.1), by
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.

E (2.17)

? 1S(6)]

Thus, the eigenvalue p enters the coefficients of the partial
differential Eqgs. (2.3). For example, with the Ramberg-Osgood

characteristic
o o, \"
e=—=+ K=
E E

where ¢ is the total strain and (n, K) are material parameters,
we find

(2.18)

m=1+ nk(fE |S(9)|>,,, (2.19)

n—1
ne=1+ K(? \S(G)I) (2.20)

The problem lies in finding an eigensolution of Eqs. (2.3),
along with the boundary data (2.6), which is associated with
the minimal eigenvalue p. The difficulty in arriving at that
solution arises from the circumferential variation (#-depen-
dence) of the instantaneous moduli in (2.3). However, as we
shall see in the next section, when the load profile S(#) is
piecewise-uniform it becomes possible to obtain a piecewise
separation of variables solution of the governing eigenvalue
system.

3 The Eigenmodes

Consider the two segment loading

1 "‘0050590
S(0) =
£ o< 0 =21 — 6

With ¢ = 1 the distribution (3.1) describes pure bending, and
when € = 0 we have the case of a uniformly compressed axial
strip of width b = 2R0,.

Since S(8) is piecewise uniform, Eqs. (2.3) admit separation
of variables solutions of the form

(3.1)

u = A cos (kfix)e (3.2a)
v = B sin (kBx)e” (3.2b)
w = C sin (kBx)e” (3.2¢)

where (A, B, C) are constants, k is an integer, 8 = wR/L, and
p is to be determined separately for each segment. The field
(3.2) satisfies the boundary conditions (2.6). When substituted
in (2.3) we arrive at the algebraic system

[—(kB)*Ex + p’GulA + (kB)p(Ew + Gu)B

— (kBYEsC =0 (3.3a)
—(kB)p(Ew + G)A + [—(kB)’Gy + p*Es] B
— PEuC =0 (3.3b)

2

2
12<kﬂ><7§) Eu — 12,;(%) EuB

+ [(kﬁ)“EM ~ 2(kB)p*(Ew + 2G) + P Egp
R : 2 2
+ 12 % Eg — 4(kB)Y°Eyg*pS(6) | C =0 (3.3¢)

For a nontrivial solution it is required that the determinant of
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the system (3.3) should vanish. This leads to the characteristic
equation for the roots p

[Esp?* — 2(Ew + 2Gu)(kB)*p?

EE, ,
Gx() pa

+ Eq(kB)* — 4(kB)*Eog’pS(6)] X [Eeep4 - <
- 2E\'H> (kﬁ)zpz + Exx(kﬂ)4]

+ 4(kB)'Efg'pl =0 (34)

where

2
, 1 -

Pei = EZ

(EwEgy ~ E) (3.5)
The classical buckling load for an axially compressed isotropic
elastic shell, with §(8) = 1, is p = p, = 1. Here, however, it
is convenient to use (3.5) as a nominal reference which depends
on the eigenvalue p itself through the instantaneous moduli.

Equation (3.4) has 8 complex roots which will be labelled
as xp, (i=1,...,4) where p; = p, and p, = p,. The corre-
sponding eigenmodes are either symmetric or antisymmetric
with respect to § = 0. For symmetric buckling

4
u = cos (kBx) 2, C;a; cosh p,8

(3.6a)
i=1
4
v = sin (kBx) 3, C:b; sinh p;d (3.6b)
i=1
4
w = sin (kBx) 2. C; cosh p;# (3.6¢)
i=1
where
a = - %@ [Ewp? + Ex(kB)?] i =1, .4 (3.7a)
Pia; pi\ EEy 2
by = — = | =) = pik =1, .4 (3.7b
(kB) (P) G, PO (370)

and

E
P —_ E{)Hp4 . (GEO

x0

pa— 2Ex6> (kB)’p* + En(kB)* (3.8)

with P, =P(p=p)i=1...,4

It is important to note that the roots p; depend on the shell
geometric parameters R/h and L/ YRh, on the material proper-
ties, the eigenvalue p, the axial half waves number k, and the
load parameter £ defined in (3.1). Thus, a different velocity
field (3.6) will apply to each segment. For antisymmetric buck-
ling we can use (3.6) with the transformations sinh p;f — cosh
pi# and cosh p;6 — sinh p;6.

The equation for the eigenvalues p is provided by appropriate
continuity conditions at the interfaces 8 = *6,. Obviously, the
velocity w and its derivative w, should remain continuous. Also,
the resultants rates N, and N, cannot suffer a jump at the
interfaces. So both quantities

Ny = Egut, + Eg(vy — W) (3.9)
and
Nxﬁ = Gxﬁ(u,ﬂ + v‘x) (310)

should be the same on both sides of the generators = +6,
when evaluated for each segment. An interesting phenomenon
here is—with the exception of G, = G in (2.10) and the case
of the flow theory with linear hardening—the associated jump,
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along the interfaces, in the instantaneous moduli (E.., E4, Eg,
G) as determined by the loading (3.1). It is also required that
the effective shear resultant rate (Hoff, 1954 )

1 . -
Q‘én = E (MH,H - Mrﬁ‘x) + E M0x..r

1. .
=— (Myy ~ 2My,) (3.11)
R
remains continuous, Thus
—(EwW 0 + EggWops) — 4G oW 10 (3.12)

is continuous. (Recall that My, = —~M.,.)

