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Plastic Yield!.n.gnaS a 
Phase Trans   o 
A statistical mechanical theory of forest hardening is developed in which yielding arises 
as a phase transition. For simplicity, we consider the case of a single dislocation loop 
moving on a slip plane through randomly distributed forest dislocations, which we treat 
as point obstacles. The occurrence of slip at the sites occupied by these obstacles is 
assumed to require the expenditure of a certain amount of work commensurate with the 
strength of the obstacle. The case of obstacles of infinite strength is treated in detail. We 
show that the behavior of the dislocation loop as it sweeps the slip plane under the action 
of a resolved shear stress is identical to that of a lattice gas, or, equivalently, to that of 
the two-dimensional spin-~ Ising model. In particular, there exists a critical temperature 
Tc below which the system exhibits a yield point, i.e., the slip strain increases sharply 
when the applied resolved shear stress attains a critical value. Above the critical 
temperature the yield point disappears and the slip strain depends continuously on the 
applied stress. The critical exponents, which describe the behavior of the system near the 
critical temperature, coincide with those of the two-dimensional spin-~ Ising model. 

1 Introduct ion 

The aim of this paper is to show that yielding in crystals may be 
understood as a phase transition, and to establish conceptual links 
between theories of crystalline slip and the theory of critical 
phenomena. 

A phase transition occurs in a system when there is a singularity 
in its free energy or one of its derivatives. Phase transitions 
manifest themselves as sharp changes in the properties of the 
system. Examples of phase transitions are the evaporation of a 
liquid into gas, the transition from a normal conductor to a super- 
conductor, or from paramagnet to ferromagnet. The theory of 
critical phenomena is a well-developed discipline which delves on 
the commonalities in the behavior of seemingly disparate physical 
systems near their critical points. The theory has been successfully 
applied to a wide variety of systems and has led to the identifica- 
tion of universality classes obeying well-defined scaling laws (see, 
e.g., Stanley (1971), Binney et al. (1992), and Chaikin and Luben- 
sky (1995)). 

By contrast, the full potential of the theory of critical phenom- 
ena as regards the formulation of macroscopic constitutive theories 
for solids, and particularly to the understanding of crystal plastic- 
ity, is far from realized at present. The classical KTHNY theory on 
the statistical mechanics of ensembles of linear elastic dislocations 
in crystals (Kosterlitz and Thouless, 1972, 1973; Nelson and 
Halperin, 1979; Young, 1979; Chaikin and Lubensky, 1995) was 
mainly intended as a theory of defect-mediated melting and did not 
address issues related to the macroscopic plasticity of crystals. In 
particular; the KTHNY model of a dislocated crystal, which may 
be understood as a vectorial extension of the Coulomb gas model 
(Kosterlitz and Thouless, 1972, 1973), is not appropriate for the 
study of yielding, plastic flow, and hardening of crystals, as these 
phenomena are macroscopic manifestations of the motion of dis- 
locations and their interaction with obstacles. More recently, Chr- 
zan and Mills (1993, 1994) have argued for a connection between 
rates of hardening and critical exponents in L12 intermetallic 
compounds, and for the kind of scale invariance which accompa- 
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nies criticality in the dislocation pinning-depinning transition in 
those materials. Chrzan and Mills pioneering work provides com- 
pelling evidence for a link between plastic yielding and criticality. 

The work presented in this paper endeavors to demonstrate this 
link for the classical forest-hardening mechanism (e.g., Kov~ics, 
1967; Kov~cs and Zsoldos, 1973; Cuitifio and Ortiz, 1992). In the 
forest-dislocation theory of hardening, the motion of dislocations, 
which are the agents of plastic deformation in crystals, is impeded 
by secondary--or "forest"--dislocations piercing through the slip 
plane. As the moving and forest dislocations intersect, they form 
junctions of varying strengths which may be idealized as point 
obstacles. The strength of some of these obstacles has recently 
been computed by Baskes et al. (1997) and Phillips and Shenoy 
(1998) using atomistic models. Moving dislocations are pinned 
down by the forest dislocations and require a certain elevation of 
the applied resolved shear stress in order to bow out and bypass the 
pinning obstacles. The net effect of this mechanism is a steady 
increase in the critical resolved shear stress required for macro- 
scopic slip to operate, a phenomenon known as "hardening." 

The simplest analytical treatments of the forest-hardening mech- 
anism are based on a line-tension approximation. Thus, in these 
approaches long-range interactions between dislocation are en- 
tirely neglected. Despite its apparent coarseness, this approxima- 
tion may be closer to reality than other formulations which pain- 
stakingly account for the interaction energy between dislocations, 
but fail to account for the formation of low-energy microstructures. 
Begin by recalling that the net Burgers vector--or net 
"charge"--of a dislocation ensemble must be zero. For instance, in 
multipolar arrangements this condition implies that there is an 
equal number of positive and negative dislocations in the ensem- 
ble. In addition, dislocations often tend to attain low-energy con- 
figurations (Hansen and Kuhlmann-Wilsdorff, 1986; Kuhlmann- 
Wilsdorf, 1989). These are arrangements in which the long-range 
stress field of the dislocations vanishes. Roughly speaking, this is 
accomplished by surrounding each dislocation segment with seg- 
ments of the opposite sign, i.e., by screening the segment; or by 
arranging dislocations as low-angle grain boundaries, dipolar 
walls, and other configurations for which the attendant plastic 
strains are compatible (Ortiz and Repetto, 1998). Under these 
circumstances, the remaining energy of the dislocations, or "self- 
energy," is proportional to the dislocation length, as presumed in 
the line-tension approximation. 

One of the most successful analytical treatments of the forest- 
hardening mechanism was advanced by Kocks (1964) (see also 
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Ortiz and Popov (1982) and Cuitifio and Ortiz (1992)), and is 
sometimes referred to as Kock's percolation model. In this ap- 
proach, the applied resolved shear stress is equilibrated by the line 
tension of the dislocations. The critical stress Tc required for a 
dislocation segment to bypass a pair of pinning point obstacles is 
proportional to the line tension and inversely proportional to the 
distance between the obstacles. If the point obstacles are assumed 
to be randomly distributed over the slip plane, it follows that ~'c 
itself is a random variable with a well-characterized probability 
density function f(l-c) (Grosskreutz and Mughrabi, 1975; Mugh- 
rabi, 1975). As the resolved shear stress is raised from ~-to ~- + Ar, 
all dislocation segments with % in the interval [~-, ~- + Az] become 
unstable and effect random flights. The length of these flights, and 
the attendant slip-strain increment, was estimated by Kocks (1964) 
by imagining that the dislocation segments move over a one- 
dimensional "obstacle course" consisting of obstacles of random 
heights distributed asf(l-c). In particular, the segments arrest when 
they reach obstacles of strength greater than r + At". 

It is clear that the one-dimensional character of this analysis 
represents a sweeping simplification as regards the geometry and 
topology of moving dislocation loops. For instance, an expanding 
dislocation loop may become pinched, with the result that the 
number of connected components of the loop is increased by one. 
Conversely, loops can shrink to a point or be left behind as debris 
surrounding point obstacles, or Orowan loops. Evidently, these 
intricacies are not accounted for in one-dimensional renditions of 
the forest-hardening mechanism. More detailed analyses of forest- 
hardening have invariably been based on numerical methods 
(Foreman and Makin, 1966, 1967). Despite these limitations, 
Kock' s percolation model, or subsequent extensions thereof (Ortiz 
and Popov, 1982; Cuitifio and Ortiz, 1992; Kocks et al., 1991) has 
provided an effective basis for describing the hardening of mate- 
rials such as fcc metals (Cuitifio and Ortiz, 1993; Cuitifio, 1996), 
Llz intermetallic compounds (Cuitifio and Ortiz, 1993), and oth- 
ers. 

The theory developed in this paper overcomes the topological 
restrictions inherent to one-dimensional treatments of the forest- 
hardening mechanism, and establishes a clear link between yield- 
ing and criticality. In order to establish this link in the simplest 
possible terms, we restrict our attention to the motion of a single 
dislocation loop through a slip plane containing a random array of 
point obstacles. As discussed above, we assume that the disloca- 
tions are well screened and hence their energy is ostensibly pro- 
portional to their length. In the spirit of level-set methods, the 
dislocation 10o p is described by a scalar field ~ which takes the 
value of 1 inside the loop and 0 outside the loop. The transition 
between these two extreme values occurs over the dislocation line. 
In this manner, no restrictions are placed on the evolving geometry 
and topology of the loop. In order to simplify the analysis, how- 
ever, we discretize the field ~ on a square lattice spanning the slip 
plane. The motion of the loop is impeded by forest dislocations 
piercing the slip plane, which we treat as point obstacles. The 
occurrence of slip at the sites occupied by these obstacles is 
assumed to require the expenditure of a certain .amount of work 
commensurate with the strength of the obstacle. 

The equilibrium properties of the dislocation loop/obstacle sys- 
tem may be described within the framework of Gibbsian statistical 
mechanics. We show that, once the effect of the point obstacles is 
taken into account, the effective Hamiltonian of the system is 
identical to that of a lattice gas, or, by a simple change of variables, 
to the two-dimensional spin-½ Ising model (see, e.g., Yeomans 
(1992)). In the parlance of the theory of critical phenomena, 
crystals whose plasticity is well described by the forest-hardening 
mechanism belong to the universality class of the two-dimensional 
spin-½ Ising model. In particular, the behavior and scaling proper- 
ties of all such crystals should be identical near the critical point, 
and be described by a few material-independent critical exponents. 
For zero applied field, the spin-½ Ising model was solved by 
Onsager (Baxter, 1982), and to date furnishes one of the rare few 
examples of nontrivial model systems which can be solved exactly. 

In particular, the critical exponents are known exactly for the 
two-dimensional spin-½ Ising model and, by extension, for the 
forest-hardening model developed in this paper. 

Systems which can be described by the two-dimensional spin-½ 
Ising model exhibit a phase transition at a critical temperature To. 
In the particular case of the dislocation loop/obstacle system, 
below the critical temperature this transition is signalled by a 
sudden increase in the slip strain. For sufficiently low tempera- 
tures, the system jumps from a state characterized by a slip strain 
close to zero to a state characterized by generalized slip over most 
of the slip plane. The critical resolved shear stress at which 
yielding occurs follows from the theory as a function of temper- 
ature, the obstacle density and material constants. The size of the 
slip-strain jump at yielding decreases to zero as the critical tem- 
perature is approached from below, and disappears altogether 
above the critical temperature. In this latter regime, therefore, the 
slip strain depends continuously on the applied resolved shear 
stress and no yield point is in evidence. However, examination of 
model materials, such as copper, suggests that Tc is close to the 
melting temperature. Therefore, yielding in these materials is 
predicted to persist up to very high temperatures, in keeping with 
observation. 

Unfortunately, no exact solution is presently known for the 
two,dimensional spin- ½ Ising model in the presence of an applied 
field. A simple approximate solution may be obtained by recourse 
to mean-field theory. Mean-field theory reveals compelling geo- 
metrical insights into the equilibrium properties of the system. In 
addition, it suggests the rudiments of a kinetic theory which 
accounts for hysteresis. This rudimentary kinetics is in analogy to 
that which is envisioned in theories of hysteresis proposed for 
wires or bars which undergo martensitic transformations (Abe- 
yaratne and Knowles, 1988). It should be emphasized, however, 
that the resulting kinetic model represents an extension of equi- 
librium statistical mechanics, in as much as it requires additional 
assumptions regarding the accessibility of states in phase space. 
These restrictions on accessibility clearly violate ergodicity and 
place the model outside the realm of equilibrium statistical me- 
chanics. 

The paper is organized as follows, In Section 2 the Hamiltonian 
of the dislocation loop/obstacle system is formulated. This Ham- 
iltonian includes terms which account for the self-energy of the 
dislocations, computed from the line-tension approximation, the 
applied resolved shear stress, and the point obstacles introduced in 
the slip plane by forest dislocations. In particular, a chemical 
potential is introduced as a device for controlling the density of 
point obstacles. In Section 3 the equilibrium properties of the 
system are established within the framework of Gibbsian statistical 
mechanics. These developments lead to he computation of the 
internal and free energies of the system, and the attendant relations 
between slip strain, applied resolved shear stress, temperature, and 
obstacle density. In Section 4, the nature of the phase transition 
and its relation to yielding is uncovered with the aid of mean-field 
theory. In Section 5, a simple kinetic theory is developed which 
accounts for hysteresis and plastic dissipation. Possible extensions 
of the theory and suggestions for further work are discussed in 
Section 6. 

2 Forest Hardening 
The aim next is to formulate a simple model of forest-hardening 

mechanism which captures the essential physics of the mechanism 
while lending itself to a full analytical treatment within the frame- 
work of equilibrium statistical mechanics. In the interest of sim- 
plicity, we focus on the motion of a single dislocation loop through 
a random array of point obstacles corresponding to the intersec- 
tions between the slip plane and forest dislocations. 

We begin by discretizing the slip plane into a square lattice of 
parameter a (Fig. 1). In order to avoid infinite sums, we consider 
a square subdomain containing N sites, e.g., with periodic bound- 
ary conditions enforced on its boundary. The thermodynamic limit 
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Schematic of the dislocation/obstacle system 

of interest may then be attained by letting N ~ oo and is inde- 
pendent of the precise nature of the boundary conditions. Each 
point i = 1 . . . . .  N in the lattice is assigned a variable ~ of value 
1 if the point is within the dislocation loop and 0 if it is without 
(Fig. 1). Thus ~ is the characteristic lattice function of the area 
covered by the dislocation loop. The lattice function ~ may also be 
regarded as a two-state field describing the configuration of the 
loop. The dislocation line may be identified with the collection of 
segments which join lattice sites in different states, i.e., unslipped 
lattice sites, ~ = 0, with slipped lattice sites, ~ = 1. 

We shall assume that the dislocation loop is well screened, so 
that the main contribution to its energy arises from its self-energy. 
For simplicity, we shall assume that the self-energy F per unit 
dislocation length, or line tension, is isotropic, i.e., does not 
depend on the local orientation of the dislocation segments. An 
estimate for the line tension is (e.g., Hirth and Lothe (1968)) 

F = CGb 2 (1) 

where G is the elastic shear modulus, b is the Burgers vector 
length, and C is a constant of order unity. It should be noted that 
G is strongly temperature-dependent in general and may be ex- 
pected to reduce to zero at the melting temperature. 

With these assumptions, the self-energy of the dislocation loop 
represented by the field ~ is 

E = ~ r a ( ~ , -  @2 (2) 
(i j )  

where the sum is restricted to nearest-neighbor pairs, and Fa may 
be regarded as an "exchange" energy. Indeed, for a straight dislo- 
cation aligned with the lattice, it is readily verified that Eq. (2) 
gives an energy per unit length equal to F. If, in addition, the slip 
plane is under the action of a resolved shear stress z, then the total 
energy becomes 

N 

E = ~ ra(~,- @2_ , r b a  2 E ~, (3) 
<i j )  i -  1 

where b is the Burgers vector length and ,rba 2 plays the role of an 
applied field. The energy (2) is direct analogy to that of a lattice 
gas (Stanley, 1971; Yeomans, 1992). 

Next we wish to model the effect of forest dislocations piercing 
the slip plane and hindering the motion of the loop. We shall 
restrict the intersection points to coincide with the lattice sites. A 
pinned mobile dislocation is assumed to drag the point obstacle 
when the force exerted by the dislocation on the obstacle attains a 
critical value f, which may be regarded as the strength of the 
obstacle. As the dislocation drags the obstacle one lattice distance, 
it does work in the amount fa.  Heidenreich and Shockley (Na- 
barro, 1967) were the first to make a quantitative estimate of the 
work required to cause two dislocations to cross. They showed 
that, when two dislocations cut, each acquires a jog with an energy 
which they estimated as Gb 3, Nabarro (1967) later refined this 

estimate to Gb3/4~ - for each jog or Gb3/27r in all. Using Nabar- 
ro's formula with a = b the strength of a forest obstacle is 
computed to be 

f = Gb2/2w. (4) 

Since the strength of the obstacles is proportional to the shear 
modulus, it may be expected to reduce to zero at the melting 
temperature, which accounts for the observed thermal softening of 
crystals. For simplicity, we restrict our attention to the case of one 
species of point obstacles of uniform strength. Under these as- 
sumptions, the total energy of the system becomes 

N N 

E = ~ ra(~, -  fj)2_ ¢ba 2 ~ ~, + f a  ~ ~,~, (5) 
(i j )  i= 1 i =  ! 

where "0i is 1 if site i contains a point obstacle, and 0 otherwise, 
Fig. 1. The four possible states at a site i are, therefore, 

l ~ = 0, "0~ = 0: the site has not slipped and is not occupied 
by a point obstacle; the work done against obstacles is zero. 

2 ~ = 1, "0~ = 0: the site has slipped and is not occupied by 
a point obstacle; the work done against obstacles is zero. 

3 ~i = 0, '0~ = 1 : the site has not slipped and is occupied by 
a point obstacle; the work done against obstacles is zero. 

4 ~ = 1,'0~ = 1: the site has slipped and is occupied by a 
point obstacle; the work done against the obstacle is fa. 

Evidently, the effect of the last term in (5) is to introduce an 
energetic barrier to slip across obstacles. This barrier effectively 
pins the dislocations and forces the dislocation loops to bow out 
between obstacles, which is the desired effect. 

Finally, we wish to have control on the number of point obsta- 
cles 

N 

n = ~ 'Oi (6) 
i= I  

populating the slip plane. A conventional means of accomplishing 
this control is to introduce a chemical potential/x, whereupon the 
total energy becomes 

N 

E = ~ r a ( ~ , -  @2_ ~.ba 2 ~ ~, 

<id) i =  1 

N N 

+ f a  ~ ~ , ~ , -  /.t ~ ,~. (7) 
i=1  i=1  

This energy constitutes the basis for all subsequent developments, 
and is the centerpiece of the present theory. 

3 Equilibrium Thermodynamic Behavior 
We proceed to explore the equilibrium properties of the dislo- 

cation loop/obstacle model introduced in the foregoing. According 
to the fundamental principle of equilibrium statistical mechanics 
(Feynman, 1972), the probability that a system in equilibrium be in 
a state ~ = {~1 . . . . .  ~N} and r I = {r/~ . . . . .  ~N} is 

1 
p(~, xl) = ~ e -t~e(~.~) (8) 

where 

l 
/3 = ~-T. (9) 

k is Boltzmann's constant, T is the absolute temperature, and 
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Z =  E ' ' '  E E ' ' "  Z e-t3e(¢n) (10) 
~:t El0,1} ~,E{0,1 } hiE{0,1} nN~{0,l} 

is the partition function. The thermodynamic properties of interest 
follow directly from Z. For instance, the internal energy per unit 
volume is 

1 1 { 0logZ} (11) 
U = ~-~ lim ~ 0/3 u ~  

whereas the free energy per unit volume is 

= ~ lim 1 (12) 
F a / N~= N { - ~ - ~ }  ' 

Here l is the distance between slip planes. The expected number of 
point obstacles per unit area follows as 

1 1 u __OF (13) 
c = - ~ l i m ~ ( ~  ~ i ) = - I o p ~  

a N--->~ i = 1 

and the slip strain is 

1 N OF (14) b lim : ( ~  ~ , ) -  &r' 
"Y = 7 N-->~ /V i= 1 

In addition, the mobile dislocation length p on the slip plane per 
unit volume of the crystal is given by 

1 t OF 
p = ~-~ lim ~ ( ~  (~ - ~j)2) = -0T. (15) 

N--->°° (id) 

As may be seen, this dislocation density is closely related to the 
two-point correlation function of the slip distribution. 

The partition function corresponding to energy (7) may be 
evaluated as follows. The sum over the obstacle occupancy field 'r I 
is trivial and gives 

N 

Z = 2 ' ' '  ~ e-Oe(~) I-I [1 + e -13(fat'-w)] (16) 
/jtE{0,1} ~,vE{0,1} i=1 

where E(g") is given by (3). Alternatively, (16) may be recast in the 
form 

/3 log (1 + e -o(f"~'-~)) . 
i=1 

But, since ~ takes the values 0 and 1 only, we can write 

log (1 + e -t3~"e'-~)) = log (1 + e-~(f"-~))~ 

+ l o g ( 1  + e O ~ ) ( 1 -  ~i), ~ ,~{0,  1}. 

Inserting this identity into (17) gives 

Z =  (1 -t- e ~ )  N E " ' '  
~(0,1} 

where 

(17) 

(18) 

N 

exp{-13[~ I'a(~,- £j)2_ E ~ ~,]} (19) 
~uE{0,1 } ( id) i= 1 

1 {1 + e -~ -~ )~  
E = "rba 2 _[_ ~ log \ 1 + e t3, ] • (20) 

It is possible to reduce (19) to a familiar form by the following 
change of variables: 

sl = 2 ~ i -  1 (21) 

r a  
J = - -  (22) 

2 

E 
H = ~. (23) 

The new state variables s~ take the values { -  1, 1 } and may be 
regarded as local "spins'." Within this "spin gas" analogy, J may 
be regarded as an exchange energy, (~) as the magnetization, and 
H as an applied field. Inserting these definitions into (19) gives 

Z = (1 + e~)Ue-t3U-t4)u Z ising (K, h) (24) 

where 

and 

K =/3J  (25) 

h = /3H (26) 

zi~i"g= ~ . . .  ~ e -oE""'(~) (27) 
Si=Z1 SN=ZI 

N 

Ei~ing(s) = - K  E sisj - h E si (28) 
(id) i= 1 

are the partition function and energy of the two-dimensional spin-½ 
Ising model. Substitution of (24) into (12) gives the free-energy 
density of the loop/obstacle system as 

1 { 1 e~)  } Fising(K ' F = ~  - F l o g ( 1  + + J - H  + h). (29) 

Thus, the equilibrium properties of the loop/obstacle system are 
closely related to those of the two-dimensional spin-½ Ising model, 
which are well understood at present (e.g., Baxter (1982)). 

Subsequent calculations may be simplified by the introduction 
of the following dimensionless variables: 

t = / 3 r b a  2 (30) 

m = /3/z (31) 

q~ = / 3 F a  21 (32) 

We also note the identities 

N 1 
(~) = lim ~ ( 

N ~  i = I 

~i) = ~ (33) 

1 2) P 
r~- l i m ~ ( ~  (~ i -  ~j) =~T~ 

N---,~ " "  ( id) 

(34) 

N 1 
( 7 ) =  l i m ~ ( ~  

N--~  " '  i= 1 

C 
7,) = ~ (35) 

which follow from (13), (14), and (15) with 

b 
T s"t = - (36) 

l 

1 
19 sat = _ (37) 

al  
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1 
c ~"'= ~ .  (38) 

Evidently, these are: the saturation slip strain which is attained 
when the loop sweeps the entire slip plane; the saturation disloca- 
tion density which is obtained, e.g., when the dislocation popula- 
tion consists of parallel straight dislocations at a distance a; and 
the saturation obstacle density, which is obtained when the forest 
dislocations intersect the slip plane through every lattice site. We 
also note that (~) plays the role of a normalized slip strain, r the 
role of a normalized dislocation density, and ('0) the role of a 
normalized obstacle density, all ranging from 0 to 1. In terms of 
these variables (29) becomes 

q~ = - log (1 + e m) + K -  h + q~"g (K, h) (39) 

with 

t 1 
h = ~ - ~ l o g ( 1  + e " )  

whereas (13), (14), and (t5) simplify to 

0~ 

{~) - O t  

(40) 

(41) 

F - -  

1 0 p  

4 0 K  

(~1)  - O m  ' 

This last relation may be inverted to determine the chemical 
potential m as a function of the obstacle density (~). 

4 Cr i t i ca l i ty  and  Y i e l d i n g  

Criticality underlies and unifies a number of important physical 
phenomena such as the transitions from liquid to gas, from a 
normal conductor to a superconductor, and from paramagnetic to 
ferromagnetic behavior (e.g., Stanley (1971), Feynman (1972), 
Yeomans (1992), Binney et al. (1992), and Chaikin and Lubensky 
(1995)). As is well known, the phase diagram of the two- 
dimensional spin-½ Ising model exhibits a phase transition (e.g., 
Yeomans (1992)). In the present theory, this phase transition 
provides a model for the yield phenomenon in crystals. 

Unfortunately, the two-dimensional spin-½ Ising model with 
nonzero field has not been solved analytically. The numerical 
calculation of F ~"g offers no particularly difficulties and is exten- 
sively discussed in the literature (e.g., Binder, ed. (1986, 1987) and 
Koonin and Meredith (1990)). Here, however, in order to obtain 
explicit results we shall resort to a mean-field approximation 
(Yeomans, 1992; Chaikin and Lubensky, 1992). We begin by 
introducing an effective or mean-field energy of the form 

N 

E0 = -Ho  ~ si (44) 
i = l  

and we seek to optimize the value of the effective field H0. To this 
end, we recall Bogoliubov's inequality 

1 1 
f--< No + lim ~ ~ (E - No)0 (45) 

N ~  

where F is the free energy per unit volume, Eq. (12), correspond- 
ing to the original energy E, the averag e ( . )a  is taken with respect 
to the mean-field probability, 

1 
po(s) = Zo e-°E°(~ (46) 

5 

1 

T > T  
C 

T = T  

T < T  

ho 

Fig. 2 Bogoliubov'a function f(ho) shown in the zero applied field case, 
h = O  

Zo = ~ ' ' '  ~ e -t3e°Cs~ (47) 
SI=+_I SN=~[ 

(42) and F0 is the free energy per unit volume corresponding to the 
mean-field energy E0. Inequality (45) holds for any choice of 
energy E0 (e.g., Feynman (1972)), with the equality sign attained 

(43) for E0 = E. Inserting (28) and (44) and using normalization (32) 
and (26), the bound in (45) becomes 

f (ho)  = ½h~ - K log (cosh ho) - hho. (48) 

The optimum value of the effective field h0 is identified with the 
absolute minimizer off(h0). The resulting mean-field free energy 
for the two-dimensional spin-½ Ising model with nonzero applied 
field is (cf. Yeomans (1992)): 

q~ising .~  minf(h0) = - l o g  (2 cosh h0) + ½Kz tanh z ho (49) 
ho 

where z is the coordination number of the lattice, e.g., z = 4 for 
the square lattice. A trite but straightforward calculation of (41), 
(42), and (43) using (49) gives 

(~) = ½ (1 + tanh ho) (50) 

Z 
r = ~ (1 - tanh 2 h0) (51) 

e ,,1 

('O) = ½ (1 - tanh h0) 1 + e m" (52) 

Equations (50) and (51) yield the normalized shear strain and 
dislocation density, respectively, whereas (52) can be used to 
eliminate the chemical potential m in favor of the obstacle density 
in). 

The function f (ho) ,  Eq. (48), is shown in Fig. 2 for the zero 
applied field case, h = 0. It is seen from this figure thatf(h0) is 
convex in the supercri t ical  regime K < K,., where 

1 
K c  = - ( 5 3 )  

Z 

defines a critical value of K. By contrast, in the subcri t ical  regime, 
K > Kc, f (ho)  is nonconvex and exhibits two minima, or wells, 
separated by a maximum. It is therefore expected that the behavior 
of the system will differ sharply in the two regimes, and that the 
condition K = Kc signals the onset of a phase transition. The 
corresponding critical temperature is 
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J Fa CGb 2a 
Tc = K [  1 ~ = K [  ~ ~ - =  K [  l 2k (54) 

and, thus, the subcritical and supercritical regimes correspond to 
the temperature ranges T < T, and T > T~, respectively. 

As a check on the accuracy of the mean field approximation it 
may be noted that the exact critical point of the Ising model on a 
square lattice (z = 4) at zero applied field is Kc = ½ log (1 + 
N/2) ~ 0.44069, whereas the mean-field critical point is Kc = ¼, 
which is somewhat lower than the exact value. The mean-field 
critical exponents also differ from those obtained from an exact 
treatment of the Ising model. Despite these discrepancies, the 
mean-field theory does furnish a simple and analytically tractable 
model which exhibits a phase transition, and thus suffices to 
demonstrate the connection between criticality and yielding pur- 
sued here. 

The extrema of the functionf(h0), Eq. (48), are the solutions of 
the secular equation 

h = h0 - K tanh h0. (55) 

Here and subsequently we write 

K 
K = Kz = ~ .  (56) 

The solutions of Eq. (55) in turn correspond to the intersections 
of the function h0 - K tanh h0 with the horizontal line of height 
h (Figs. 3(a) and 3(b)). It is clear from these figures thatjffh0) has 
a single minimum h0 in the supercritical case T > T~ (Fig. 3(a), 
point A), and that h0 depends continuously on h. In view of (50), 
(5 l), (52), and (40) it follows that the slip strain and the dislocation 
density are continuous functions of the applied resolved shear 
stress and no yielding occurs in the supercritical regime. 

The subcritical or low-temperature equilibrium behavior of the 
loop/obstacle system is more eventful and may be characterized as 
follows. The function ho - K tanh h0 attains the maximum 

h~ = acosh , j ~ -  ~ ( K -  1) (57) 

at h0 = acosh N/K. In the range h < -h~ ,  which by virtue of Eq. 
(40) corresponds to a low applied shear stress t, Eq. (55) has a 
unique solution h0 (Fig. 3(b), point A). An increase in h, e.g., due 
to an elevation in the applied resolved shear stress t, results in a 
corresponding increase in h0 and (~). In the range - h ~  < h < hc, 
the horizontal line at h intersects the function h0 - K tanh ho at 
three points, Fig. 3(b), corresponding to three extrema off(h0). Of 
these extrema, the central point is a maximum and the remaining 
points are minima. Of these two minima, the left point h0 < 0 is 
the absolute minimizer in the range h < 0 (Fig. 3(b), point B), and 
the right point h0 > 0 is the absolute minimizer in the range h > 
0 (Fig. 3(b), point 6). The point of exchange of stability is, 
therefore, h = 0, at which point the effective field h0 jumps 
discontinuously to a larger value. This jump is accompanied by a 
sudden increase in slip activity and may, therefore, be identified 
with the yield point of the system. In the range h > h~, corre- 
sponding to a high applied shear stress t, Eq. (55) has again a 
unique solution h0 (Fig. 3(b), point D). 

It may be noted that, at zero temperature, the yield transition just 
described is in analogy to solid-solid phase transitions in bars and 
wires, and the applied field h = 0 plays a role analogous to the 
Maxwell stress (Ericksen, 1975; James, 1979). This analogy will 
be exploited further in Section 5 with a view to formulating a 
simple kinetic theory which accounts for hysteresis and plastic 
dissipation. 

The critical resolved shear stress corresponding to the yield 
point h = 0 follows from Eq. (40) as 

tc = log (1 + e m). (58) 

Equivalently, t~ may be rewritten in terms of the obstacle density 
using (52), with the result 

ho 

(~ 

/ D  

h o - K t a n %  - ~  

" ' l t ~ h 

I 
t ho 

% s  

a -1. 

(b) 

Fig. 3 Mean-field construction for the determination of the effective 
field h0 from the app!led field h. (a) Supercrltlcal case ~ = ½; (b) subcritical 
case K = 2. 

2(~) ) (59) 
tc = - l o g  1 1 + tanh h0c 

where h0c is the positive root of the equation 

ho - K tanh ho = 0. (60) 

It follows from this relation that the critical resolved shear stress 
vanishes in the absence of point obstacles, (~) = 0, and diverges 
to infinity at the "percolation limit" 

1 + tanh h0c 
(n)  - 2 (61) 

As the critical temperature is approached from below, one has 
that h0c --+ 0 and the percolation limit is attained when one-half of 
the lattice sites are occupied by obstacles. In the opposite extreme 
of zero temperature, the root h0c diverges to infinity and the 
percolation limit is attained when all lattice sites arc occupied by 
obstacles. 

Figure 4 displays the equilibrium properties of the system in the 
subcritical regime T < To. The evolution of the slip strain (~) with 
applied resolved shear stress t is shown in Fig. 4(a) for three values 
of the obstacle density ('0}. As expected, the critical resolved shear 
stress hardening rate increase with obstacle density. Figure 4(b) 
shows the dependence of the chemical potential m on the slip 
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F i g .  4 ( a )  Normalized resolved shear stress t = 13¢ba2; (b) normalized chemical potential m = # / q  a n d  ( c )  normalized 
dislocation density r = p a  2 versus the normalized slip strain ~ )  = y/(INI) for three values of the normalized obstacle 
density (,q) = ca 2 I n  the subcritlcal regime, K = 2 

strain and obstacle density. It is seen from the figure that the 
chemical pontential is an increasing function of the obstacle den- 
sity. It is also interesting to note how, as the slip strain and, 
consequently, the energy of interaction between the dislocation 
loop and the obstacles increases, it becomes necessary to compen- 
sate by raising the chemical potential in order to maintain the 
number of obstacles constant. The variation of the dislocation 
density with slip is also noteworthy (Fig. 4(c)). During the early 
stages of loading, the dislocation density r is close to zero. In this 
stage, the mobile dislocation population consists of small loops 
covering a small area fraction of the slip plane. Physically, these 
loops emanate from dislocation sources, which we assume to be 
plentiful and easy to operate. In the neighborhood of the yield 
point, the mobile dislocation density explodes to accommodate the 
rapidly increasing slip strain, attains the maximum z/8, and sub- 
sequently decreases monotonically to zero as dislocation dipoles 
annihilate. As the slip strain nears its saturation value, the dislo- 
cation population consists of small debris, or Orowan, loops sur- 
rounding the forest obstacles, slip having occurred everywhere 
outside the loops. 

If follows from the preceding discussion that the critical point 
T = T~. is marked by divergences in the zero-field specific heat 

c . =  ~ H  (62) 

and the plastic compliance 

= (63) 
Xr ~ z 

The precise understanding of these divergences, and more gen- 
erally of the behavior of the system near the critical point, has been 
one of the principal objectives of the theory of critical phenomena. 
Near the critical point, it is convenient to introduce the variable 

T -  T c 
0 - (64) 

Tc 

which measures the deviation in temperature from Tc. Then one 
has (Yeomans, 1992) 

CH--101~, ( H = 0 )  (65) 

3 ' - - ( -  0) i, ( H = 0 )  (66) 
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Table I Exact critical exponents for the two-dimensional 
spin-½ Ising model and mean-field approximation 

Exponent ~ ~ ~ 

Ising 0 (log) 1/8 7/4 15 
Mean field 0 1/2 1 3 

Xr ~ I01~ (H = 0) (67) 

H - I'),lisgn (30, (T = Tc) (68) 

for some critical exponents &, [3, ~,, and ~. As noted earlier, the rate 
of growth of the dislocation density p also diverges at yield. It may 
be shown (Yeomans, 1992) that the sum of the correlation function 
over site pairs involved in Eq. (15) is proportional to the plastic 
compliance Xr. It therefore follows that the characteristic exponent 
for p coincides with the characteristic exponent for Xr, namely ~. 
The characteristic exponents obtained by an exact treatment of the 
Ising model and from the mean-field approximation are collected 
in Table 1. It should be noted that the mean-field exponents 
generally differ from the exact values. 

Critical exponents are important because they afford a classifi- 
cation of critical phenomena into universality classes. They also 
define scaling relations between various thermodynamic quantities 
near the critical point. Striking evidence of universality was pro- 
vided by Guggenheim (1945), who showed that the coexistence 
curves for eight different fluids near the critical point, when plotted 
in terms of reduced variables, collapse into a universal curve w h i c h  
can be described by a characteristic exponent. In a similar manner, 
whereas T< and other aspects of the hardening of single crystals 
may vary widely between materials, the characteristic exponents 
should be universal and therefore define material-independent 
scaling relations between quantities of interest, such as the critical 
resolved shear stress and the obstacle density. 

5 A Simple Kinetic Theory 
The equilibrium properties of the dislocation loop/obstacle sys- 

tem described in the foregoing rest critically on an assumption of 
ergodicity, i.e., the assumption that the system is free to explore 
the entire phase space and that all states are accessible from all 
other states regardless of any intervening energy barriers. Under 
these assumptions, the behavior of the system is reversible. 
Whereas instances of reversible dislocation motion exist, e.g., the 
"flip-flop" of Taylor lattices in fatigue crystals (Kuhlmann- 
Wilsdorf, 1979), the plasticity of single crystals is most commonly 
observed to be irreversible and to be accompanied by hysteresis 
and dissipation. 