Finally, the moment rate M, and the velocities (u, v) provide
three additional continuity conditions. For M, the relevant quan-
tity which should remain continuous at § = =6, is

Eow o + Eggw g (3.13)
Since the eigenmodes (3.6) are not periodic in the circumfer-
ential direction there is no guarantee that the appropriate
smoothness conditions at § = =7 will be met. For example,
symmetric buckling modes (3.6) should give wy = 0 at § =
+m, while antisymmetric patterns should give w = 0 at § =
+7. Solutions of the type (3.6), or its antisymmetric counter-
part, clearly do not satisfy those conditions and in order to
overcome that difficulty we introduce a new coordinate 8 de-
fined as
0=0-= (3.14)
so that at § = =6, we have § = = (7w — 8,) = *8,. The
symmetric solution in the segment 6, < 8 < 27 — 8, is now
written as

4
u = cos (kBx) Y, C¥a¥ cosh pi@

(3.15a)
i=1
4
v = sin (kBx) ¥, C#b¥ sinh p¥d (3.15b)
=1
4
w = sin (kBx) Y, C¥ cosh p¥@ (3.15¢)

i=1
where the symbol ( )* indicates quantities evaluated at that
segment. Antisymmetric modes are obtained from (3.15) with
the exchanges of sinh p*8@ to cosh p#8 and of cosh p#d to
sinh p#8.

Compliance with the continuity conditions along the inter-
faces at 8 = =8, (or § = ¥0,) leads to an algebraic eigenvalue
equation for p. Thus, for symmetric buckling modes, we have
at (8 = +46,, 0 = ¥0,) the following eight continuity conditions:
(1) continuity of u, v, w and w, from (3.6) and (3.15),

4 4
Y Cia; cosh p;fy — 3, C¥a¥ cosh prf, =0 (3.16)

i=1 i=1

4 4
Y. C:b; sinh p;8, + Y. C#b¥ sinh p#f, = 0 (3.17)

i=1 i=1

4 4
2 C,‘ cosh Pig() - 2 C‘,'l< cosh p,*g() =0 (3]8)
i=1

i=1

4 4
> C:p; sinh p;6, + 3, C¥p# sinh pFfy, =0 (3.19)
=1 i=1

(ii) continuity of Nj, Nys, Q¢F and My, from (3.9) - (3.10) and

(3.12)—(3.13),
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4
2 Cl—Eg(kB)a; + Ew(b;p; — 1)] cosh p,t,

i=1
4
- X Cr[-E}(kB)a}

f=1

+ Ef(b¥pF — 1)] cosh p#8, =0 (3.20)

4
2. C:iGyla;p; + (kB)b;] sinh p;f,
=t

4
+ Y C¥GHlarpk + (kB)bF] sinh p*8, = 0 (3.21)

i=1

4
Y Cil(Eyg + 4Gp)(kB)*p: — Egp?] sinh p;f,

i=1

4
+ 2 CFI(EN + 4GH)(kB)’p} — Efp}’] sinh pF8y = 0

i=1

(3.22)

4
Y. Cl=E.(kB)* + Egp}] cosh pfy — X, C¥[—E%L (kB)®
i=1

=1

+ Egp#?] cosh p#f, = (3.23)

Here, moduli (E¥, E%, Ef,, G#) are evaluated in the segment
0 < |~ 6] and p¥ (i = 1, ..., 4) are the corresponding
roots of (3.4) in that segment.

For a nontrivial solution of (3.16)-(3.23) we require that
the 8 X 8 determinant of that system vanish. This generates a
transcendental equation which can be solved numerically for the
smallest eigenvalue p. Repeating the analysis for antisymmetric
modes we arrive at a similar system but with the (cosh, sinh)
functions replaced by (sinh, cosh) in all equations.

4 Numerical Examples and Discussion

Consider first the simple case of pure bending where the load
profile in (3.1) is described with 6, = 7/2 and £ = 1. Thus, half
of the circumference is under compressive loads (2.1) while the
other half is in tension of the same magnitude. For given mate-
rial properties, loading and geometric parameters the solution
begins by assuming a value for the axial wave number & and
guessing an initial value for the buckling eigenvalue p. Next,
we calculate the instantaneous moduli from (2.10), or (2.15),
and determine the corresponding roots of (3.4) in each of the
loaded segments. Once the roots p; and pi* have been found it
is possible to evaluate (a;, b;) and (a}, b¥) from (3.7) - (3.8)
and finally calculate the determinant of the system (3.17)-
(3.23) along with its antisymmetric counterpart. The procedure
is then repeated iteratively with a new guess of the eigenvalue
p until the governing 8 X 8 determinant vanishes. The method
has to allow for all competing modes to be considered by em-
ploying a search procedure among different values of k to trace
the smallest possible eigenvalue p within the entire space of
symmetric and antisymmetric eigenmodes. The essence of this
procedure lies in tracing the smallest root of the § X 8 determi-
nant and satisfactory convergence was achieved to three sig-
nificant figures in the value of p.