The mean-field approximation developed above, in conjunction 
with its analogy to solid-solid phase transitions (e.g., Ericksen 
(1975)), affords the following simple model of hysteresis. Con- 
sider a loop/obstacle system below the critical temperature. As in 
the equilibrium case, the effective field h0 is assumed to minimize 
the Bogoliubov functionf(ho), Eq. (48). In the range h < - h c  the 
minimizer is unique (Fig. 5, point A). Imagine now increasing the 
applied field h monotonically above the point h = - h ,  (Fig. 5, 
point B). In the range - h e  < h < hc, the function f(h0) has two 
minima. Of these, the leftmost point, ho < 0, is the absolute 
minimizer in the range h < 0. As noted earlier, the absolute 
minimum shifts to the positive axis, h0 > 0, for h > 0. However, 
we may argue that this exchange of stability is impeded by the 
intervening maximum of the functionf(ho), which plays the role 
of an energy barrier, and that, in consequence, the leftmost mini- 
mizer h0 < 0 is the only state accessible to the system (Fig. 5, 
point B). In the range h > hc the function f(ho) has a unique 
minimizer h0 > 0 (Fig. 5, point E). Therefore, it follows that h0 
must jump discontinuously at the critical point h = h c (Fig. 5, 
points C and D), which therefore sets the yield point in the kinetic 

. /  o 

a/l  .,1 
Fig. 5 Mean-field construction Including hysteresis and plastic dissipa- 
tion. Subcritical case K = 2. 

theory. The corresponding critical resolved shear stress, or yield 
stress, then follows from (40) as 

t , . = 2  acosh . f K -  2 ~ -  1) + l o g ( 1  +era).  (69) 

This critical resolved shear stress may be rewritten directly in 
terms of the obstacle density {'0) by the elimination of the chemical 
potential m with the aid of Eq. (52), with the result 

tc = 2 acosh ~ / ~ -  2 , f ~ :  - 1) 

+ log 1 + 1 - \/1 - - - i - /K-  2('0) ' (70) 

Imagine that the process of loading just described, in which the 
applied field h is increased monotonically from A to E in Fig. 5, is 
followed by unloading, i.e., the applied field is subsequently de- 
creased monotonically from E. The fundamental assumption is 
that, upon unloading the loading path ABCDE is not traversed in 
reverse. Indeed, during unloading the point D defines the absolute 
minimum off(h0) and, therefore, the jump from D to E is not 
energetically favorable. Instead, the unloading path is postulated to 
be EDGHA, Fig. 5, and involves reverse yielding at h = -hc .  
Indeed, at the yield point the effective field h0 jumps discontinu- 
ously. The net result is a hysteresis loop A B C D E D G H A  and the 
dissipation of energy as plastic work. 

It should be carefully noted that both the hysteresis model and 
the accessibility criteria invoked to select minimizers constitute 
physical postulates that are formulated in addition to the strict 
principles of equilibrium statistical mechanics. In particular, pos- 
tulates are introduced regarding what subset of the phase space is 
accessible from a given state, with the result that the system is no 
longer ergodic. These additional postulates form the rudiments of 
a kinetic theory, as attested to by the irreversible and dissipative 
character of the predicted behavior. 

6 Summary and Concluding Remarks 
We have developed a statistical mechanical theory of forest 

hardening in which yielding arises naturally as a phase transition. 
Our focus in this paper has been to identify the simplest possible 
model of slip which clearly demonstrates the connection between 
yielding and criticality. With this objective in mind, we have 
focused on the motion of a single dislocation loop on a slip plane. 
We have assumed that the dislocations are well screened so that 
their energy is proportional to their length. The motion of the loop 
is impeded by forest dislocations piercing the slip plane, which we 
treat as point obstacles. The occurrence of slip at the sites occupied 
by these obstacles requires the expenditure of a certain amount of 
work commensurate with the strength of the obstacle. The case of 
obstacles of infinite strength has been treated in detail. 

We have shown that the behavior of the dislocation loop as it 

2 9 6  / Vol. 66, J U N E  1999  T r a n s a c t i o n s  of  the  A S M E  

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



sweeps the slip plane under the action of a resolved shear stress is 
identical to that of a lattice gas and, equivalently, to the two- 
dimensional spin-½ Ising model. In particular, there exists a critical 
temperature T~ below which the system exhibits a yield point: The 
slip strain increases abruptly when the applied resolved shear 
stress attains a critical value. Above the critical temperature the 
yield point disappears and the slip strain depends continuously on 
the applied stress. The critical exponents, which describe the 
behavior of the system near the critical temperature, coincide with 
those of the two-dimensional spin-½ Ising model. 

It is revealing to compute the transition temperature T,. for 
specific materials. For the sake of argument let us simply assume 
that the shear modulus decreases linearly with temperature and 
vanishes at the melting temperature T,,,, i.e., 

G = Go 1 - (71) 

where Go is the shear modulus at zero temperature. Inserting this 
relation into the expression (54) for the critical temperature yields 

T,. = + (72) 

where 

CGob 2a 
To = K~71 2k (73) 

Taking copper by way of example, one has Go ~ 40 GPa, b = 
2.556/~, a ~ b, k = 1.380 × 10 23 j K 1 C .~ 0.3, and T,,, 
1,343 K. With these constants, (73) gives To = 16,474 K and 
(72) T~ = 1,241 K, or 92 percent of the melting temperature. This 
example suggests that metals remain within the subcritical regime 
and, consequently, exhibit a yield point, up to temperatures very 
close to the melting temperature, although the sharpness of yield- 
ing should be blunted with increasing temperature. These general 
conclusions are indeed in keeping with observation. 

Unfortunately, the full effect of temperature on the behavior of 
the system cannot be ascertained without knowing the dependence 
of the elastic moduli on temperature. Thus, linear elastic estimates 
predict the line tension, Eq. (1), and the obstacle strength, Eq. (4), 
to be proportional to the shear modulus G, which is itself a strong 
function of temperature. Under these conditions, as the crystal 
approaches melting G tends to zero and, correspondingly, both the 
line tension and the obstacle strength should decrease to zero. This 
in turn accounts for the thermal softening observed to occur in 
manY ductile crystals with increasing temperature. 

As stated above, the system defined by a single dislocation loop 
moving through forest dislocations has the virtue of exhibiting the 
connection between criticality and yielding in the simplest possible 
terms. However, in this model the slip displacement is restricted to 
be either 0 or b and the maximum slip strain which can be born by 
a slip system is (36). By way of contrast, the unconstrained plastic 
flow characteristic of the macroscopic behavior of single crystals 
requires the simultaneous operation of many dislocation loops on 
each slip plane. An extension of the Hamiltonian (7) which ac- 
counts for this effect may be obtained by allowing the slip ~ at site 
i to take any nonnegative integer value. The resulting Hamiltonian, 
however, cannot be solved analytically but should yield to approx- 
imation techniques such are mean-field theory based, e.g., on a 
mean-field energy of the form (44). 

Also in the interest of simplicity, we have given special attention 
to obstacles of infinite strength. The treatment of obstacles of finite 
strength does not offer any particular difficulties. A more chal- 
lenging extension concerns the combined hardening effect of ob- 
stacles of different strengths, e.g., such as are introduced by the 
activation of more than one secondary system. Foreman and Makin 
(Foreman, 1955; Foreman and Makin, 1966) have investigated this 
problem numerically, and have characterized the effective strength 

of the obstacles. Here again, an extension of the Hamiltonian (7) 
which accounts for more than one obstacle species is 

F a  N 

E= E T (~ ' -  ~j)2_ Tba 2 ~ l~, 
(i d) i=  1 

s N N 

+ Z {f(')a Z ~,~I ' / -  , u,/') ~ ~I ' / }  . (74) 
s=l i=1 i=1 

Here the sum over s extends to the S species of forest dislocations 
contributed by different secondary systems; the variable ~I '~ is 1 if 
site i is occupied by an obstacle of type s and is 0 otherwise; ~¢~ 
is the strength of the obstacles of type s; and ix ( '  is a chemical 
potential to be determined on the condition that the density of 
obstacles of type s match a prescribed value. It should be noted 
that, in this model, a site i may be occupied by several obstacles of 
different species. As in the case S = 1 considered in this paper, 
Eq. (16), the sums over the obstacle occupancy fields ~I ') are 
trivial. The resulting model should provide a precise characteriza- 
tion of how obstacles of different strengths cooperate to determine 
the hardening characteristics of a crystal. 

Other worthwhile extensions of the basic Hamiltonian (7) might 
account for the energy required to activate dislocation sources, 
e.g., of the Frank-Read type; the Peierls stress required to over- 
come the resistance of the atomic lattice to dislocation slip, spe- 
cially in materials other than elemental metals where such barrier 
is not negligible; the inertia attendant to the motion of dislocations; 
the anisotropy of the elastic moduli and of the line tension; and 
other effects. Evidently, while these extensions enhance the pre- 
dictive character of the theory, they are also introduced at a certain 
expense as regards the complexity of the theory. In any case, the 
statistical mechanical framework sketched out in this paper may 
open the way for a physics-based description of crystalline slip 
which benefits from the tools and principles of the theory of 
critical phenomena. 
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Contributions to Understanding 
the Behavior of Axially 
Compressed Cylinders 
An elastic nonlinear Ritz analysis is used to investigate the behavior of axially loaded 
imperfect cylindrical shells. It is shown how the initially positive contributions arising 
from the shells membrane energy are eroded with increasing levels of both deformations 
and imperfections. This loss of  membrane energy is shown to be responsible for the 
notoriously imperfection sensitive buckling of the shell. Extensive parameter studies 
demonstrate the existence of a well-defined lower bound to buckling loads and the 
dominance of characteristic incremental deformation modes as this lower bound is 
approached. For the first time the physically based hypotheses of the reduced stiffhess 
method are theoretically demonstrated. Furthermore, it is shown how a slightly modified 
form of the reduced stiffness method provides very close predictions of the lower bounds 
to buckling loads. 

1 Introduction 

Partly due to the major discrepancies between observed buck- 
ling loads and the predictions from classical theory, the buckling of 
axially compressed cylindrical shells has excited extraordinary 
interest over the past 75 years. Indeed, the list of contributions to 
the understanding of the behavior of axially loaded cylinders 
almost reads as a Pantheon of the 20th century's leading mecha- 
nicians. It was early realized that small changes in imperfections, 
combined with the highly unstable forms of post-buckling behav- 
ior, were largely responsible for the immense scatter of buckling 
loads and at times severe reductions from the classical linear 
theory. There was a growing appreciation that this sensitivity to 
small changes in geometric form was the converse, and indeed the 
consequence, of the cylinder providing such a strong optimal form 
for axial load carrying capacity. However, despite the immense 
effort put into its understanding, added to the growth in our ability 
to undertake sophisticated nonlinear calculations, most cylindrical 
shell design still relies more upon empirical evidence than it does 
upon the fruits of the many ingenious theoretical solutions. The 
present paper is directed towards the reconciliation of the two 
dominant, but at times competing approaches to the theoretical 
analysis of axially loaded cylindrical shell buckling. 

Broadly, the theory of shell buckling, including that of the 
axially loaded cylinder, has been presented using one of two 
theoretical approaches. With its earlier successful application to 
the buckling of slender columns, classical eigenvalue analysis was 
also applied to shells. To reconcile the lack of agreement with 
tests, this classical theory was extended to include the effects of 
nonlinear post-buckling, with many clever methods developed to 
relate the imperfection sensitive buckling loads to the initial post- 
buckling characteristics of the perfect or idealized shell response. 
Although this approach has achieved considerable success when 
buckling is dominated by very small imperfections, it has for cases 
like the axially loaded cylinder, failed to provide reliable estimates 
of buckling loads for shells containing imperfection levels remi- 
niscent of those found in engineering practice. Hence, the continu- 
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ing reliance upon accumulated test results, or the growing ten- 
dency towards the second theoretical approach. 

With our capacity to now undertake immensely complicated 
nonlinear calculations, the second theoretical approach has been 
based upon large-scale numerical analysis. Although there must 
remain uncertainty as to the reliability of some of the many 
numerical solutions available, the best of them have recently been 
shown capable of reproducing in the minutist of detail the nonlin- 
ear paths observed in carefully conducted test programs (Yamada 
and Yamada, 1983). However, without very great care, and pos- 
sibly having to run very large numbers of costly parameter studies, 
there are still severe problems in the use of numerical analysis in 
design other than final design checking. Its adoption as a method 
for choosing the "best" choice of stiffeners in, say, rib stiffened 
shells or on the "optimum" levels, distributions, and orientations of 
fiber reinforcement in composite shells, and yet capturing the 
worst possible effects from a wide ranges of potential imperfect 
shapes and amplitudes, is far from settled. 

Our present study seeks to bring together the potential ad- 
vantages from each of these approaches. It uses the reduced 
stiffness method, first proposed (Croll and Chilver, 1971) as on 
extension to classical theory in the early 1970s, as a means for 
guiding careful nonlinear numerical studies. The reduced stiff- 
ness method is based upon the observation that it is components 
of the initial membrane stiffness, or energy, that are lost in the 
unstable post-buckling of shells. With imperfections acting as 
catalysts for this loss of membrane energy it was reasoned that 
a lower bound to the imperfection sensitive buckling into a 
particular mode will be provided by a linear eigenvalue analysis 
from which this at risk membrane energy has been eliminated. 
A more recent summary of some of the main features of the 
reduced stiffness method has been presented by Croll (1995). 
By comparing its predictions with accumulated physical test 
data, it has been shown that the reduced stiffness method 
provides realistically safe, lower bounds, to the scatter of im- 
perfection sensitive shell buckling loads for a wide range of 
shell geometries and loading cases. However, it was early 
recognized that nonlinear analytical confirmation would be 
needed before the method could be confidently used as a basis 
for design. It was not until the early 1980s that numerical 
simulation of the highly nonlinear buckling responses for shell 
problems reached a level of reliability that the complex obser- 
vations from physical tests could be reproduced in detail 
(Yamada and Yamada, 1983). This made it possible to carry out 
systematic numerical studies as a means of validating the rod- 
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chanics of, and predictions from, the reduced stiffness method. 
Under these circumstances, an international research collabo- 
ration was initiated in late 1985. As a first example, the case of 
pressure-loaded cylindrical barrel vaults was considered 
(Yamada and Croll, 1989). This showed that with very small 
total imperfections the buckling loads relate closely to the 
classical critical loads. However, at large total imperfections the 
buckling loads were shown to converge to the reduced stiffness 
buckling loads. In many ways the barrel vault proved more 
difficult than the second example to be considered, as a conse- 
quence of the constraints along the longitudinal boundaries 
introducing a form of loading imperfection which contributed to 
the total imperfections. Hence, the second example of pressure 
buckling of complete cylinders (Yamada and Croll, 1993) 
proved to be rather more straightforward, and demonstrated 
even more convincingly that with large imperfections, shells 
exhibit buckling loads that closely relate to reduced stiffness 
theory. By looking at the incremental energies this study also 
indicated how the positive linear components of membrane 
energy are eventually eroded by the development of nonlinear 
negative components arising from modal interactions stimu- 
lated by the presence of imperfections. 

The present work extends this same approach to the case of 
axially loaded cylinders. With this case being perhaps the most 
imperfection sensitive of all shell buckling problems, it provides 
perhaps the ultimate test of the reduced stiffness method. 

2 Theoret ical  Background 
Because it provides a systematic framework for the interpreta- 

tion of behavior, and also represents a convenient and compact 
basis for analytical modeling, the principle of stationary total 
potential energy will be used to formulate the equations of equi- 
librium. 

2.1 Total Potential Energy. For an imperfect thin-walled 
circular cylinder of longitudinal length L, wall thickness t, and 
radius R, shown in Fig. 1, the change in the total potential energy, 
consequent upon the application of a uniform axial compression 
stress of ty, may be written as 

I I =  UB+ UM+ Vx (1) 

where the bending and membrane strain energy (Us, UM) and the 
increase in load potential (Vx) for an axial compressive stress of o,, 
are given as 

l 2,n'R fo c U~ = ½ (m~K~ + mrKy + 2m~yV:~r)dxdy (2a) 
~0 

~ 27rR f o L g M = ½ (nxE x + nyEy + 2nxye~y)dxdy 
~0 

(2b) 

V~ = - t r t  - Ox dxdy. (2c) 

Y 
2R < 

Fig. 1 Notation and convention adopted for geometry 

In these expressions, (mx, my, mxy) and (nx, ny, n~y) are the total 
bending and membrane stress resultants, and (Kx, Ky, Kxy) and (e~, 
ey, e~y) are the corresponding strains associated with total dis- 
placements (u, v, w) from an imperfect but stress-free unloaded 
state. The compressive stress may be written in terms of the 
nondimensional load parameter X as 

o" -= Xo'~t (3) 

where o'er is the well-known classical buckling load, 

E t 

o'cl-  X/3( 1 _ /x2) R" 

The bending and membrane stress resultants are related to 
strains through the constitutive equations 

mx = D(~x + tXKy), m, = D(IxKx + It~y), 

mxy = D(1 - /X)Kxy (4a) 

nx = K(ex + [LiEy), ny = K(/xex + ey), 

nxy = K(1 - /x)exy (4b) 

where D = Et3/{ 12(1 - /x2)}, K = Et/(1 - /x2), E = modulus 
of elasticity, and/x = Poisson's ratio. 

The strain-displacement relations associated with deformation 
from an initial imperfection w °, are taken as 

Kx = -- 
O Zw 0 2w 0 2w 

(5a) OX 2 , K y -  Kxy -- Oy 2 ' OxOy 

Ou Ow°Ow 1 (Ow) 2 
~=5~ + o-- ;o~+~ 7x (5b) 

Ov w Ow° Ow 1 { Ow\ 2 
- + ~ - y )  (5c) ey Oy R + Oy Oy 

1 / O u  Ov Ow °Ow Ow °Ow OwOwN 
exY = 2 ~Oy + ~x ~ Ox Oy + Oy Ox + ~ -  ~ y ) .  (5d) 

2.2 Boundary Conditions and Modal Approximation. 
The end boundary is assumed to be supported in such a way as to 
conform with the classical simple support, corresponding with the 
conditions 

0 2w Ou 
w - - ~ x  z = ~ x =  v = 0 ,  a t x = 0 ,  L. (6) 

By taking displacement functions u, v, and w as linear combi- 
nations of the harmonic expressions, 

Lt J;' .=gZ  
i j 

ui.j cos (iy/R) cos (jqrx/L) (7a) 

Lt Ji' 

i j 

5i.j sin (iy/R) sin (j~rx/L) (7b) 

C 

w = , 2 2  
i j 

wi.j cos (iy/R) sin (jTrx/L). (7c) 

These boundary conditions will be exactly satisfied since each 
separate component satisfies the boundary conditions of Eq. (6). In 
these expressions, i andj are the circumferential full-wave and the 
longitudinal half-wave numbers; uij, v~j, and ~,~,j are the nondi- 
mensional amplitudes of each harmonic function. 

The initial geometric imperfection is expressed as 
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4 
w ° t ~ ~ - o  ( i y /R)  sin ( j~rx/L) .  (8) = W i ,  j COS 

i j 

2.3 Equilibrium Equation by the Ritz Method. By substi- 
tuting Eqs. (4), (5), (7), and (8) into Eq. (2), the energy compo- 
nents associated with the unknown coefficients u~ o, v~ a, and ~.~ 
can be expressed as 

N w N w 

UB ( 2 4 w D L / R )  ~ ~ - - .33 (9a) "~ W r ' W m  ' a  m' r' 

r' nl r 

N u N u N" 

UM ( 2 4 7 r D L / R ) { 2  U'r' ( E  -- II + E -- 21 "Onl ~0~ m'r' 

r' m' m' 

N w 

+E 
m' 

N w 

+E 
r' 

N" 

+E 
r' 

N w 

+E 
r' 

N w 

+E 
r' 

N ~, N ° N w 

Wm'Ol13nl'r') + E ~)r' ( E -  22 + E - 32 Z)m'Ol m' r' W m, Ol m' r ' )  

r ' m ' m ' 

N w N u N w N w 

E - - 33 WF,Wm,OLm,r ,  + E E E - - - 331 U r , W m , W k , O l  k,m, r, 

m' r' m' k' 

N TM N w 

2 2 - - -  33, V r ' W  m ' W  k '0l  k' m ' r' 

m' in' 

2 2 - - -  333 }i) r , W m , W k ,  0£ k'm'r'  

m' U 

N w N w N w 

E E E r) 
m' k' i' 

N u 

V~ ( 2 4 w D L / R ) A  ~ - ' =" Ur'OL r' 

r' 

(9b) 

(9c) 

where 

, / 4 ( 1  - /x z) 
a ~ , =  - ~ -~ , f o r i = 0 a n d j = o d d  

= 0 ;  f o r i - ~ 0 o r j = e v e n .  O/r' 

(~ / ,  v,.,, ~ , )  is a set of generalized coordinates equivalent to (fii,j, 
~,J, w~,s) and the constants B33 , ,  2, 3333 am,r, . . . . .  obtained O~m' r' , Olin'r% Ol i'k'm' r' 

from the integrations of Eq. (2) are exactly the same as those for 
pressurized cylinders (see the appendix of Yamada and Croll, 
1993); it is noteworthy that only the constant ot~, depends on the 
loading condition. 

The Ritz method is used to obtain approximate solutions, by 
requiring the total potential energy to be stationary with respect to 
all the independent degrees-of-freedom, so that 

oH OH OH 
- 0.  (10)  

af ir , -  O~r, - 0 ~ ,  

A total of (N" + N ~ + N w) nonlinear algebraic equations ex- 
pressing the unknown coefficient fi/ ,  5,,, #~,, in terms of the load 
parameter X are obtained; these nondimensionalized forms can be 
represented as 

N" N" N '~ 

XOL~, + E Utn'(Ol~l'r' + Old,m,) + E ~Im'Ol~l*r' + E Wm'Ol~n!r' 

m' m' in' 

N w N ~ 

+ Z  Z - - 331 r' N" w,, , ,wva~, , , , , /= 0, = 1, 2 . . . . .  ( l l a )  
m' k' 

N" N "  N w 

E - 21 + E - 22 22 blm'Olr 'm'  Vm ' (Olm ' r '  + a r ' m ' )  + E - 32 Wm,Ol m,  r, 

m ' m ' m ' 

N w N w 

+ E E ~ -  332 = 0 ,  r '  N ~ m , V V k , O l k m r  : 1,  2 . . . .  , 

m' k' 

( l l b )  

N" N" N" 

E - 31 + E - 32 + E -  ' B33 B33 
Un,'O~ r'm' W,n ' [Ol  m'r' + Utn'Ol r'm' Ol r'm' 

m' m' m' 

N w N u 

33 + 33 331 O~r,m,) + E E - - 331 OL m'r 'k ' )  Wm,Uk, (O~r ,m,k ,  + + O~m, r, 

m' k' 

N w N ° 

+ E E - - 332 3 3 2 ,  Wm,TJk,(Olr ,m,  k, + Olm,r,k, ) 

ill' k' 

NW N w 

E E -  - 333 333 + 3 3 3 '  + W m , W k , ( O l k , m ,  r, + OLin,r, k, Olr,k,m, ) 

to' k' 

N w N TM N TM 

+ E E E ~) ~7 - t  3333 _3333 
m,VVk,Wi,[Oli ,k ,m,  r, + Otk,m,r, i, 

m' k' i' 

3333 + 3333 , r '  N w. 
+ Olm,r,i, k, Olr,i,k,m, ) = 0 ,  = 1, 2 . . . . .  ( l l c )  

2.4 Incremental Strain Energy Analysis. The sets of non- 
linear equation (Eq. (11)) can be solved using a step-by-step 
process in which either load or displacement is used as a control 
parameter. At each step a Newton-Raphson iteration is used to 
provide convergence to an acceptable level of precision. This 
incremental analytical procedure makes it convenient to compute, 
at any stage along the equilibrium path, the nature of the incre- 
mental strain energy components. A sufficiently small amplitude 
(0.001 × t) of a displacement control parameter provides a very 
close approximation to the tangent vectors (u ~, v a, w ~) in the form 
of differences between the two close equilibrium states (u ~, v e, 
w e ) and (u ~ + u ~, v F" + v d, w E + wd). The total strain 
components at a point (x, y) after the small incremental deforma- 
tions about the equilibrium state may be written 

d = E+ d = K f ~ +  a ( 1 2 )  K x = K ~  + K x ,  Ky K y  K y ,  Kxy Kxy 

e + d Ed + dd = f i r  + d + Ed + dd fix = fix fix + fix fi x , fiy Ey Ey Ey , 

E d + Ed + dd fixy = fixy + fixy Exy fixy (13)  

where 

0 2 W  e 0 2 W  E 0 2 W  E 
E E _ _  e _ 

K x -- OX 2 , Ky  Oy 2 ' KxY OxOy ( 1 4 a )  

0 2 W  d 0 2 W  d 0 2 W  d 
d _ d _ a (14b) 

K x OX 2 , Ky Oy2 , Kxy OxOy 

e =  Ou e Ow° Ow e l ( Owe] 2 
ex ~ -  + 0---7- O--x- + 2 \ Ox / (15a) 

ore we owOowe 1 ( o % 2  (15 ) 
e f  by R + Oy Oy + 2 \ Oy ] 

fix~ = ~ \ Oy 

01g E 

+ - ~ x  + r a m  
aw ° ow ~ Ow ° ow e Ow e o w [ I  

Ox Oy + Oy Ox + Ox Oy ] 

d 
fix ~ - 

(15c) 

On d Ov d w a l_( Ou d Ovd~ 
OX ' %d_  Oy R ' exdY= 2 \  Oy + Oxx] (16) 
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~. o(w° + w~) ow ~ ~. l fa(w°+w~)ow"~ 
~'x OX OX ' Ey = 2 k j o y  Oy / 

(17a) 

. l O(wO+: ow, o(wO+w )ow   
e~r = 2 L Ox Oy + Oy Ox J (17b) 

ad 1 ( Owd) 2 dd 1 ( OWd] z 
e~ = ~ \ - - ~ - /  , er  = 2 \  O y /  ' 

1 Ow e Ow e 
dd -- (18) 

axy 2 OX O y "  

The corresponding stress components are 

rn~' = D ( ~ '  + /zu~), m~ = D ( / z ~  + K~), 

mx~ = D(1 - /z)U~y (19a) 

~ = K ( ~  + ~y~), n~ = X ( ~  + ~),  

n~ = K(1 - p,)e~y (19b) 

where T takes the values E, d, Ed,  and dd.  
To fully understand the changing nature of the resistance to 

incremental deformations as buckling progresses, it is necessary to 
break the quadratic form for the incremental energy into its com- 
ponent parts. These component parts of the quadratic form of the 
incremental energy may be written as 

H~ = H ~  + I I ~  (20) 

where the contributions from bending II2B are 

l~2B = U2B 

I02~R f O L d d 1 d d d d + 2mxyKxy)dxdy  ' = ~ (mxKx q- myKy (21) 

and these from membrane strain energy II 2M may be further broken 
down as 

l~2M = U2M-q- V2M q- W2M. (22) 

In Eq. (22) the membrane contributions arising from the linear 
incremental strains may be written 

U2M = U~M + UYM + U ~  (23a) 

where 

½fo~"fo ~ 
x __ d d U 2M -- - n ~e ~dxdy  (23b) 

f2wR L f U~M = - -  n~ECdxdy 

Jo 
(23c) 

I027rR I0 L U ~ =  " n ~yE xrdxdy,  
o 

(23d) 

while those resulting from the nonlinear incremental strains are 

V2M = V~a4 + V~M + V~4 (24a) 

where 

f O 2~rR f O L V2 M 21_ : dd E E dd = n~E x ) d x d y  t.rt x Ex + (24b) 

I02~'R f o L V~M -~ ½ ~l'ly: dd~yE + n ~ a ) d x d y  (24c) 

I02qrR f O L V~y ~l~ E E ~ n xrE xy)dxdy.  : (nxyExy + (24d) 

The additional interaction between the incremental linear response 
and the current total nonlinearities can be written 

W2M = W~M + W~M + W ~  (25a) 

where 

½ ~ 27rR f O L Ed Ed x = - ~ o  , d ~d E,I d + n x  E x ) d x d y  (25b) W2M ~lllxtE x -']- rl x E x 

~2TrR I0 L W~M : ½ (ny~yd Ed "q- nyEd~yd"[- n~,~Eyed)dxdy (25c) 

~0 J 

2qrR fO L Ed Ed W ~ t  d td Ed d - t -nxyExy)dxdy .  (25d) = (nxyExy q- nxy Exy 
~0 

Since it is the membrane resistance that is undergoing the signif- 
icant change as buckling progresses, the membrane strain energy, 
II2M, has been broken down into its component parts associated 
with axial, hoop, and in-plane shear action. Because it derives from 
the linear incremental strains, the term U2M may be referred to as 
the linear membrane strain energy. The term V2M represents the 
interaction between the nonlinear incremental membrane action 
and the current membrane equilibrium state. The term W2M results 
from the interaction between the linear incremental membrane 
actions and the current total deflections including the effects of 
imperfections; these terms do not appear in the classical bifurca- 
tion analysis. 

3 Nature  o f  Buckl ing  

To illustrate the behavior of a typical cylinder under axial 
compression and to use this behavior to exemplify the mechanics 
of post-buckling, a sample of the shells tested by Yamaki (1984) 
is considered. Direct comparisons with the test results cannot be 
made since the present simply supported boundaries differ from 
the clamped ends used in the experiments. However, the geome- 
tries are ones that in the past have been the subject of extensive 
numerical studies and against which the present solutions have 
been validated. Shell geometry is defined by R = 100 mm and t = 
0.247 mm so that R / t  = 405. By varying the length L, the 
geomet f i c~mete r  L/R ,  and the well-known Batdorf parameter, 2 Z = V 1  - p," L / ( R t )  are chosen as 

L mm L / R  Z 
36.0 0.360 50 
50.9 0.509 100 
72.0 0.720 200. 

For this and all subsequent examples the material is taken to have 
/z = 0.3. 

3.1 Classical Bifurcation Analysis. An idealized classical 
bifurcation analysis (see, for example, Koiter, 1963) can easily 
allow derivation of the nondimensional classical load spectrum 
(Brush and Almroth, 1975), in the form 

A' = ~ + ~ (26) 

where 
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~.2(/32 + j2 )2  L 

- xf3 Zj 2 ' 13i = i rr--R" (27) 

The classical critical load M is the minimum occurring when ~ = 
2, resulting in the so-called Koiter circle (Koiter, 1963; Arbocz 
and Sechler, 1974; Hunt et al., 1986) represented as 

[3~ + j~" = 2Bj (28) 

and shown in Fig. 2, where 

A 

1.Ok:u:. . . . . . .  Idealized (j=l&3) 
"'c[~k~'"~]:::~'""~ ".. Idealized ( j - i )  

0 . 5  ........ ' . ~ _ _ . - - ~  

0 /1 / / / 7  > , ,  , , , , , , , 
0 1 2 -- --0 

W16,1-~'W16: 

- - 0  
w 1 0 ~ 1  

A : 0.00 
B : 0.02 
C : 0.05 
D : 0.10 
E : 0.20 
F : 0.40 
G : 0,60 
H : 0.80 

Fig. 3(a) Nondlmensional load versus total deflection in harmonic I = 
(29) b = 1 6 a n d j =  1 

As is well known, this means that several different buckling modes 
i = b have critical loads close to the minimum classical critical 
load h~ = 1. For the present shell model having R/t = 405, the 
parameters of this Koiter circle are 

Z /max Jm,x - - 2 B  
50 18.3 4,19 

100 18.3'  5.92 
200 18.3 8.38 

Through nonlinear post-buckling analysis, solution convergence 
has been found to reach acceptable limits by using in Eq. (7) 

Lt ~ jc-x Lt ~ by j~'x 
u = ~ ~0j cos ~ + ~- ~bj cos -~- cos L 

j=Â j = l  

II Lt 2by j~rx 
+ ~-  ~ u2ba COS-F-- COS L 

j = l  

(30a) 

5 Lt 2by j~rx 
+-~-  ~ u3bj cos ~ cos L 

j = l  

15 11 Lt _ by . j~'x Lt 2by j~rx 
v = ~ ~ vbj sin -~- sm ~ + -~- ~ 52b0 sin ~ sin -~ 

j=J j=l  

(30b) 
Lt ~ 3by j~x  

-~- R-  ~)3b,j sin ~ sin L 
j = l  

15 11 j~'x by . j~rx 
w = t  ~ w 0 , j s i n ~ + t  ~ - ' w~,i cos ~ sm Z 

j = l  j=l 

9 2by jlrx 
+ t ~ ~'V21,, j COS ~ sin L ' 

j = l  

(30c) 

n,=iL/(,~R) 

' ..... - / 2 . '  / 
i r e s  x . . . . . . .  

0 - -  > 
B 2B j 

Fig. 2 Koltsr circle described by Eq. (28) 

1.00t 0 .83 t  0 .74 t  0 .58 t  0.385 0.235 0.24t 
t"l I--1 I~ M t'~ I"-1 1"-1 

A B C D E F G 

Fig. 3(b) 
ment component at the buckling load 

Axial shapes of the total axisymmetric out-of-plane displace- 

lZ///)/) 
A B C D E F G 

Fig. 3(c) Axial shapes (at y = 2klrR/16: k = 0, 1, 2 . . . . .  16) of the 
Incremental asymmetric out-of-plane displacement component at the 
buckling load 

w,~wn at y=0 

I I I I I I I I I I 
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8_ol.0 

W]6~l 

Fig. 3(d) Imperfection sensitivity 

Fig. 3 Effects of Initial Imperfections (a single asymmetric mode ~v~6,1) 
for shells (Z = 50, R/t = 405, UR = 0.360, b = 16) 

Post-buckling from this classical critical bifurcation state is 
illustrated in Fig. 3(a). Two cases of perfect shell bifurcation are 
shown. Idealized bifurcation models, shown dotted, are based upon 
the assumption that prior to buckling the effects of bending are 
ignored and the internal shell stress and strain take the form of a 
uniform membrane state, for which 

F _ _  F F = 0 ' nx - -crt, n y  : nxy 

ExF .~ - tr/E,  EyF : txtr/E, ExyF = 0. (31) 

The two idealized bifurcation curves relate to two very close 
critical loads having modes with i = 16 and either j = 1 or j = 
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Fig. 4(a) Nondlmensional load versus total deflection in harmonic i = 
b =  14 and j =  1 
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Fig. 4(b) Axial shapes of the total axisymmetric out-of-plane displace- 
ment component at the buckling load 
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Fig. 4(c) Axial shapes (at y = 2k~-RI142 k = 0, 1, 2 , . . . ,  14) of the 
incremental asymmetric out-of-plane displacement component at the 
buckling load 

w~,,~ at y=0 
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Fig. 4(d) Imperfection sensitivity for single asymmetric modes, ~v~4,1, 
~v1°4,3, and - 0 W14,5 

A OA : Bifurcation Point for i=14 
and ~=odd 

~,°=0.16 
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o 
Ws 
M 

imp. 

-0.5 0 0.5 

Fig. 4(e) Effects of axisymmetrlc initial imperfections 

Fig. 4 Effects of initial imperfections for shells (Z = 100, R/t = 405, 
UR = 0.509, b = 14) 
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Fig. 5(a) Nondimensional load versus total deflection in harmonic i = 
b =  12and j = 1 
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ment component at the buckling load 

l////////// 
A B C D E F G H I J K 

Fig. 5(c) Axial shapes (at y = 2kerR/12: k = 0, 1, 2 . . . .  , 12) of the 
incremental asymmetric out-of-plane displacement component at the 
buckling load 

wd~n at y=0 
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• . 5(d) Imperfection sensitivity for single asymmetric modes, ~v~2,1, 
.3, and ~v~2,s 

Fig. 5 Effects of initial imperfections for shells (Z = 200, R/t = 405, 
U R  = 0.720, b = 12) 

3; the near coincidence of  the critical loads is seen in Fig. 8(a). 
These idealized post-buckling curves are obtained using the incre- 
mental method with respect to the displacement coefficients ~, ~6.~ 
and w~6.3 for the upper and lower curves, respectively. A second 
bifurcation model, indicated by curve "A," is based upon the 
assumption that the effects of  bending in a fundamental prebuck- 
ling nonlinear axisymmetric deformation state are taken into ac- 
count. Due largely to the additional axisymmetric hoop compres-  

sions arising f rom the end boundary constraints, this more exact 
bifurcation analysis predicts lower critical loads. As is evident 
from Figs. 3 to 5, there remains on average an about 15 percent 
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difference. 