Calculations were performed with three materials character-
ized by the following Ramberg-Osgood parameters:

Commercial AL E = 6.87-10*MPa v = 0.3
AL 2014 T6 E=69-10"MPa v = 0.33
ST AIST 4340 E =2.01-10°MPa v = 0.28

K=127-10"° n =372

K =6.08:10" n=1562

K=1761'10% n=276
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Table 1 Critical eigenvalues in bending and in uniform compression. In
all cases the axial wave number is k = 2.

Material Flow Theory Deformation Theory
Bending Uniform Bending Uniform
Commercial AL 0.073 0.069 0.042 0.041
AL 2014 T6 0.502 0.490 0.487 0.485
ST AIST 4340 0.664 0.642 0.660 0.641

Results for a representative shell with L/R = 1 and R/h = 50,
shown in Table 1, reveal that deformation theory predictions
are consistently below flow theory results and that critical values
of p in bending are only slightly higher than in uniform com-
pression. Recall, by comparison, that in elastic buckling p = 1
for both uniform compression and pure bending. These findings
are similar to the results obtained by Reddy (1979a, 1979b).

Our next example is the case of axial compression over a
finite strip § < |6,| with the other zone remaining stress free
(Fig. 2). Here we have in (3.1) that £ = O but the solution
procedure detailed earlier remains essentially unchanged. Figure
3 displays the critical eigenvalues, over a range of loaded band
widths, for shells with L/R = 1 and R/h = 50. Also shown in
Fig. 3 are the buckling values of p for an elastic shell with v
= (.3. That curve is in complete agreement with the results
obtained by Hoff et al. (1964 ).

As expected, flow theory predictions in Fig. 3 are higher
than deformation theory results for critical loads. The difference
between the buckling loads obtained from the two plasticity
models increases as the width of the loaded strip becomes
smaller. For wide strips, however, the critical eigenvalue ap-
proaches, with both theories, its corresponding uniform load
value. The difference between the predictions of flow and defor-
mation theories increases with decreasing 6, and with decreas-
ing hardening exponent n.

It is reasonable to expect that when , becomes very small
the resultant compressive load should approach at buckling an
asymptotic value. A convenient measure for elastic buckling of
circular cylindrical shells under concentrated axial loads (Libai
and Durban, 1977) is the parameter & defined by (not to be
confused with the axial wave number in (3.2))

poi B
g .
where P is the buckling force. Libai and Durban (1977) esti-
mated a lower bound on the value of k, in elastic buckling, to
be k = 1.337. Comparing (4.1) with the resultant axial force
in our problem, namely

4.1)

EhR

P = 200p — (4.2)
we find the relation
> L >
Nxcx \ Nxo

\ Al »

== re0 >

[— T

[ [ 2 J

Fig. 2 Uniform axial compression over a finite strip 8 < |0,|
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Fig. 3 Critical eigenvalues for axial loading along a finite axial strip. R/
L =1, R/h = 50. Elastic curve is for v = 0.3. F~flow theory, D-deforma-
tion theory.

k=2g8p (4.3)
The limit of (4.3) as §, = 0 has been evaluated from previous
calculations for the elastic shell, with L/R = 1 R/h = 50 and
v = 0.3. Calculations with values of , up to 10™* (degrees)
have confirmed the limit of k = 1.99 which is about 49% higher
than the estimate of Libai and Durban (1977). Values close to
k = 1.99 have been obtained over a range of shell geometries
by varying L/R and R/h and so we can put (4.1) in the form,
with v = 0.3,

En®

P ~09% —
Rn

for the elastic buckling of the shell under concentrated forces.