3.2 Imperfect Shell Response. Included in Figs. 3(a), 4(a), 
and 5(a) are representative imperfect curves, where the horizontal 
axis ~h.i represents the nondimensional total displacement com- 
ponent having a circumferential full-wave number i = b and a 
single half-wave in the axial direction, j = 1. 

Previous experiments, not only by Arbocz and Babcock (1969), 
but also by Batista and Croll (1979), have shown that at the last 
load level prior to buckling the shell displays a dominant mode 
with only a one-half axial wave covering the entire length of the 
shell, even though the advanced post-buckled pattern is character- 
ized by the well-known diamond pattern in which the axial and 
circumferential wavelengths appear to be approximately the same. 
Furthermore, Croll and Batista (1981) have indicated that a solu- 
tion for the lower bound to imperfection-sensitive critical load has 
a single axial half-wave. In view of these earlier findings the initial 
imperfection function Eq. (8) is taken to be a single mode having 
the single axial half-wave j = 1; that is the asymmetric imper- 
fection takes the form 

w ° = ,~°lt  cos (by~R) sin (Trx/L). (32) 

Recalling that the imperfection amplitude ~ 0  has been nondimen- 
sionalized with respect to the shell thickness, it can be seen that the 
sensitivity of buckling load to changes in imperfection is most 
severe when the imperfection has a very small amplitude. In Fig. 
3 for Z = 50, an imperfection in the single axial half-wave mode 
of just two percent the shells thickness will reduce the buckling 
load by around eight percent of the bifurcation load of the perfect 
shell. With an imperfection of around 60 percent the shell's thick- 
ness, the maximum load has all but disappeared with the behavior 
approaching that which is more reminiscent of column buckling; 
the buckling load in this case has been reduced by some 58 percent 
compared with the bifurcation load of the perfect shell and 65 
percent compared with the classical critical load. This imperfection 
sensitivity is more clearly illustrated in Fig. 3(d). As the shell 
slenderness increases so also does the potential reduction in buck- 
ling load due to imperfections. This is illustrated in Figs. 4(a) and 
5(a) where for, respectively, Z = 100 and 200; the lowest buck- 
ling loads are reduced by 75 percent and nearly 80 percent of the 
classical critical load. 

Figures 3(b,c), 4(b,c), and 5(b,c) show the axial distributions of 
deformation on meridians at y = 2kTrR/i (k = O, 1, 2 . . . . .  i), 
where the periodic buckling modes take on their extreme values, at 
the maximum or buckling loads. Figures 3(b), 4(b), and 5(b) show 
the axisymmetric components in the total deformations, while the 
incremental modes in Figs. 3(c), 4(c), and 5(c) are of the periodic 
buckling components associated with an increment of 0.001 X t 
in the control parameter neglecting the incremental axisymmetric 

- 0  components. As the level of imperfection Wb.~ is increased there is 
a gradual change in the incremental mode shape at the buckling 
load; this is shown in profiles "B," " C , " . . .  in Fig. 4(c). For small 
imperfection the mode ~ ~4.5 can be seen to dominate, while at large 
imperfections the incremental mode at buckling consists almost 
entirely of mode ~ ~4.1. The total axisymmetric deformation at the 
buckling loads are seen in Fig. 4(b) to also undergo major changes. 
Whereas at low imperfections, #° l ,  the axisymmetric deformation 
"B" takes the form of a constrained axisymmetric bulging; at high 
imperfection the axisymmetric deformation at the buckling con- 
tains a major component of Wo,3. It is this axisymmetric mode ~0.3 
that plays such a vital role in eroding the nonlinear membrane 
energy associated with buckling into mode wl,.i; this Donnell 
coupling is discussed more fully in Batista and Croll (1979). 

In Fig. 4(e), the initial imperfection function Eq. (8) is taken to 
be an axisymmetric mode having the inverse form to the linear 
bending mode; that is for Z = 100 the axisymmetric imperfection 
takes the form 

-n-x 37rx 
w ° = ~ ° t  1 . 1 2 0 0 X s i n ~ - + 0 . 3 9 3 8  X s i n ~ -  

57rx 77rx 
+ 0.1888 X s i n ~ +  0.0650 X sin T 

9 ~x l 1 ~x 
+ 0.0200 × sin T + 0.0063 X sin 

137rx l ~ _ x }  
+ 0.0025 X sin ~ + 0.0006 × sin - -  (33) 

It becomes evident that when an inward geometric imperfection of 
fv° (=_ w°,,x/t) = 0.16 is chosen, the outward loading-induced 
imperfection caused by the end constraint is being almost exactly 
counterbalanced by the inward geometric imperfection. The axi- 
symmetric response can be seen to develop a major component in 
mode w0.5, which corresponds with the lowest of the axisymmetric 
critical loads. It is the additional circumferential membrane stress 
associated with this axisymmetric deformation that causes the 
additional destabilization which in turn is responsible for reducing 
the bifurcation, at "A" in Fig. 4(a) and 4(e), from the classical load 
M = I .  

As Z increases the number of axial half-waves j ...... associated 
with the lowest axisymmetric critical load, also increase. For Z = 
50, 100, and 200, for example, it follows from the substitution of 
i = 0 into Eq. (28) that j  .... are 4.19, 5.92 and 8.38, respectively. 
It is for this reason that in Fig. 3(b) the deformation at the 
bifurcation load "A" has a major component o f j  = 3, while that 
in Figs. 4(b) and 5(b) are dominanted by j = 5 and j = 7, 
respectively. Since these nonlinear axisymmetric deformations 
arise from the effects of the end restraints on the Poisson bulging, 
resulting in a form of loading imperfections (see Croll, 1984), it is 
the odd components j = 1, 3, 5 . . . .  that provide the dominant 
components in the nonlinear prebuckling response. 

It is noticeable in the case of Z = 50 that the nonsymmetric 
buckling mode shapes shown in Fig. 3(c) change very little as the 
amplitude of the initial imperfection increases; for all imperfection 
levels it is mode w~6.~, with a smaller contribution from w~6.3, 
which dominates. For larger values of Z there are distinct changes 
in axial mode participation as the critical imperfections ~ 0  in- 
crease. As Fig. 4(c) shows, there is a significant change in the form 
of nonsymmetric buckling mode between cases "D" and "E." 
Similarly, Fig. 5(c) displays changes in the axial mode shape 
between "E" and "F." These shifts in dominant buckling mode are 
reflected in the forms of imperfection sensitivity and post-buckling 
curves. This feature is most clearly seen in the changes to post- 
buckling lower bounds between "D" and "E" in Fig. 4(a), and less 
so in the similar mode shifts that occur in Fig. 5(a). Whereas Fig. 
3(a) exhibits a smooth drop-off in buckling loads and associated 
mode shapes with increasing ~°.t, this is not the case for the shell 
of Fig. 4(a) and 5(a) having higher Z values. 

With the preference of the Z = 100 shell to develop incremental 
-- - 0  modes dominated by wb.5 when imperfection Wh, I is small, as 

shown in Fig. 4(c), it might be anticipated that imperfections 
having short axial wavelengths would produce even more extreme 
imperfection sensitivity. This is shown to be the case in the two 
further studies are summarized in Fig. 4(d). These show that for 
small imperfection amplitudes, the shorter axial wavelengths have 
asymptotically more extreme imperfection sensitivities. For larger 
amplitudes, however, these shorter axial wavelength imperfections 
cease to exhibit a (maximum) buckling load; it is for this reason 
that there is no buckling load shown for ~,'~°4.3 > 0.4 a n d  "H2~4.5 > 

0.2. A similar situation is evident in the studies of varying the 
axial shape of imperfections in Fig. 5(d). Although not shown, 
there is a tendency as the amplitudes of these shorter axial wave- 
length imperfections are increased, for the axial mode shape to 
become dominated by ~,.~. 

3.3 Incremental Energy Characteristics Along Nonlinear 
Paths. To identify which of the shells components of initial 
resistance to buckling are lost in the unstable post-buckling pro- 
cess, it is instructive to look at the changes in incremental energy. 
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Fig. 6(d) Destabilizing membrane energy V~M 
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Fig. 6 Variations of quadratic energies (Z=  100, R/t = 405, UR = 0.509, 
b = 14, see Fig, 4) 

Figure 6(a) shows the variation of the incremental quadratic com: 
ponents of total potential energy, II2, defined in Eq. (20). Rectan- 
gles represent the initial stiffness; circles indicate the zero resis- 
tance at the maximum buckling loads. All results show the extreme 
sensitivity of the shell initial resistance to incremental buckling 
deformations as imperfection levels are increased. They also show 
that II2 of the prebuckling paths undergoes rapid decreases as the 
load approaches the buckling point; at the buckling point [I 2 
becomes zero. For the results shown in Fig. 6(a), and in subsequent 
discussions of the energy, the quadratic incremental energies are 
normalized with respect to the summation of the squares of the 
incremental (non-dimensional) displacement components, S, given 
as 

J~ J~ ~',~ 
S =  £ £ (R})2+ £ £ (5})2+ £ £ (~})a. (34) 

i j i j i j 

It has been suggested that the nonlinearity of the shell buckling 
is all to do with changes in the initial membrane resistance; this is 
certainly a central hypothesis of the reduced stiffness method. To 
emphasize this, Figs. 6(b)-(h) show the contributions to the incre- 
mental quadratic form of total potential energy from its bending 
components II2B = U2B and the various membrane components. 
As the level of the imperfection increases, the originally positive 
contribution from membrane energy, l I I = -  U2~ - V~ in Fig. 
6(c), is rapidly reduced, eventually becoming almost zero at the 
buckling load (as in case 'T'). At large deformations the total 
destabilizing membrane ViM energy reaches a fairly consistent 
negative asymptote, which can be seen to exactly counteract the 
almost invariant positive contribution from bending energy as 
imperfections and deformation increase as shown in Fig. 6(b). 

By breaking down the membrane energy into the linearized 
axial membrane energy ViM, see Eq. (24b), and the rest, it becomes 
even clearer how the resistance of the axially loaded cylinder is 
eroded with increasing deformation and/or imperfections. It is 
clear that the destabilization is provided by the axial linearized 
component V~M. When it is considered from Eq. (24b) that the 
uniform axial stress n~ and its associamd strain eft are necessarily 
negative, while incremental strain e~d and its associated stress n~ e 
must be positive, it becomes clear why ViM provides the negative 
or destabilizing contribution. What is noteworthy is the important 
positive stabilizing contribution from VIM. This arises from the 
first term in Eq. (24c), for which the positive Poisson bulging 
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Fig. 7(a) Critical load spectra 

(this linearized circumferential energy Vze} is closely related to the 
incremental component VIM discussed in Section 3.3 and shown to 
be eventually eliminated at buckling in Fig. 6(f)). Batista and 
Croll (1979) (following Donnell, 1934) have reasoned how v2r} 
would be lost due to the occurrence of mode coupling. They have 
obtained a reduced stiffness critical load, A*, by solving the 
following eigenvalue problem: 

a v2r,~ 
U2B + U2M + A* = 0. (38) 

0A 

However, Yamada and Croll (1993) have shown, for the related 
case of pressure buckling, that the linear membrane energy U2M is 
also eliminated. Based upon the elimination of both V2V~ and U2M, 
an alternative critical load equation ~** may be proposed as 

0 V2~ 
U2B + X** = O. (39) 

OA 

0.04 

strain ~ and the necessarily positive definite incremental hoop 0.03 
stress n~/(positive definite as a result of the nonlinear strain e~ a of 0.02 
Eq. (18) also of necessity being everywhere positive) give rise to 
a positive energy term V~M. However, what Fig. 6(3') shows is that 0.01 
this initially important stabilizing contribution from V~u together 
with the contribution from the membrane strain energy U~M + 0.0 
W~M as shown in Fig. 6(g), are both lost with increasing deforma- 
tion into the buckling mode and increasing imperfection. For 
sufficiently large imperfections, these stabilizing membrane terms 
have been eroded at the maximum buckling loads. These obser- 
vations support the physically based reasoning underpinning the 
reduced stiffness method (Croll, 1975; Batista and Croll, 1979). 

4 N o n l i n e a r  B e h a v i o r  and  the R e d u c e d  St i f fness  
M e t h o d  

Although it has been described elsewhere (see, for example, 
Batista and Croll, 1979), it will be instructive to summarize in the 
present context the major features of the reduced stiffness method. 

4.1 Reduced Stiffness Method. The classical bifurcation 
analysis of Eq. (26) fo/- a prospective buckling deformation (u a, 
v d, w d) from a uniform prebuckling stress and strain state, Eq. 
(31), could be represented in terms of energy as 

/ avf , a 
U2~+ U2M+A / - - ~ - - +  0A ] = 0 '  (35) 

In this equation, U2, is the linear ~ bending energy (Eq. (21)), U2M 
is the linear ~ membrane energy (Eq. (23)), and V2uVX is' the linearized 
membrane component associated with axial direction, while vzri~ is 
associated with circumferential direction, that is 

ff2~R f f  Fx __ / dd F F dd 
V2M -- ½ ~ 0 (36) tn x e~ + n~E~ )dxdy  

I0 2~'R I0 L v2Fi~I = 21_ : dd F F dd [ n y  Ey + n y E y  )dxdy .  (37) 

For the shell having Z = 100 and critical modes with a single axial 
half-wave, Fig. 7(b) shows the breakdown of the total potential 
energy. It can be seen that VEF~ provides the negative destabilizing 
contributions to the critical loads A c shown in Fig. 7(a). Both the 
linear bending U2B and membrane U2M energies contribute to the 
stabilization, as does the linearized circumferential component v2Fi~ 

t Linear in the sense of being related to the linear strain-displacement relationships 
in the incremental critical buckling deformations. 
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Fig. 7(b) Contributions of energy components In critical mode 

Fig. 7 

2 2  

Bifurcation analytical results (Z = 100, R/t = 405, U R  = 0.509) 

Based upon this reduced energy a modified reduced stiffness load 
is given by 

l - /x 2 {(j'qr) 2 + ( iL/R)2}  2 

i,j - 2 . f3Z  {(2 - /z2)(j'rr) 2 + t z ( iL/R)Z} ' (40) 

This alternative has the advantage of being consistent with the 
reduced stiffness philosophy applied to other loading cases and 
more importantly the observations of Fig. 6(c) and Fig. 6(e) to 
6(h). Lower-bound buckling would be given by the value of A** 
corresponding with a mode having a single half-wave in the axial 
direction j = 1 and at a circumferential full-wave number i,,, 
associated with the lowest classical critical load. Defining io, from 
Eq. (28), with j = 1, Eq. (40) leads to the modified expression 

1 - W  E 
At,, - (41) 

2 - /x = - /~ + ~ (2vr3Z),/2 "/T 
for the reduced stiffness lower bound to elastic buckling. As noted 
in previous discussion of the reduced stiffness method, lower 
bounds to axial loaded cylinder buckling have both a dependence 
upon Z and Poisson's ratio/~ (see Croll and Batista, 1981). But 
how does this modified reduced stiffness load relate to the results 
of nonlinear buckling studies? 

4.2 Parameter Studies and Lower Bound Buckling. Fig- 
ure 8(a) shows the various critical load spectra for the shell Z = 
50. To provide additional confirmation of the lower boundedness 
of the modified reduced stiffness critical load A*~m* a number of 
imperfection sensitivity studies like that shown in Fig. 3(a) have 
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Fig. 8 Summary of buckling loads from nonlinear analysis for imperfect 
shells and comparison with linear classical end reduced stiffness anal- 
yses 

been undertaken. The many dots in Fig. 8(a) show the buckling 
loads for imperfections in modes 52 -< b -< 20. Those shown for 
b = 16 relate to the results described in Fig. 3(a). For this shell the 
integer mode nearest to that resulting in the minimum critical load 
Acre is b = 16. It is evident that the imperfection sensitivity in this 
mode is at its highest; an imperfection of 60 percent the shell 
thickness is enough to almost reach the reduced stiffness load A~*~. 
For this same amplitude of imperfection in modes b < 16 the 
buckling load is a little higher, while for b > 16 the snap buckling 
no longer occurs and nonlinear responses approach A ~  in Eq. (40) 
monotonically from below. It is for this reason that no buckling 
loads are shown for some imperfections in modes b > it,,, and also 
why in mode b = 16 there are no buckling loads shown for ~0 > 
0.6. With the lower imperfection sensitivity in modes b < i~,, it 
takes rather larger imperfections to reach their lower bounds. It is 
again significant that the lower bounds are effectively constant and 
equal to A*~*. 

Figures 8(b) and 8(c) show the related behaviors for shell having 
Z = 100 and 200, respectively. For each case, and others not 
shown, the characteristics are effectively the same. Maximum 
imperfection sensitivity is experienced in the classical critical 
mode (icm, | ), with the reduced stiffness critical load A c*,*, provid- 
ing very close approximation of the lower bounds to imperfection 
sensitivity. Table 1 summarizes the relationships between A*,,*, and 
the lower bounds to nonlinear buckling loads A~,. 

Before leaving the parameter studies of Fig. 8(a) to 8(c) it is 
relevant to note that as the imperfections in mode b < ic,, are 
increased there is a gradual shift in the incremental buckling 
mode from that of the imperfection to that of i cm. This is 
illustrated in Fig. 9 for the case of Z = 200. Imperfections in 
mode (i, j )  = (8, 1) result in the nonlinear responses shown in 
Fig. 9(a); these relate to the buckling loads shown in Fig. 8(c) 
for mode i = b = 8. With small imperfections, exemplified by 
"B," the incremental deflection mode at buckling is seen in Fig. 
9(b) to be essentially associated with the imperfection i = b = 
8. For large imperfections, case "P," the dominant wavelength 
of the incremental deflection modes has shortened to conform 
closely with the critical wavelength icm = 12. It is these mode 
shifts resulting from mode coupling at large deformations and 
for larger levels of imperfection that eventually make the re- 
duced stiffness A*~ relevant even for initial imperfections hav- 
ing very different wavelengths. 

5 C o n c l u s i o n s  

An elastic nonlinear Ritz analysis has been developed to 
allow investigation of the imperfect behavior of axially com- 
pressed cylindrical shells. This has allowed a number of im- 
portant observations. First, as deformations increase along the 
nonlinear equilibrium path for a particular imperfection, the 
originally positive (stabilizing) contributions from membrane 
energy are rapidly reduced, eventually becoming effectively 
zero at moderate levels at post-buckling deformation. Second, 
as the imperfection levels are increased, the significance of 
incremental membrane energy at the buckling (maximum) load 

Table 1 Comparison between the present lower bound of buckling 
loads by nonlinear numerical analysis (A~m) and the modified reduced 
stiffness loads (Acre) for ] = 1 

iota(j=1) 

50 15.6 0.34(16) 0.317 

100 13.7 0.26(14) 0.269 

200 11.9 0.24(12) 0.221 
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Fig. 9 Effects of initial Imperfections (a single asymmetric mode ¢.~,1) 
for a shell (Z = 200, R/t = 405, UR = 0.720, b = 8) 

is also reduced, becoming effectively zero when buckling loads 
reach their minimum levels. Third, although for extremely 

small imperfections the incremental deformation modes at 
buckling show considerable variability, there is a particular 
incremental mode that dominates buckling when imperfections 
reach moderate levels. This dominant buckling mode, having a 
single axial half-wave and a characteristic circumferential full- 
wave number, is shown to conform closely with that predicted 
from a reduced stiffness analysis. Furthermore, the lowest re- 
corded nonlinear buckling loads are demonstrated to be accu- 
rately predicted by a modified form of the reduced stiffness 
critical load. 

In terms of the specific problem considered it is concluded that 
this modified form of the reduced stiffness method, which is a 
straightforward extension of classical linear buckling theory, pro- 
vides a simple but safe basis for the design of axially compressed 
cylinders. At a wider level the paper shows how a synthesis of 
classical and numerical nonlinear analysis can lead to an under- 
standing of greater significance than if either were considered 
alone. 
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Evolution of Interfacial Voids 
Around a Cylindrical Inclusion 
The formation and evolution of interfacial cavities is predicted for compression flows of 
a viscous solid around a rigid cylindrical inclusion. The resulting free-boundary problem 
is solved by the finite element method with boundary-fitted mesh motion. The matrix- 
inclusion interface is perfectly weak and separates at a dynamic contact line. For a fixed 
set of geometric parameters, increasing the external pressure causes smaller interfacial 
voids and slower growth rates. The size of the stagnant voids found is affected by the 
applied pressure. The profiles of interfacial voids change from convex to convex-concave 
as the strain increases. This can lead to unstable cusps at low enough external pressures. 
The numerical predictions compare well with the experiments of Kao and Kuhn (1990)for 
void size as a function of strain in viscoplastic model materials. 

1 Introduction 
Imperfect interfaces in two-phase materials are often criticized 

when manufactured structures demonstrate unexpectedly poor me- 
chanical properties. Interracial debonding, sliding, and separation 
are among interracial problems which may occur during process- 
ing and can later lead to premature failure (see, e.g., Mura (1987) 
and Achenbach and Zhu (1989)). Recently these interracial prob- 
lems have been studied by a number of researchers (e.g., Xia et al. 
(1994), Budiansky et al. (1995) Chap and Laws (1997), Jasiuk et 
al. (1997), and Ru (1998)). When such materials are subjected to 
compressive or extensional loads, interfacial voids may occur by 
further decohesion of the matrix material from the inclusions 
(Hashin, 1991). Evolution of large interracial voids around cylin- 
drical inclusions in two-phase materials is the focus of this paper. 

Budiansky, Hutchinson, and Slutsky (1982) investigated the 
evolution of isolated spherical voids in an infinite linear viscous 
solid subjected to various biaxial stresses. The effect of outside 
pressure on the final shape of such voids was extensively analyzed. 
Deformation of spherical cavities has been also studied by Rice et 
al. (1978) for a class of fluid-infiltrated elastic materials. For 
viscous materials, Budiansky et al. (1982) showed that tension or 
transverse compression loads lead to elongated ellipsoidal voids. 
In this work, we show that similar tendencies develop in plane 
compression flows around cylindrical inclusions, although the 
deformation of cavities is no longer homogeneous. Taya and 
Patterson (1982) pointed out that the viscous solid model can 
effectively predict interracial voids around debonded rigid inclu- 
sions in a ductile two-phase material. The ductile matrix was 
modeled as a linear viscous solid (Nadai, 1950). This assumption 
is based on the mechanical behavior of ductile metals, such as 
copper or aluminum, which can be described by 

o0 = a + be, (1) 

where o'0 is the flow stress and a and b are constants for a certain 
range of strain rates /~ and flow temperatures. Note that the 
debonded particles have interfacial mechanical properties which 
are similar to a perfectly weak interface. Such interfaces represents 
an important limit for weak interfaces. Recently Jasiuk et al. 
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(1997) examined perfectly strong and weak interfaces for a class of 
elastic matrices and an inclusion in a half-space. In this work, we 
demonstrate how perfectly weak interfaces separate, undergo large 
nonlinear deformation, evolve in time, and that they may be prone 
to interfacial instabilities. 

Needleman (1987) studied formation of interfacial separation 
and evolution of interfacial voids in a periodic array of rigid 
spherical inclusions in an elastic-viscoplastic matrix. A rectangular 
unit cell was subjected to the external tensile loads, which lead to 
monotonically increasing separation and the complete voids asso- 
ciated with complete debonding along the entire interface. In 
particular, it was noted that the shear stiffness parameter of the 
phenomenologically described interface had insignificant effect on 
the voids studied. In the case of compression flows around cylin- 
drical particles with perfectly weak interfaces, we also show that 
the interfacial sliding has rather small influence on the voids as 
they are formed by predominantly normal interfacial separation. 

In this paper we investigate the temporal evolution of interfacial 
voids around a cylindrical inclusion in a thick plate subjected to 
biaxial compressive loads. The influence of external pressure on 
the development and shape of voids at rigid inclusions is exam- 
ined. The biaxial loads considered lead to the formation of inter- 
facial voids with variable rate of growth, voids with convex and 
convex-concave profiles, and cusps. The numerical simulations are 
compared with physical modeling experiments of Kao and Kuhn 
(1990). 

2 Formulation of  the P r o b l e m  

This paper analyzes two-dimensional symmetric compression 
flows around a cylindrical inclusion (as shown in Fig. 1). These 
flows represent physical situations of practical importance: for 
example, extensional flows around cylindrical obstacles and forg- 
ing of two-phase specimens with cylindrical inclusions (e.g., Kao 
and Kuhn, 1990). The physical domain contains a thick plate with 
a single cylindrical inclusion, which is subjected to biaxial com- 
pressive loads. The computational cell considered is a rectangle of 
dimensions 2L × 2H which is centered around the inclusion. Both 
dimensions of the cell are smaller than those of the plate (see 
Section 2.1). We assume that the matrix is an incompressible 
viscous solid. The total stress cr is 

o" = - p I  + /.L(VV + CVV)r ), (2) 

where p is pressure, I is the identity tensor, tz is the dynamic shear 
viscosity, and V is the fluid velocity. We shall demonstrate that for 
certain cases this constitutive model can simulate material defor- 
mation of low Deborah numbers. It also ensures numerical stability 
of the simulations. For incompressible materials, the equation of 
mass conservation is 
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Fig. 1 Schematic of the compression flow region near a rigid cylindrical 
Inclusion in a viscous two-dimensional column 

Ou Ov 
v . v =  7 x + T y  = 0, (3) 

where uu and v are two components of the material velocity vector. 
In the case of quasi-static deformation of a viscous solid, the 

Reynolds number Re = pVoH/g is small and the momentum 
balance is described by the Stokes equation for creeping flows: 

V p =  V ' ¢  or Vp=/.1.72V. (4) 

Here, p is density, V0 is the compression velocity, and 2H is height 
of the specimen. Typical values of these parameters are V0 ~ 3 × 
10 -4 m/s, H ~ 0.1 m, O and/x are 2,600 kg/m a and l l  × 10 n 
kg/m, s for a glass at the temperature 575(°C), and 1800 kg/m 3 and 
4.7 X 10 s kg/m • s for a wax at the temperature 8(°C) (Weast, 
1988). Thus, Re .~ 1 for a number of highly viscous Newtonian 
solids. Note that the time-dependence of the flow-field is caused 
solely by interracial boundary motion. 

2.1 Boundary  Conditions.  By symmetry, only a quarter of 
the solution domain needs to be analyzed (Fig. 2). Following 
Needleman (1987), we replace the constant strain rate at infinity by 
a constant velocity along a side of a rectangular computational cell. 
As a result, boundary conditions on the top shear-free boundary of 
the cell are 

v ( x , y  = H )  = -Vo, t ' t r ( x , y = H )  = 0 ,  (5) 

for x E [0, L], where V0 is the inflow velocity, 2H is the height 
of the cell, and 2L is the width of the cell. The symmetry lines x = 
0 and y = 0 are also shear-free with no penetration 

u ( x = O , y ) = O ,  t ' ~ r  ( x =  0, y) = 0, (6) 

for y E [ri, HI, and 

v (x, y = 0) = 0, t .  ~ (x, y = 0) = 0, (7) 

for x E [ri, L], where ri is the radius of a cylindrical inclusion. 
The cell boundary at x = L is subjected to a constant pressure P 
and zero shear stress: 

n .  tr (x = L, y)  = - P ,  t '  o" (x = L, y) = 0. (8) 

The perfectly weak interface may slip and even separate from 
the inclusion if the processing pressure is low enough. The sliding 
interface should satisfy the following conditions for free slip and 
no penetration: 

o ' t 0 ( r =  ri, 0) = 0 ,  V ( r = r i ,  0 ) ' n = 0 ,  (9) 

for 0 U [0, ~r/2], where n is the normal vector, r and 0 are polar 
coordinates with the origin at (x = 0, y = 0), and r~ is the 
inclusion radius. The sliding part of interface should satisfy con- 
ditions (9) for 0 ~ [00, Ir/2], where the angle 00 defines the contact 
line at (r = r:, 0 = 0o). The unknown angle 00 may change with 
time. When interfacial boundary slips or separates from the inclu- 
sion, it is also required to satisfy the kinematic boundary condi- 
tions 

(V - V,) .  n = 0, (10) 

where V, is the surface velocity vector. The free interfacial bound- 
ary at r = r~ and 0 E [0, 00] is assumed to be subjected to zero 
radial stress and zero shear stress, 

o'rr (r = ri, O) = 0 ,  tr,.o (r = ri, 0) = 0 .  (11) 

This part of the interface is free to move, deform, and take any 
kinematically admissible location and shape. 

Note that two different sets of boundary conditions are required 
for the sliding part of the interface and the "freely" evolving part 
of the boundary. The position and the shape of interfacial free 
boundary and the location of the contact line joining the two parts 
of interface together is not known before hand. The numerical 
aspects of such nonlinear problems are thoroughly discussed by 
Christodoulou et al. (1996). We show that the dynamic contact line 
problem involved can be resolved by introducing an equivalent set 
of interfacial conditions for the resulting system of equations. 
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Fig. 2 Schematic of the computeUonal domain with the boundary conditions and the 
governing equations used 
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3 Numerical Simulations 
The plane compression flows around a cylindrical inclusion are 

investigated in a quarter of the solution domain (Fig. 2). The 
Galerkin finite element method is implemented for the computa- 
tional cell which is diseretized with nine-node quadrilateral finite 
elements. The mesh was tested for convergence under refinement. 
The resulting system of nonlinear algebraic equations is solved by 
a fully coupled Newton-Raphson iterative scheme with boundary- 
fitted mesh motion (Christodoulou et al., 1996). The finite element 
analysis is performed by using the code developed in cooperation 
with Sandia National Laboratories (Schunk et al., 1995). There are 
several commercial computational mechanics packages which can 
address similar problems for elastoplastic solids (e.g., ABAQUS 
and ANSYS) or viscoplastic materials (e.g., DEFORM and 0.2 
DYNA). The present code offers additional flexibility in defining 
a phenomenological weak interface by introducing a repulsion a.6 
potential along the ill-defined interfacial surface with a dynamic 
contact line (Harik, 1997). This code also avoids additional itera- L 
tions by utilizing a fully coupled scheme for the mesh motion and 

0 . 3  
the momentum equations. Such approach increases accuracy of the 
free surface modeling, which is especially important at the onset of 
the cusp instability. 0.0 

In the numerical calculations presented, the initial inclusion 
volume fraction is 9.8 percent, for the inclusions of normalized 
radius 0.5. The x and y-coordinates and the velocity vector com- 
ponents are nondimensionalized as x* = x / H ,  y* = y /H ,  u* : 0.3 
u/Vo and v* = v/Vo. The nondimensionalized pressure p* is 
given by p* = p/(p~Vo/H).  The external pressure P applied to the 

0 . 6  
outer surface of the cell at x = L is varied. The location of the top L 
cell boundary is set at y = H = 1. The normalized vertical 
velocity along this cell boundary is set to be -1 .  The location of 0.3 
the outflow boundary is set at x = L = 2. Geometry of inclusion 
and the matrix material viscosity remain fixed, ~ = 1, for all 
numerical calculations, o.o 

In order to enforce two sets of interfacial boundary conditions 
and allow slip along the sliding interface together with unrestricted 
evolution on the free interracial surface, phenomenological repul- 
sion is introduced (Harik, 1.997). The corresponding boundary 
condition is defined for the entire surface of the interface: 

b ~  

p ( r ,  O) = Pa + (r - ro) ~ '  (12) 

wherep(r,  0) is the repulsion pressure, po is the ambient pressure 
parameter, b, is the sensitivity coefficient for the repulsion poten- 
tial, and r0 defines a circular surface along which the repulsion 
potential is infinite. Note that ro is smaller than the radius of 
inclusion rl, r~ - r0 < 0.001. To simulate zero pressure on the 
free interface boundary the ambient pressure parameter P a is set to 
be zero. The sensitivity coefficient b, is chosen so that the repul- 
sion potential balances the flow pressure at the inclusion surface 
and simulates the presence of a rigid body. Note that this approach 
is similar to the modeling of a phenomenologically defined inter- 
face by Needleman (1987). 

4 Analysis of Results 
In two-phase materials with the perfectly weak interface, inter- 

facial separation starts on both sides of a cylindrical inclusion at 
the line of symmetry (y = 0; see Fig. 3(a)). At the place of 
separation, there is a small region of zero pressure, which is 
preserved for some time (Fig. 3(b)). In that region, the matrix has 
a "dead zone" of the deformation-free material. A similar zone 
near interracial voids has been observed by Needleman (1987) in 
an extensional flow. High values of external pressure P can reduce 
the growth and the size of microvoids. Interfacial microvoids 
rapidly grow into finite cavities. Development of finite interracial 
voids at cylindrical inclusions in compression flows goes through 
a sequence of convex profiles for small strains and low external 
pressures (Fig. 3(a, b)). Figure 3(a) shows a set of instantaneous 

I I I [ L I I 

0 , 6  

L (a) 

0 . 3  

0 , 0  

0 . 0  0 , 3  0 , 6  0 . 9  1 .2  1 .5  1 .8  

(b) 

0,0 0.3 0.6 0,9 1,2 1,5 1,8 
X -  

(c) 

0 , 0  0 , 3  0 . 6  0 . 9  1 .2  1 ,5  1 ,8  
v -  

Fig. 3 Transient evolution of an interfacial void at a cylindrical inclusion 
at zero external pressure P. (a) Stream lines of the deformation flow at P 
= t / (H /Vo )  = 0.053, (b) pressure contours at t* = 0.126, and (c) velocity 
vector field at t* = 0,422. 

flow stream lines which is characteristic for all stages in void 
growth. The zero line moves upward as the strain increases and the 
length of void ~ grows. 

Under low external pressure, the sequence of convex interfacial 
cavities breaks down when a cusp develops in the interfacial free 
surface at the symmetry line (Fig. 3(c)). This marks a highly 
unstable stage in the evolution of free interfacial surfaces subjected 
to low external pressures. It is characterized by a sudden increase 
in the matrix flow velocity near the interface at the line of sym- 
metry. High values of external pressure P reduce not only the 
growth of voids and their final size (Fig. 4) but also suppress their 
interfacial instability. Under high enough pressure, an interracial 
void grows monotonically until its size reaches a steady-state 
value. Figure 4 illustrates the changes in the time-dependent evo- 
lution of finite interfacial voids caused by the outside pressure. 

The rate of void growth decreases as the applied pressure rises. 
A steady state is reached under higher external pressures, which 
limit the cavity growth and the interfacial instability. The limiting 
void size is controlled by the external pressure for a range of large 
strains (Fig. 4): The shape of the stagnant void is determined by the 
local flow-field which resembles the Bingham plastic flow around 
a sphere with solid stagnation regions (see Beris et al., 1985). 

The transient evolution of an interfacial void at a cylindrical 
inclusion shown in Fig. 3 provides a good qualitative description 
of the experiments performed by Kao and Kuhn (1990). In fact, all 
topological characteristics of the convex interfacial cavities are in 
agreement (see Figs. 3 and 6 in Kao and Kuhn (1990)). That is, 
similarities extend even to the break up of the sequence of convex 
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Fig. 4 The time-dependence of the interfaclal separation 6 (6 = Dx/H) at 
y = 0 around a cylindrical inclusion of normalized radius 0.5 for different 
outside pressures P (P = ApI(i.cVolH)) 

profiles by unstable transition to the cusp in the evolving interfa- 
cial surface. The velocity vector fields obtained from the experi- 
ments and the finite element modeling are quite similar as well (see 
Fig. 3(c) and Fig. 6 in Kao and Kuhn (1990)). Figure 5 illustrates 
a quantitative agreement between the physical modeling of void 
growth and finite element simulations. 

Similarity between the flow of a viscoplastic paste-type model 
material and the finite element simulations based on the viscous 
solid model is the result of low rates of deformation and low 
Deborah number of the paste flow. Lipscomb and Denn (1984) 
demonstrated that the Bingham plastic flow around a sphere can be 
approximated by a linear viscous flow when the yield stress and 
the rate of deformation are small. Duvaut and Lions (1976) proved 
that a unique solution for the creeping flow of Bingham plastics 
exists and it approaches the Newtonian limit as the yield stress 
approaches zero. In the physical modeling experiments, the shear 
thinning near the particle surface creates theological conditions 
resembling weak interfaces. 

5 Conclusions 
This paper presents finite element modeling of time-dependent 

evolution of interracial voids at a cylindrical inclusion in plane 
compression flows. In particular, the influence of applied external 
pressure on the development of voids at the inclusion surrounded 
by a highly viscous matrix is examined for a variety of cases. For 

1.2 "expr" , 
.~ "fem:p=-l" .-. 
'6 "fem:p=O" 
> 1 

0.8 

"~'-~ 0.6 ~ 

o~ 0.4 
Z . 