The dependence of k on 6, is traced in Fig. 4 for the same
examples shown earlier in Fig. 3. Flow theory curves approach
approximately the common limit of k ~ 1.9 for all three metals
as 6y = 0. This behaviour can be explained by considering
the asymptotic values of the flow theory instantaneous moduli
(2.10)-(2.11) in the deep plastic range. Indeed, when 7, be-
comes very large we find the asymptotic expressions

(4.4)

2E

E\’X-_)
’ 5~ 4v

X6

5 - 4v

4F
5 —4v

Eag i Gxg =G (45)

which are in fact constants independent of plastic properties.
By comparison, the initial elastic values of the instantaneous
moduli are
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Fig. 4 Concentrated load parameter k for various values of 6,. Solid
lines (D) are for deformation theory, broken line (F) are for flow theory.
Algo shown in the elastic curve. Notice that all flow theory curves con-
verge to approximately the same value of k.

g B g VE
1—-v
Egg = (46)
However, since the eigenvalue p depends only on (plastic/
elastic) moduli ratio (e.g. E,/E)—as is apparent from the
characteristic Eq. (3.4) and the buckling determinant (3.16) —
(3.23) —flow theory curves in Fig. 4 should approach approxi-
mately a common limit, as 6, — 0, with only slight differences
due to variations in Poisson’s ratio. Moduli (4.5) represent a

limiting state of an anisotropic elastic solid with constant mod-
uli. By contrast, no definite limit for & has been detected with

Journal of Applied Mechanics

deformation theory analysis (Fig. 4) even for fairly small values
of 6,. The deformation theory instantaneous moduli (2.15) -
(2.16) decrease monotonously with advancing plasticity and
accordingly parameter k in Fig. 4 does not appear to converge
to a finite limit when 8, — 0. However, Fig. 4 amplifies the
constitutive sensitivity associated with predicting plastic buck-
ling under concentrated loads, suggesting, in particular, that a
nonlinear stability analysis is required to investigate problems
of that nature.
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ics is presented. Euler-Lagrange differential equations are transformed into integral form
with respect to sinusoidal weighting functions. General solutions are represented by
complete sets of functions without being concerned with boundary conditions in advance
while all boundary conditions are satisfied in the process. The convergence of results is

assured, and the procedure leads to pointwise exact solutions. A number of simple
structural mechanics problems of stress, buckling, and vibration analyses are presented
for illustrative purposes. All results have verified the exactness of solutions, and indicate
that this unified method is simple to use and effective.

Introduction

Structural mechanics problems of beams, plates, and shells are
generally concerned with ordinary and two-dimensional differen-
tial equations with associated boundary conditions for stress, buck-
ling, and vibration analyses. These equations, derived from vari-
ational principles, are Euler-Lagrange equations. Well-established
theories for these structural components used satisfactorily in
practical applications can be found in an uncountable number of
books such as those in Timoshenko and Woinowsky-Kreiger
(1959), Washizu (1968), Boresi and Sidebottom (1985), Ross
(1996), and Hjelmstad (1997). Various numerical methods in
structural mechanics may be found in Bittar and Sejnoha (1965).
While finite element and boundary element methods are powerful
tools for analyzing large structural systems, analytical methods are
more desirable for investigating fundamental behaviors and char-
acteristics of structural components. Although the Fourier series
has probably been used the most in boundary value problems, its
conventional applications in structural mechanics have often been
restricted to specific classes of boundary conditions. The present
method broadens the use of the Fourier series. While the Ritz-
Galerkin and other energy-based methods provide effective pro-
cedures for approximate solutions, functions reasonably represent-
ing structural response or the trial functions must be selected for
each case individually. Consequently, the selection or generation
of trial functions may become difficult because of boundary con-
ditions, especially for structures with moving or elastic end sup-
ports. Another disadvantage of these approximate methods is that
their procedures often involve inconvenient or cumbersome inte-
grations and differentiations of functions in the process. Also, as
solutions of these approximate methods converge at best in energy,
they do not assure pointwise accuracy. Hence, they are generally
used for buckling and free-vibration analyses but not for stress
analysis. In this paper, a unified procedure leading to exact solu-
tions of structural mechanics problems with all types of boundary
conditions, and a number of simple structural mechanics problems
involving ordinary differential equations in stress, buckling, and
vibration analyses for illustrative purposes are presented.
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General Concept and Basic Relations

For the convenience of discussion, problems involving ordinary
differential equations with all types of boundary conditions are
considered. The general concept of the method of analysis is to
require the governing Euler-Lagrange equations for structural me-
chanics problems be satisfied with respect to a complete set of
sinusoidal weighting functions, and the general solution of the
dependent variable is represented by a complete set of functions.
While any type of complete set of functions can be used without
being concerned with the boundary conditions in advance, only
Fourier and power series are used in this study. The governing
differential equations for boundary value problems in structural
mechanics may be given in the following general form:

H(W) - Q=0 M

in which the linear differential operator H may have variable
coefficients which are assumed to be in the form of x/ with x being
the spatial coordinate and j being an integer in this study; the
dependent variable W may represent displacement or stress in the
structure, and Q may be the loading. Equation (1), representing
Euler-Lagrange equations, along with boundary conditions, is de-
rived from the variational principle in structural mechanics. The
procedure of the analysis method is to multiply Eq. (1) by sin a,.x
or cos a,x for m = 0 to oo first, and then integrate through the
interval of the region from x = 0 to L for each m as follows:

L
j [H(W) — Q](sin a,,x or cos a,x)dx =0 )
0

where a,, = ma/L. Integrating Eq. (2) by parts successively, and
defining

ow;

jm jm

L
or We) = J X' W(sin a,x or cos a,.x)dx
0

L
W(sin «,x or cos a,x)dx 3)

(W”l or le:l) = \[

0

in which the overhat denotes transformed quantities and x’ is
related to the coefficients of the differential operator H, one arrives
at the following transformed equation in general form:

/(I)’ W’ll AL ] Qm! QT’I)
+g(Wi, W) =0 (@)

S(Wo, Wi, Wo, Wi,
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where subscripts O and 1 of physical quantities denote the corre-
sponding quantities at x = 0 and L, respectively, and primes
denote differentiations with respect to x. Hence, the governing
differential Eq. (1) is transformed to Eq. (4) in integral form of W.
Some of the quantities in the function f in Eq. (4) may be given
values while others are not. For those which are not specified
quantities, they are determined eventually when the boundary
conditions associated with Eq. (1) are used. Since the linear
differential operator H may involve a combination of derivatives
of various orders, derivatives of W up to fourth degree transformed
with respect to sin «,x for potential applications are listed as
follows:

Law N
e sin a,xdx = —a, W7,
0
Law _
e sin a,xdx = —a,[(—1)"W, — W,] — a’W,,
0

Ladw
T sin a,xdx = —a,[(—1)"W, — W] + alW¥
0

d W M " n ”
W Sm a,,,xdx = —Oém[(—’l) 'Wi — Wy
0

+ ail[(_l)mwl - WO] + a:thm' (5)

On the other hand, when cos «,x as weighting functions are used,
the corresponding list becomes

L
f Wdx = W}
0
Ler d(r I)W d(r 1)
dx’ dx = A ) - PraCET (0) ©6)
0
form = 0,
j — cos a,xdx = [(—1)"W, — W] + a,W,,
f wxdx = [(=1)"W| — Wi] — L W3,
W "
dx m _l)mwl - W
0
- [(—I)WWI WO] n m
Ldtw
j T cos apxdx = [(—1)"W{~ Wi
0

= a,[(=1)"W) = Wi] + o, W),
D

for m > 0. For the function Q,

L L
f Q(x) sin (medx = Qm’ f Q(x) cos adex = Q?:l (8)

Journal of Applied Mechanics

for m = 0 with Q, = 0. The associated boundary conditions at
x = 0 and L are

Bi(W)=0 9)

and the range of k depends on the order of H. At this stage, it is
seen from Eq. (4) that there is the unknown function W in the
function g, and some known and unknown quantities involved in
the function f. Representing W by a complete set of functions
having unknown coefficients A, without concerning the boundary
conditions, one arrives at a system of linear algebraic equations
from Eq. (4) for the unknown coefficients A, and quantities in f. It
may be noted here that when the governing differential equation
has constant coefficients and Fourier series is used to represent the
dependent variables, A, for each n may be explicitly expressed in
terms of the quantities in the function f because of orthogonal
properties of sinusoidal functions. After satisfying all boundary
conditions, one arrives at the final solution in Fourier series form.
Otherwise, one needs to solve a sufficiently large system of equa-
tions to arrive at solutions with desired accuracy. Since a complete
set of functions is used to represent the general solution and all
boundary conditions are enforced during the process, convergence
of solutions is assured and the final solutions are exact implicitly.
In this study, only Fourier and power series representations of the
general solutions are considered. While Fourier series used for
general solutions may take the advantage of orthogonality proper-
ties, other types of functions may potentially give more direct
solutions. When power series is used to represent the general
solution, the following quantities may be involved in the proce-
dure:

L L
Son = J x"sin a,xdx, C,, = f x" cos a,,xdx  (10)
0 0

which can be readily generated. For n = 0 and 1 withm = 1,

]IIIL
(-1 -

m

mO = [1 - ( )m] Sml = (11)

2

COO = L’ CmO = O’ COI = 75

Cm =1[(— 1)"'—1] (12)

The remaining ones, for m = 1 and n = 2, can be determined
from the following recurrence relations:

AR 5

mn = ( ) a, - Olf,, min—2) ( )
Ln+1 n+ l

S n+1)y — _( l)m TCM" (14)
m n-1 n(n — 1)

mn ( 1) - L -7 Cm(an) (]5)

n+1
Cm(n+1) = - T Smn- (16)

In what follows, several simple examples are presented solely
for illustrating the procedure and verifying the exactness of solu-
tions. In particular, more detailed discussions involving Fourier
series and polynomial representations of general solutions as well
as analysis procedures are given in the first example which is the
simplest class of structural mechanics problems where explicit
exact solutions are readily available. Other examples involve var-
ious types of boundary conditions, including elastic support, and
differential equations with constant and variable coefficients.