0.2 
0.15 0.2 0.25 0.3 0.35 0.4 0.45 

Strain 

Fig. 5 The dependence of interfacial separation (Dxlrt) on the compres- 
sive strain (I/0[//4). The experimental data is shown for zero outside 
pressure (Kao and Kuhn, 1990). The data reflect the unstable develop- 
ment of an interfaclal cusp. The two sets of data obtained by finite 
element modeling are shown for P = API(i~VolI-I) = 0 and API(i~VolI-I) = 
- 1 .  The final strains mark the onset of interfacial instability. 

a fixed set of geometric parameters, increasing the normalized 
pressure drop between the tree surface and the inclusion Ap/ 
(txVo/H) reduces the interfacial void size. The profiles of interfa- 
cial voids change from convex to convex-concave (with smaller 
area) as the applied pressure and strain increases. 

The external pressure affects the initiation of interfacial separa- 
tion and all stages in the void development. The presence of an 
inclusion leads to complex deformation of interfacial free surface. 
As a result, the topology of deformed voids is more complicated 
than that of elongated voids without inclusions. It is especially true 
in the case of biaxial compressive loads which lead to interaction 
between the interfacial free surface and the rigid inclusion. The 
compression velocity and the matrix viscosity also affect the void 
formation as they change the time scale. The initial convex profile 
of the nucleated voids simulated by Needleman (1987) is similar to 
the shape of interfacial voids simulated at cylindrical inclusions. 
The formation of "dead zones" at both lines of symmetry of 
inclusions is observed as well. However, the difference in loading 
leads to distinct evolution patterns. 

Analysis and examples of the transient deformation of interfa- 
cial voids at a cylindrical inclusion illustrate how such voids 
evolve under various external pressures. The sequence of void 
profiles shown in Fig. 3 provides a good qualitative description of 
the experiments performed by Kao and Kuhn (1990). Altogether, 
this demonstrates that advanced finite element codes involving the 
boundary-fitted mesh motion (Schunk et al., 1995) or other 
schemes for moving boundaries (Hu et al., 1992; Tezduyar et al., 
1992) can successfully simulate highly nonlinear deformation of 
free or moving boundaries. 
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Analytic Solution for Eshelby's 
Problem of an Inclusion of 
Arbitrary Shape in a Plane or 
Half-Plane 
Despite extensive study of the Eshelby's problem for inclusions of simple shape, little 
effort has been made to inclusions of arbitrary shape. In this paper, with aid of  the 
techniques of analytical continuation and conformal mapping, a novel method is pre- 
sented to obtain analytic solution for the Eshelby's problem of an inclusion of arbitrary 
shape in a plane or a half-plane. The boundary of the inclusion is characterized by a 
conformal mapping which maps the exterior of  the inclusion onto the exterior of  the unit 
circle. However, the boundary value problem is studied in the physical plane rather than 
in the image plane. The conformal mapping is used to construct an auxiliary function with 
which the technique of analytic continuation can be applied to the inclusion of  arbitrary 
shape. The solution obtained by the present method is exact, provided that the expansion 
of the mapping function includes only a finite number of  terms. On the other hand, if the 
exact mapping function includes infinite terms, a truncated polynomial mapping function 
should be used and then the method gives an approximate solution. In particular, this 
method leads to simple elementary expressions for the internal stresses within the 
inclusion in an entire plane. Several examples of practical interest are discussed to 
illustrate the method and its efficiency. Compared to other existing approaches for the 
two-dimensional Eshelby's problem, the present method is remarked by its elementary 
characters" and applicability to inclusions of  arbitrary shape in a plane or a 
half-plane. 

1 Introduction 
Stress analysis of an infinite homogeneous elastic body that 

contains a subdomain undergoing a uniform stress-free strain 
(Eshelby's problem) is a classic topic. Among various physical 
phenomena which lead to the Eshelby's problem, thermal stresses 
and intrinsic stresses, caused by thermal or lattice mismatch be- 
tween dissimilar materials, are of particular significance. The ex- 
amples of current interest include passivated interconnect lines and 
trench isolations in large-scale integrated circuits (see Hu, 1991; 
Okabayashi, 1993; Burges et al., 1996), and strained semiconduc- 
tor laser devices (see Gosling and Willis, 1995; Faux et al., 1996, 
1997; Downes et al., 1997), where residual sWesses induced by 
thermal or lattice mismatch between buried active components and 
surrounding materials crucially affect electronic performance of 
devices and, in some cases, are identified as the major cause of 
degradation and failure. For these problems, a common simplifi- 
cation made by many researchers is that the thermal or lattice 
mismatch plays the dominant role and the difference in elastic 
constants between dissimilar constituents can be ignored. For 
example, Niwa et al. (1990) have modeled the passivated metallic 
line as an elliptic thermal inclusion surrounded by an infinite 
elastic medium of the same elastic constants (called "thermal 
inclusions," see Hu, 1991). Their results show that the solution 
based on this simplified model is in reasonably good agreement 
with accurate numerical solutions. 

Various methods have been developed for the Eshelby's prob- 
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lem. Among others, Green's function (see, e.g., Seo and Mura, 
1979; Chui, 1980; Hu, 1989; Yu and Sanday, 1991; Muller et al., 
1994; Wu and Du, 1995, 1996; Faux et al., 1996; Nozaki and Taya, 
1997) is the most widely used method. However, because Green's 
function involves nontrivial integrations, it cannot be used to 
obtain an analytic solution for a stress field, especially when the 
shape of the inclusion is not simple. This explains why, until very 
recently, most works have focussed on the inclusions of special 
shape (in addition to those mentioned above, see also Rodin 
(1996)). To our knowledge, no simpler analytical method is avail- 
able for inclusions of any shape. Here it should be stated that 
although the method of the singular integral equation (see e.g. 
Sherman 1959, Theocaris and Ioakiidis 1977) can be applied to 
inclusions of any shape, its solution requires substantial numerical 
effort, making it difficult to apply the solution to complex practical 
problems. Hence, from a practical viewpoint (see Niwa et al., 
1990; Hu, 1991; Faux et al., 1996), a simple method that gives an 
analytical solution for inclusions of any shape, even only for a 
two-dimensional case and with a certain degree of approximation, 
is of great interest. The present work is triggered by such a desire. 

It is known that the technique of conformal mapping provides a 
powerful method for stress analysis of two-dimensional elastic 
body containing a hole or rigid inclusion of any shape (see Savin, 
1961; Cherepanov, 1974). However, it should be clearly recog- 
nized that, due to the lack of a conformal mapping which maps, 
simultaneously, the exterior and interior of the inclusion onto a 
plane with a simple interface, this technique cannot be directly 
applied to elastic inclusions of any shape (see, e.g., Jaswon and 
Bhargava, 1960; List and Silberstein, 1966; Sendeckyj, 1970). In 
the present paper, combining the techniques of analytical contin- 
uation with conformal mapping, a novel procedure is presented to 
obtain the analytic solution for the Eshelby's problem of an arbi- 
trary shaped inclusion in a plane or a half-plane. One remarkable 
advantage of this method is that simple elementary expressions can 
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Fig. 1 An Inclusion of arbitrary shape in an entire plane 

be obtained for the internal stresses within the inclusion in an 
entire plane. 

2 An Inclusion in an Entire Plane 
Consider an infinite homogeneous elastic plane containing a 

subdomain which undergoes uniform stress-free eigenstrains (~*x~, 
xs, E yy). Let $2 and S~ denote the subdomain and its supplement 

to the elastic plane, respectively, and F the interface separating $2 
and St. Throughout the paper, the subscripts 1 and 2 are used to 
identify the respective quantities in S~ and $2 (see Fig. 1). 

For plane problems, the stresses and the associated displace- 
ments can be given in terms of two complex potentials, ~p(z) and 
q/(z), as follows (Muskhelishvili, 1963; England, 1971): 

2 ~ ( u  + i v )  = K s ( z )  - z ~ ' ( z )  - ~ ( z ) ,  

o-~ + o- .  = 2 I t ' ( z )  + , / ( z ) ] ,  

crx, - itr~, = q~'(z) + q~'(z) - ~q~"(z) - qt'(z) (2.1) 

where ~ = 3 - 4v for plane strain and ~ = (3 - v)/(1 + v) for 
plane stress, and /z and v are the shear modulus and Poisson's 
ratio. In addition, the resultant force acting on the left of an 
arbitrary arc AB is 

-i[q~(z) + zqo'(z) + q~(z)]~. (2.2) 

Thus, the boundary value problem of the Eshelby's problem has 
the form 

~ o l ( z )  - z~o~(z) - q,~(z) 

= /<q02(Z ) -- ZqO2(Z)  - -  1~2(Z ) + 2]Z[~lZ + (82 -t- i83)z], 

@I(Z) -1- Z ( 4 ~ ( Z )  -~- I~I(Z) = @2(Z) q- Z q o ; ( Z )  • ~J2(Z), Z ~ F ;  

q~,(z) ~ o(1), qdliz) ~ o i l ) ,  Izl ~ ~ (2.3) 

where the two conditions at the interface indicate the continuity of 
tractions and displacements; the last one represents the zero-stress 
condition at infinity, and 

* -/- * * -- * 
E xx ff yy ff xx E yy 

8l 2 82 2 , 83 * (2.4) 

For an arbitrary simply connected inclusion enclosed by a 
simple curve, it is known (see Kantorovich and Krylov (1958) and 
Savin (1961)) that there exists a conformal mapping, z = ~o(~) that 
maps the exterior of the inclusion onto the exterior of the unit 
circle in the t-plane. The conformal mapping can be generally 
expressed by an infinite series in (1/~) (see A1) of the Appendix). 
For many practical problems, the infinite series can be truncated 

and replaced, with good accuracy, by a polynomial in (1/~) which 
includes only a small number of terms. Various methods for the 
construction of an accurate or approximate polynomial mapping 
function have been extensively developed, and there are plentiful 
known solutions in the literature. Hence, without loss of generality, 
we assume that such a polynomial mapping function, ¢o(~), exists 
for the inclusion of arbitrary shape. Consequently, it is shown (see 
(A4) of the Appendix) that there exists a function D(z) which 
satisfies the condition 

= D(z), z ~ F (2.5) 

and, moreover, is analytic in the exterior of the inclusion except 
infinity where it has a pole of finite degree determined by its 
asymptotic behavior 

O(z) ~ P(z) + o i l ) ,  Iz[ + oo, (2.6) 

where P(z) is a polynomial in z of finite degree. A simple 
procedure for the construction of D(z), in terms of the polynomial 
mapping function ¢0(~), is given in the Appendix. In particular, the 
polynomial P(z) can be easily determined without the details of 
D(z). Here it should be stated that a condition similar to (2.5) has 
been used, in a different way, by some authors (see, e.g., Jaswon 
and Silberstein (1960) and Varley and Cumberbatch (1980)) to 
elliptic hole or elliptic inclusion. In the present paper, based on the 
relation (2.5) for inclusions of any shape, the technique of analyt- 
ical continuation is used to obtain an analytic solution of the 
Eshelby's problem for an inclusion of any shape. Since the solu- 
tion of the Eshelby's problem for multiple inclusions can be 
obtained by simply adding the solutions for individual inclusions, 
our discussion is confined to the single inclusion. 

Throughout the paper, it is assumed that the function D(z), 
defined by (2.5), (2.6), exists. Thus, the interface conditions in 
(2.3) along F can be written into an equivalent form 

2/,  
qp,(z) = q02(z) + ~ [81z + (82 + i83)z], 

q,,(z) + ~[~0~(z) - ~;(z)] 

2~ 
= q t 2 i z ) - ~ [ ~ l z +  ( 8 2 -  i~3)z], z E F .  (2.7) 

Using (2.5), the first condition of (2.7) can be written as 

2~  
q~l(Z) -- ~ [81Z -t- (~2 + i83)D(z)] = q02(Z), Z E F. (2.8) 

Since the left and the right of (2.8) are analytic functions on two 
sides of F, respectively, the continuity condition (2.8) implies that 
any one of them can be extended analytically to the other across F. 
Thus, their derivatives are also continuous across the interface F, 
and 

2/x ' z ¢ # ~ ( z ) - ~ [ 8 1 +  (~a + i83)O'(z)]=q~2( ), z E F .  (2.9) 

Using (2.5) and (2.9), the second condition of (2.7) along F can be 
written as 

2~  
q/l(z) + ~ [2BiD(z) + (~a + i~3)D(z)D'(z) 

+ ( 8 2 -  i83)z] = ~b2(z), z ~ F. (2.10) 

Evidently, the left sides of the interface conditions (2.8) and (2.10) 
are analytic outside the inclusion, except infinity, where they have 
the poles of finite degree, while the right sides are analytic inside 
the inclusion. Thus, one can define two new functions as 
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2tz 
dP(z) = q~t(z) - ~ [8~z + (8~ + i83)D(z)], z ~ S, 

~(z) ,  z ~ S~ 
(2.11) 

tqtl(Z) + 2 ~ ,  [26~D(z) + ( 8 ~ + i 8 3 ) D ( z ) D ' ( z )  
l K- t -  I 

• (z) = ( + ( 8 2 - i 8 3 ) z ] ,  z ~ S ,  

\ q~(z), z U S~ (2.12) 

both of which are analytical in S~ and S~, respectively. It is seen 
from (2.8), (2.10) that ~ ( z )  and ~ ( z )  are continuous across F and 
then analytic in the whole plane, except infinity, where they have 
the poles of finite degree, described by 

2/x 
• (z) ~ - K +-------]- [8,z + (32 + i83)P(z)], 

2/~ 
q-'~(z) ~ ~ [281P(z) + (82 + i83)Q(z) 

+ ( 8 2 - i 8 3 ) z ] ,  z ~ ~ (2.13) 

where Q(z),  a polynomial in z, is the principle part of the product 
D(Z) D' ( z) at infinity, namely 

O(z )O ' ( z )  = a ( z )  + o ( 1 ) ,  Iz I ~ w. (2.14) 

This simply implies that 

2~./~ [~lZ + (82 ÷ iS3)P(z)], ~(z )  - ~ + 1 

~(z) 

_ 2/~ [281P(z) + (82 + i83)Q(z) + ( 8 2 -  i83)z] (2.15) 
K + i  " " 

in the whole z-plane. Once ~ ( z )  and ~ ( z )  are known, the original 
complex potentials q~k(z) and qtk(z) (k = 1, 2) can be easily 
obtained from (2.11), (2.12) and then the full-field stresses can be 
calculated through (2.1). In particular, within the inclusion $2, we 
have 

2/x 
qJ2(z) = ~--~--~- [28,P(z)  + (8z + i83)Q(z) + (82 - i63)z] 

2~  [8,z + (62 + i83)P(z)], z E $2. (2.16) q~2(z)- K + I  

The formulas (2.16) give the explicit solution for the internal stress 
field inside the inclusion in an entire plane. It is emphasized that 
the expressions (2.16) depend only on the polynomials P(z)  and 
Q(z),  but not on D(z)  itself. This fact is of great value because 
P(z)  and Q(z)  can be easily determined, whereas D(z)  involves 
the inverse of oJ(~) and then is relatively troublesome (see the 
Appendix). 

On the other hand, the simple expressions for q~(z) and qq(z) 
in S~ are given by 

2/x 
~,(z) = ~ [28,[P(z)  - D(z)]  

+ (82 + i83)[Q(z) - D(z)D'(z )]] ,  

2tx 
q~(z) = ~ (82 + i83)(D(z) - P(z) ) ,  z E S~. (2.17) 

The function D(z)  is given by (A4) in terms of the inverse of the 
polynomial mapping function co(g). Evidently, the right of (2.17) 
depends on D(z) ,  not only on P(z)  and Q(z) .  Hence, the calcu- 

Free Surface 

Si 

- Y0 

Fig. 2 An Inclusion of arbitrary shape In a half-plane 

lation of external stresses is more complicated than the internal 
stresses. However, the internal stresses are of major interest for 
many practical problems, such as those related to thermal stress- 
induced failure of passivated interconnect lines in integrated cir- 
cuits (see Hu (1991) and Okabayashi (1993)). Therefore, in Sec- 
tion 4, detailed discussion will mainly focus on the internal stress 
field within the inclusion. 

For a thermal inclusion of arbitrary shape, we have • x*~ = ~ yy, 
ely = 0 and then 82 = 83 = 0. It follows from (2.16), (2.17) that 

2/x 4 ~  
q~z(z) - K + 1 8~z, ~02(z) = ~ 8 ,e (z ) ,  z ~ s2 (2.18) 

inside the inclusion, and 

4/x81 
~l(Z) ~ 0 ,  [~II(Z) = ~ [e(z)  - O(z)] ,  Z E Si (2.19) 

outside the inclusion. In particular, since the mean stress (o-~ + 
O'yy) is determined by the first derivative of ~0(z) (see (2.1)), it 
follows from (2.18), (2.19) that the mean stress remains constant 
inside the thermal inclusion and vanishes outside, regardless of the 
shape of the inclusion. This result has been stated in some earlier 
works (see, e.g., Gosling and Willis, 1995) for several special cross 
sections. 

3 An Inclusion in a Half-Plane 

The Eshelby's problem for an inclusion in a half-plane is of 
practical importance. For example, for interconnect lines of inte- 
grated circuits, because the passivation layer is usually much 
thinner than the underlying substrate, the passivated metallic line 
which lies between the passivation and the substrate, can be 
modeled, more realistically, by a thermal inclusion in a half-plane 
rather than in an entire plane. Similar circumstance occurs for 
trench insulations in electronic packaging (see Hu, 1989, 1990). In 
general, due to the presence of a free surface, the analysis of the 
Eshelby's problem for a half-plane is significantly complicated. 
Despite this, the present method can be extended to the inclusion 
of arbitrary shape in a half-plane. 