JUNE 1999, Vol. 66 / 381

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



IMustrative Examples

Example 1. A uniform bar, fixed at x = O and free atx = L,
under an axial force P at x = L is considered. The differential
equation governing the internal axial force N is

w_ 0 17
i an
with N = P atx = L as the boundary condition. Clearly, the exact
solution is N = P throughout. For the present procedure, Eq. (17)
is first multiplied by either sin e, x or cos & ,x, and then integrated
by parts through the length of the bar. The general solution
represented by Fourier cosine, Fourier sine and power series are
presented as Schemes 1, 2, and 3 here for illustrating the proce-
dure.

Scheme 1:  When sin a,,x as weighting functions are used, Eq.
(10) is multiplied by sin «,x and then integrated from x = O to L,
resulting in the following transformed equation:

L
JNcosanlxdx=0 for m=1,2,3,.... (18)
0

Representing the general solution of N by a Fourier cosine series,

=)

N = Ay + E A, oS a,x

n=1

(19)

and substituting Eq. (19) into Eq. (18), one finds A, = 0. Hence,
N = A,. By using the boundary condition that N = P at x = L,
one obtains the exact solution N = P throughout the bar.

Scheme 2: When cos o,x are used as weighting functions, Eq.
(17) is multiplied by cos «,x and then integrated from O to L. As
a result, No = N, when m is taken to be 0. For m > 0, the

transformed N becomes

L 1
N=J N sin amxdx=&—[N0— (=1)"N,]. (20)
0 m

Using the Fourier sine series for N,

®

N = 2 A, sin a,x

n=1

@D

and substituting Eq. (21) into Eq. (20), one obtains for each m,

L

EAIIS"HI = (16)

1
a—,,,[NO_ (_1) Nl]-

Using the result Ny = N, for m = 0 and the boundary condition
that N = N, = P at x = L in Eq. (22), we obtain

2
Ay=—[1=(=1)"]P. (23)
Using Eq. (23), the solution given in Eq. (21) becomes
N= Pi 2 1 1)"] si 24
- ':1’!77[ ( )]Slnanx' ( )
Knowing the following series identity,
i 2 1 —1)"] si =1 2
= (=DTsinax=1, (25)

n=1
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the exact solution of N = P is recovered from Eq. (24) in
conjunction with Eq. (25). While the series identity such as the one
given in Eq. (25) is obvious for this simple problem, series in-
volved in other complex problems may not be easily identified.
However, it should be noted that the solution, though in series
form, is implicitly exact.

While either sine or cosine functions can be used as weighting
functions to give the exact solution, the use of sine functions in
Scheme 1 is obviously more direct than the use of cosine functions
in Scheme 2 for this problem. Inasmuch as solutions of certain
structural mechanics problems are or may be implicitly exact in
polynomial forms, it may be more effective to represent the gen-
eral solutions by power series. The subsequent Scheme 3 is pre-
sented for illustrating the use of polynomials.

Scheme 3: Representing N by the following power series with
sin a,x as weighting functions,

N=> Ax", (26)

0

and substituting Eq. (26) in Eq. (18) with sin «,x as weighting
functions in conjunction with Eq. (10), one arrives at

D Coh, =0 7

n=1

form = 1, 2, 3, ... o which represents a set of homogeneous
algebraic equations. As aresult, A, = 0 forn = 1 to % except A,.
Hence

N=A,=P (28)

when the boundary condition at x = L is used. This is the exact
solution of the problem. On the other hand, if cos a,x are used as
weighting functions, Eq. (20) becomes the transformed equation to
be solved for N. Substituting Eq. (26) into Eq. (20) form = 1, 2,
3, ..., one arrives at the following system of algebraic equa-
tions:

1 . 1
— 1= (=D"A¢+ 2 Sy =—[1 = (=1)"IP (29)

n=i

which may be written as

1 @
Im[l - (—1)m]Aﬂ(; + 2 SmnAn =0

n=1

(30)

form = 1, 2, 3,... ©, where A5 = A, — P. Equation (30)
represents a system of homogeneous algebraic equations. Hence
A, = 0forn =1 towas well as A = 0 from which one obtains

Ay=P 31

and the exact solution N = A, = P is recovered again according
to Eq. (26).

For this simplest example, all of the various schemes presented
give the exact solution explicitly. This should be considered as an
exception rather than a rule, and the solutions would generally be
implicitly exact in series form. However, the detailed steps pre-
sented in this example have provided an illustration for the concept
of the present analysis method. Presentations of these various
schemes show that either sine or cosine weighting functions in
conjunction with Fourier or power series solutions may be used
without being concerned with boundary conditions in advance
while all boundary conditions are satisfied in the process. In
principle, there is no restriction in representing general solutions in
other potentially more convenient forms which would naturally
depend on the nature of problems concerned. On the other hand,
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one may use one type of series solution such as the Fourier series
for all structural mechanics problems with any supporting condi-
tions. Hence, the present procedure providing assured exact solu-
tions is simpler and has broader applicability than other approxi-
mate methods such as the Ritz-Galerkin procedure.

To further illustrate the procedure and to demonstrate its effec-
tiveness and exactness of solutions on higher-order differential
equations, Fourier series representations of general solutions are
used in the remaining examples 2-5 which involve second to
fourth-order differential equations of constant coefficients. Power
series solutions are used in Example 6 for differential equations
with variable coefficients.

Example 2. Same problem as Example 1, except the objective
is to determine the longitudinal deformation of the bar from a
displacement formulation. The differential equation governing the
longitudinal displacement U of the bar is

Y =0 32
dx2 - Y. ( )
The boundary conditions are
U=0 a x=0 (33)
EA w_ P =L 34
i at x= (34)

where FA is the extensional stiffness of the bar. The exact solution
of this problem is

U= bx 35
= FA (35)
If sin a,x are used as the weighting functions in the present
procedure, Eq. (32) is transformed into the following equation for
each m:

am[(—l)mUl - UO] - a%xl_]m =0 (36)
where subscripts O and 1 correspond to x = 0 and L, respectively,
and an overbar denotes the transformed U with respect to sin «,.x
as weighting functions, Knowing that U, = 0, and representing U
by the following Fourier sine series,

®
U= E A, sin a,x

n=1

(37)
one obtains from Eq. (36)

A, = 1) 2 U 38

n ( ) na 1 ( )

The derivative of U given in Eq. (37) accounting for the end
quantities is

@

dU Ul - Uo %

=1+ § D* cos a,x (39)
2

Di‘: = Z [(—l)nUl - UO] + anAn' (40)

Discussions on the differentiation of Fourier series for a function
defined on end points can be found in Bromwich (1965) and
Tolstov (1965). By satisfying the boundary condition (34) using
Eq. (39) in conjunction with Eqs. (38)~(40), and U, = 0 given in
Eq. (33), one arrives at D* = 0, and

PL

Ui=77. @1
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Using Eq. (38) in conjunction with Eq. (41), the general solution
given in Eq. (37) becomes

U= h i )" 2 s 42
=~ Ea - (—1) a, sin a,x. (42)
Knowing the following series identity,
- 2
-> (—1)";—sin a,x = x, (43)

n=1

the exact solution U = Px/EA is recovered from Eq. (42) when
Eq. (43) is used.

Example 3. Elastic Buckling of Bars: The governing differ-
ential equation is
d*‘w a*w

El =7 +P—5=0

dx* dx (@4)

where W is the transverse deflection, EI is the flexural rigidity, and
P is the axial load. The critical load parameter

A pL 4
depends on supporting conditions. For this example, sin a,x are
used as weighting functions for demonstration, though one may
use cos a,x as weighting functions as well. Equation (44) is
transformed in the following equation for each m after it is mul-
tiplied by sin «,x and then integrated by parts from x = 0 to L,
successively:

a\ 2 -
ol (z) (m* = W, = a,[(-1)"W!— W¢

T 2
+ [A(Z> @y — afn][(*l)’"Wl ~ Wol. (46)

A bar having fixed-hinge supports as a representative case is
considered for illustrating the procedure. For such a case, W, =
W, = W' = 0, one obtains from Eq. (46)

3

Wo.  (47)

L
W, = j W sin a,xdx = — m
0

Representing

=)

W= 2 A, sin a,x

n=1

(48)

one obtains A, by substituting Eq. (48) into Eq. (47) as follows:

2L?

BT e VI

49)
By requiring zero slope boundary condition at x = 0 using Eq.
(48) in conjunction with Eq. (49) and zero displacement at both
ends, one arrives at

212
- F W(')'B* = (50)
in which
c 1
B*:En_w(n2—)\)=0 (51)

n=1
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becomes the buckling equation of the problem. The critical load
parameter is found to be

A, = 2.0499 (52)

which should be considered as the exact solution as the standard
value of A, = 2.05 is given in almost all text books on mechanics
of solids.

For bars having other types of boundary conditions, the buckling
load can be determined following the same procedure through Eqs.
(46) and (48) using the same series representation of W. It may be
noted that for Ritz-Galerkin procedure, different types of trial
functions must be individually generated or selected for the bar
with different boundary conditions.

Example 4. Flexural Vibration of Beams: The amplitude W
of the harmonic motion of a beam is governed by

a‘w

dx*

~B‘W=0 (53)

where B* = pw’/EI, p is the mass density, and w is the circular
frequency. If cos o, x form = 0, 1, 2, . . . o are used as weighting
functions, Eq. (53) is multiplied by the weighting functions and
then integrated successively from x = 0 to L, one arrives at

ol — an[(=1)"Wi = Wi
+ (o, —

[(=1)"W7—
BHW, =0 (54)

form = 0, 1, 2, ... ©. Representing

4 w©
W= 0+ZA COS X

a=1

(55)

and substituting Eq. (55) into Eq. (54), one obtains A, using the
definition of the transformed quantity W% given in Eq. (3). The
general solution of W is found to be

1 2
W= gap W-wi - 7 Wi

5 2 {{(—=1)"wy—

1
~a[(-1)"W| - g C0s . (56)
The detailed expression for A, and A, can be readily identified by
comparing Egs. (55) and (56).

Wi} =

Case 1. Free-Free Beams: According to the boundary con-
ditions for this case, W = W5 = 0, and Wy = — W/ and W/ for
symmetric and antisymmetric modes of deformation, respectively.
From Eq. (56), one arrives at

2

=—W'E[< D"+l g

a=I

(57

~——7 COS &,X

where ¢ = 1 and —1 correspond to symmetric and antisymmetric
modes of deformation, respectively. While the general solution
given in Eq. (57) satisfies zero shear force at both ends, zero
moment corresponding to the second derivative of W with respect
to x must be satisfied at x = 0 and L. Second derivative of W with
respect to x accounting for the quantities at end points results in

dW

de (58)

2
L Wa-—p* 2[( 1)+C] 34

n=1

The frequency equations corresponding to symmetric and antisym-
metric modes of deformation by setting Eq. (58) to zero fora = 1
and 0, respectively, are as follows:

384 / Vol. 66, JUNE 1999

= 1
1 —2p* =0 59
P E@”)“‘P“ | (59)
2p4§“—;—=0 (60)

~ 2n - 1*-p*
in which

BL

p=?. 61)

The first four frequencies for p are found from Eqgs. (59) and (60).
They are 1.5057, 2.4998, 3.5001, and 4.5000, respectively. These
results, which agree with solutions given in textbooks such as Tse
et al. (1978) should be considered as exact solutions.

The beam is considered to be
= WY = 0 for the

Case 2. Cantilever Beams:
fixed at x = 0 and free at x = L. Since W}
cantilevered beam, Eq. (56) reduces to

W= - Wy

B'L

+ = 2[W’”+(1 2]

n=]

1
—7 cos a,x. (62)

While W given in Eq. (62) satisfies the zero slope boundary
condition at x = 0 and zero shear condition at x = L, it must
further satisfy the following boundary conditions:

d*w
W=0 at x=0, =0 at

pre x=L.

(63)

Substituting Eq. (62) into the conditions given in Eq. (63), one
obtains the following two homogeneous algebraic equations:

R/ Y+R,Wi =0 (64)

R21Y + R22WII =0 (65)
in which

L\? 1 & 2
— s 1" = —— 4
Y (W) o Ru= zn“—p“
“ opt
n=Ry = E( R22~—1+"§n4_[)4.

For nontrivial solutions, one requires

RyRy — RipRy =0 (66)

which is the frequency equation for cantilever beams. The first four
values of the frequency parameter, p, are found to be 0.5969,
1.4942, 2.5003, and 3.5000. They should be considered as exact
solutions as they agree with solutions given in textbooks on
vibration such as Tse et al. (1978).

Case 3. Fixed-Hinged With Rotational Restraint Beams: The
fixed end at x = 0 is considered for this case. If one continues to
follow Eq. (56) on the basis of using cos «,x as weighting
functions and Fourier cosine series for W for which Wi = 0, one
needs to satisfy three additional conditions that W = 0 atx = 0
and L, and

d*w dw
El —= —-K— at

dx? dx x=1L
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to solve the problem, where K is the coefficient of the end restraint,
On the other hand, if sin «,x are used as weighting functions and
Fourier sine series is used for W, the general solution, with W, =
W, = 0 for this case becomes

52t i
W= 2 e — (=Wl sina,x  (67)
n=1
and one only needs to satisfy two additional conditions. They are

dw

s =0 at x=0 (68)
K a_ —EIW! at x=1L (69)
dx
which lead to
enWo+ cpaWi=10 (70)
ey Wit e Wi =10 an
in which
- 2 D, cp= E (=1)'D,
n=1 n=]
4 ®
Keys Cp %— K 2 D,
=1
= n?
EIT*K = KL, D,= e (72)
and the frequency equation becomes
C11Cx — C12Cy = O, (73)

The first four values of the frequency parameter p = BL/7 for
fixed-hinged beams according to results given in Tse et al.
(1978) are 1.25, 2.25, 3.25, 4.25. The present results, corre-
sponding to a very small coefficient of end restraint £ = 1,
are found to be 1.255, 2.255, 3.255, 4.255. For a large value
of K = 2000, the first four values of p are found to be
1.501, 2.493, 3.491, 4.488 which approach 1.506, 2.50,
3.50, 4.50 for fixed-fixed beams based on the results given
in Tse et al. (1978). For K = 50, the first eight values of p
are found to be 1.369, 2.333, 3.315, 4.304, 5.297, 6.293,
7.289, 8.287 which should be considered as exact solutions.
They may be used as benchmark solutions for future refer-
ence. It may also be noted that because of the elastic end
constraining condition involved in this case, it is not convenient
to use some of the approximate methods such as the Rit