Assume that the elastic half-plane occupies the lower half-plane, 
y < 0, and contains an internal subdomain that undergoes uniform 

(exx, Let $2 and S~ denote the stress-free eigenstrains * E*xy, •*yy). 
subdomain and the remainder of the lower half-plane, respectively, 
and F the interface separating $2 and $1 (see Fig. 2). Thus, the 
boundary value problem for two pairs of analytical functions, 
q~k(z) and q~k(z) (k = 1, 2), defined in S~ and Sz, respectively, is 
of the form 

~ ( z )  - z ~ ' ~ ( z )  - q J l ( z )  

= K q ~ 2 ( z )  - z q ~ [ ( z )  - ~02(z)  + 2~[alz ÷ (82 + i83)z], 
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q~(z) + z,p',(z) + qJ~(z) = ~2(z) + z~ ; ( z )  + qJ2(z), z E r ;  

~ ( z )  + z~o'~(z) + ~ , ( z )  = o ,  y = o -  

q~t(Z) ~ o(1),  q/l(Z) ~- o(1),  Izl~_<0 --> oo. (3.1) 

In a manner similar to that described in Section 2, the interface 
conditions on F can be written in the forms of (2.8) and (2.10), 
where D ( z )  satisfies the condition (2.5) on F and is analytic in the 
entire plane exterior to the inclusion except infinity where it has a 
pole of finite degree. Further, one can define two new functions 
• (z) and qt(z) in the lower half-plane, in a way similar to (2.11), 
(2.12). Thus, it follows that dp(z) and ~ ( z )  are analytic in the 
lower half-plane except infinity where they have poles of finite 
degree, determined by 

2/x 
• (z) ~ ~ [28~P(z) + (82 + i 8 3 ) a ( z )  + (82 - i83)z], 

2/x 
dP(z) ~ - ~ - ~  [81z + (82 + iSa)P(z)] ,  Izl,~0 ~ oo (3.2) 

where Q ( z )  is a polynomial defined in a manner similar to (2.14). 
Now, the free-surface condition of (3.1) can be given in terms of 
• (z) and ~ ( z )  as 

2/x 
qb(z) + ~ [28~z + (82 + i83)D(z)  + (82 - i 83 ) zD ' ( z ) ]  

2/x 
+ ~ ( z )  + z ~ ' ( z )  - ~ [28 ,O(z)  + (82 - iS~)D(z )D ' ( z )  

÷ (82 + i83)Z ] = 0, y = 0. (3.3) 

Since D(z)  and its derivative are analytic in the upper half-plane 
including the real axis, the functions 

b ( z ) ,  D ' ( z )  

are analytic in the lower half-plane including the real axis. Thus, 
the condition (3.3) can be written into the form 

2/z 
• (z) - ~ [281[f)(z) - z] + (82 - i 8 3 ) D ' ( z ) [ D ( z )  - z]] 

2/x 
- K + 1 (82 + i83)[Z - D(Z)] - ~ ( z )  - ZdP'(z),  

y = 0. (3.4) 

Evidently, the right and the left of (3.4) are analytic in the lower 
and the upper half-planes, respectively, except infinity, where they 
have the same principle part as follows: 

2/.~ 
£ ¥  1 {8 , [z  - 2£'(z)] - (82 + i83)P(z)  

+ ( 8 2 - i 8 3 ) [ z P ' ( z ) - O ( z ) ] ] .  (3.5) 

This implies that the right and the left sides of (3.4) are equal to the 
polynomial (3.5) in the upper and the lower half-planes, respec- 
tively. Thus, we have 

2/z 
• (z)  = ~ [8, [2D(z)  - 2P(z)  - z] 

+ (82 - i 8 3 ) D ' ( z ) [ b ( z )  - z] - ( 8 2  + i83)P(z) 

+ (8~ - i83)[ze ' ( z )  - (O(z)]], y -< 0 (3.6) 

in the lower half-plane, and 

2/x 
~ ¥ -  1 [8,[z - 2P(z)]  - (82 + i83)P(z)  + (82 - i83) 

- -  2/x 
× [ z P ' ( z )  - Q(z)]] = ~ (82 + i83)[z - D(z)]  

-~(z)-z~'(z) ,  y-->O ( 3 . 7 )  

in the upper half-plane. In particular, the relation (3.7) implies that 

2/x 
~ ( z )  = --zdP'(z)  -- ~ [81[z -- 2P(z)]  

- (82 - i83)[Z - ID(z) + P(Z)] 

+ (82 + i 83 ) [ zP ' ( z )  - Q(z)]] ,  y -< 0. (3.8) 

Hence, the equations (3.6), (3.8) give the explicit expressions for 
qb(Z) and ~ ( z )  in the lower half-plane. Consequently, within the 
inclusion $2, we have 

2/x 
,p2(z) = ~ - f  [8 , [2D(z)  - Z~(z)  - z] 

+ (82 - i 8 3 ) D ' ( z ) [ D ( z )  - z] - (82 + i83)P(z)  

+ ( 8 2 -  i 83 ) [ zP ' ( z )  - Q(z)]],  z E $2 (3.9) 

2/x 
qtz(z) = - z ~ ( z )  - ~ [8,[z - 2P(z)]  

- (82 - i s ~ ) [ z  - b ( z )  + b(z)] 
+ (82 + i83 ) [ zP ' ( z )  - Q(z)]],  z E $2. (3.10) 

On the other hand, in the lower half-plane exterior to the inclusion, 
we have 

2/z 
~I(Z)  = ~ [ 2 g l i b ( Z )  -- P ( z ) ]  ÷ (8  2 - i83)DT(z) 

x [ b ( z )  - z] ÷ (82 + i83)[O(z) - e ( z ) ]  

+ ( 8 2 - i 8 3 ) [ z P ' ( z ) -  Q(z)]],  z e S l  (3.11) 

2/x 
qtl(z) = -z~o'l(z) - ~ [281[D(z) - P(z)]  + (82 - i83) 

M [D(z) - P(z)]  ÷ (82 ÷ i 8 3 ) [ O ( z ) O ' ( z )  

+ z P ' ( z )  - z D ' ( z )  - Q(z)]] ,  z E S,. (3.12) 

The expressions (3.9), (3.10) and (3.11), (3.12) give the analytic 
solution for the Eshelby's problem of an inclusion of arbitrary 
shape in a half-plane. The solutions are expressed through the 
function D(z)  and the associated polynomials P(z)  and Q(z).  As 
shown by the formula (A4) in the Appendix, D ( z )  is given 
explicitly in terms of the inverse of the polynomial conformal 
function. Here, similar to all methods based on conformal mapping 
(see Muskhelishveli (1963), England (1971), and Savin (1961)), 
the inverse of the polynomial conformal mapping is treated as the 
known, although its explicit elementary expression is not always 
available especially for the inclusions of complex shape. 

For a thermal inclusion of any shape in a half-plane, we have 
E~ = eyy,* ~xy* = 0 and then 82 = 83 = 0. It follows from 
(3.9)-(3.12) that 

2/,~81 - 
~o2(z) = ~ [20(z)  - 2P(z) - z] 

4~61 - -  
q,2(z) ~ ¥ i  [ zO ' ( z )  - zP ' ( z )  - P(z)] ,  z ~ S2 (3.13) 
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inside the inclusion, and 

4~31 
~0,(z) = ~ [D(z) - P(z)]  

4~31 - -  - -  
qtl(Z) - K T-1 [z[D~(z) - P'(Z)]  

+ [D(z) - P(Z)]], Z E S, (3.14) 

outside the inclusion. It will be seen that, due to the appearance of 
a free surface, the internal stresses are no longer uniform even for 
an elliptical thermal inclusion embedded in a half-plane. 

4 E x a m p l e s  

4.1 An Elliptic Inclusion in an Entire Plane. For an ellip- 
tic inclusion, the explicit expressions for D(z)  and P(z)  are given 
by (A9) and (A10) of the Appendix, respectively. If the inclusion 
is in an entire plane, we choose Y0 = 0 and then the complex 
potentials within the inclusion are given by 

2/ ,  [231 (32 + i33) 1 
~ 2 ( z ) = ~ [ g  2+  ~ + (32 - i3 , )  z 

2p. [ (32 + i33) ]  
q~2(z) = - K +  1 ~ 3 1 +  R 2 ] z ,  z E S 2 .  (4.1) 

On the other hand, the complex potentials in the exterior of the 
inclusion is given by 

2/z [ 2 3 1 ( 1 - - R  4) [ Z  
[/]I(Z) = ~ -  k R2- ' [Z -- dR~] + (32 + i33) 

+ d  R 4 ) , I [ R 2  R ( 1 - R 4 )  2 d R ' -  

2tx (32 + i33)(1 - R 4) 
q~l(Z) - K + 1 R 2 (dR~ - z), z ~ S~ (4.2) 

where ~ = oo-~(z) is the inverse of the conformal transformation, 
given by (A7). It can be verified that these results agree with the 
known solution (see, e.g., Jaswon and Bhargava, 1961). 

4.2 An Elliptic Thermal  Inclusion in a Half-Plane.  Now, 
let us consider the internal stresses within an elliptic thermal 
inclusion embedded in a half-plane (see Fig. 2). In this case, the 
internal stresses are determined by (3.13) with 

d 
D(z)  = R2(z + iYo) + ~ (1 - R4)~o-l(z) + iyo, 

z R 2 + l  
P(z) = ~ + i y o  R 2 (4.3) 

where 

z + iyo r 
60-1(Z) - 2 d ~  [ 1 

If the depth of the inclusion is 
z E $2, we have 

z + iyo 
o~- l (z )  = d---R-- + 

Thus, as expected, the results 

+ ~ 1 - [  2d ] 2 ]  
z ~ y 0 J  J '  (4.4) 

much larger than its size, then for 

O , ]y0] >> dR .  (4.5) 

(3.13) with (4.3), (4.4) reduce to 
(4.1) (except a constant which does not influence the stress field). 
In general case, however, the uniformity of internal stresses is 
diminished even for an elliptic thermal inclusion in a half-plane. 

It is known (see Niwa et al. (1990) and Okabayashi (1993)) that 
voiding of interconnect lines is governed largely by the internal 

mean stress. It is found from (3.13), (4.3), and (4.4) that the mean 
stress field within the inclusion is 

O'XX ~- O'yy 

1 41 - (K + 1) 1 + - 7 - R e  1 - 2d 2 , 

1 -  z ~ y 0  

z E $2. (4.6) 

Hence, to reduce the level of the mean stress within the inclusion, 
the simple formula (4.6) could provide useful insight into the 
design of the top passivation layer and the aspect ratio of the 
interconnect lines. For an elliptic thermal inclusion embedded in 
an entire plane, the internal mean stress is uniform. For an elliptic 
thermal inclusion in a half-plane, due to the effect of the free 
surface, the internal mean stress is no longer uniform. For instance, 
along the minor principal axis (with x = 0), the internal mean 
stress is  41[ 11 ] ITxx ~- O'yy --  (K "~- 1 )  1 - R ~  1 - 4d 2 . 

1 + (y + Yo) 

(4.7) 

Evidently, in qualitative agreement with the three-dimensional 
results of Seo and Mura (1979), the effect of the free surface 
decreases with the depth of the inclusion. The formula (4.7) 
indicates that for some combination of the depth and the aspect 
ratio, the mean stress along the minor axis could change the sign 
at an interior point y*, if any, determined by 

l + -- e 4 - -  1 -- R 2" (4.8) 

For example, when the aspect ratio is 2, the condition (4.8) gives 

lY* + Yol 77~ 
_ 4 d  2 - ~  1.4. 

Thus, such an interior point y* exists, provided the depth Y0 is less 
than 1.2 the semiminor axis. These results show that the free 
surface has a significant effect on the internal stresses, especially 
when the inclusion depth is small. 

4.3 Hypotroehoidal  Inclusions.  Next, we consider hypotro- 
choidal inclusions (see the Appendix). These inclusions are of 
practical interest because, with suitable combination of the param- 
eters (say, m = 2/[n(nn + 1)], see Fig. 3, and Savin (1961), and 
England (1971)), they provide good approximations to regular 
polygonal inclusions. For instance, the hypotrochoid with n = 2 
and m = ½ resembles a triangle with rounded corners, and the 
hypotrochoid with n = 3 and m = ~ resembles a square with 
rounded corners. Although the hypotrochoidal hole and rigid in- 
clusion have been studied by some authors (see, e.g., Milne- 
Thomson (1968) and England (1971)), it seems that the explicit 
solutions for the Eshelby's problem of hypotrochoidal inclusions 
are not available in the literature. 

Consider a hypotrochoid thermal inclusion in an entire plane. In 
this case, the complex potentials within the inclusion are given by 
(see (2.18) and (A14) of the Appendix) 

2p, 4/z31m 
~P2(z) - K + 1 8~z, qJ2(z) p"-t(K + 1) z", 

Thus, the exact internal stresses are given by 

z E $2. (4.9) 
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Hypotrochoid with rounded comers 
( mn(n+l)=2 ) 

Hypqtrochoid with cusps 
( m n = l )  

Fig. 3 Hypotrochoidal inclusions 

- 4 / , 8  ( n m r n - U c o s [ ( n - 1 ) O ] )  
Z = re i°, Oxx (K + 1) 1 + p,,-I , 

- 4 / , 8  ( n m r " - '  c o s [ ( n -  1)0])  
O'yy - -  (K + 1) 1 - p,,_j , 

4/ ,8  n m r  "-l  sin [(n - 1)0] 
O'xy- K ÷  1 pn-I , Z E $2. (4.10) 

Since the hypotrochoidal inclusions provide approximations to 
regular polygons, it is of interest to compare the above formulas 
with, say, recent numerical results of Nozald and Taya (1997) for 
regular polygonal inclusions. First, at the center of the inclusion 
(x = y = 0), the stresses given by (4.10) are identical to the 
Eshelby's solution for a circular inclusion. This is in agreement 
with Nozaki and Taya's conclusion. On the other hand, different 
from the logarithmic singularity appearing at the sharp corners of 
a polygon, the internal stresses given by (4.10) for hypotrochoids 
remain bounded for any combination of the parameters m and n, 
even when m n =  1 and then the hypotrochoidal inclusion has 
(n + 1 ) cusps (see Fig. 3). This is due to that fact that the internal 
angle between two neighboring boundary curves reduces to zero as 
the tip of the cusp is approached. 

For a more detailed comparison, let us consider strain distribu- 
tion along the positive x-axis (0 = 0) under the conditions of plane 
strain. The present formulas (4.10) give 

G x + 8  1 [ ( ~ ) , - 1 ]  
8 - 2(1 - V) 1 - m n  

1 I 8 2 ( 1 -  v) 1 + m n  , 

0--<x--<(1 + m )  O. (4.11) 

First, the results (4.11) with m = 2 / [n (n  + 1)] (it gives the 
lowest-order approximation to regular polygons, see England 
(1971)) are compared to the numerical solutions of Nozaki and 
Taya (see their Figs. 3 and 4, where v = 0.3). A good agreement 
is found in the major part of the interval considered (say, when 
0 -< x -< 0.8(1 + m)p). However, a large error occurs in the 
neighborhood of the corners where, as stated previously, the so- 
lution for polygons exhibits logarithmic singularity whereas the 
results (4.10), (4.11) for the hypotrochoids remain bounded. This 
discrepancy is apparently due to the fact that the hypotrochoidal 
inclusion with m = 2 / [n (n  + t)] has rounded comers and cannot 
resemble local geometry of a polygon at its sharp corners. 

Since the hypotrochoids with mn = 1 have (n + 1) cusps, it 
could resemble, more accurately, a polygon near its sharp corners 
provided n is not large. In fact, the formulas (4.11) with m n =  1 
give 

i [ 1 8 - 2 ( 1 -  v) 1 - 1 + 

8 2 ( 1 -  v) 1 + 1 + , 

x = (1 + m ) o  

at the cusps. Note that 

(4.12) 

~--< 1 + < e ,  n - - > 2  

a comparison of (4.12) with Nozaki and Taya's Figs. 3 and 4 
indicates that (4.12) provides a good estimate for local strains near 
the sharp corners of a regular polygon provided, say, n < 5. 
Hence, despite theh" elementary forms, the formulas (4.10) can be 
used, with a good accuracy, to estimate the internal stresses within 
a regular polygonal inclusion. 

4.4 Rectangular Inclusion. An important geometrical 
shape of thermal inclusions in many practical problems (e.g., 
electronic packaging) is the rectangle (see, e.g., Hu (1989, 1990)). 
Based on a truncated polynomial mapping function (see (A15) of 
the Appendix), it follows from (2.18) and (A.17) that ~p2(z) and 

• qh(z) inside the rectangular thermal inclusion, centered at the 
origin and with the sides parallel to the coordinate axes, can be 
approximated by 

2 / ,  
@2(Z) --  K + 1 8~z 

z ~ S 2  (4.13) 

where c and P are two geometrical parameters determined by the 
size and aspect ratio of the rectangular inclusion, respectively (see 
the Appendix). Thus, the internal stresses within the inclusion are 
given by 

O'xx : - -  - -  

4/,  
K + I  8n 

g T - i  [ 8c -5 r 2 cos 20 + - -  1 

4 / ,  
o-yy - • + 1 61 

+ ~ 8C 2 COS 2 0  + ~ 1 

4/x81 (P - ~)2 
r 2 sin 20. (4.14) O'xy = K + 1 8C 2 

It can be verified that (4.14) reduces to (4.10) with n = 3 and m = 
when k = ¼ (the rectangle becomes a square, see the Appendix). 

Further, it follows from (4.14) that the internal deviatoric stress is 

8/.81 [ ( P - ~ ' ) 2 r  2 c o s 2 0  
O ' X X -  O ' y y -  K 7 1  8C 2 

+---5 - - i  

which vanishes at the center only if the rectangle is a square. 
When the aspect ratio of the rectangle is very large, the number 

k approaches zero and then the limit values of (4.14) for the case 
of plane strain (then Gz = 0) read 

2/* -2 / .81  
- 81, ~rzz- (1 + v -  v2), Cr*x 1 -- v 1 - v 
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O'yy ~- O'xy = 0 (4.16) 

where the direction z is perpendicular to the x-y plane. Hence, the 
internal stress field is in a bi-axial stress state in the x-z plane. 
These results are in good agreement with those obtained by Niwa 
et al. (1990) for a thin-film conductor of elliptic cross section. 

5 Conclus ions  

A general method is presented to obtain an analytic solution for 
the Eshelby's problem of inclusions of any shape in a plane or in 
a half-plane. The method is based on the auxiliary function D(z), 
which can be constructed, accurately or approximately, from the 
associated polynomial mapping function. With aid of the function 
D(z),  the technique of analytic continuation can be applied to the 
inclusion of arbitrary shape in a plane or a half-plane. It is 
emphasized that the problem is studied in the original physical 
plane rather than in the image plane. The solution obtained by the 
present method is exact, provided that the mapping function in- 
cludes only a finite number of terms. On the other hand, if the 
exact mapping function includes an infinite number of terms, a 
truncated polynomial mapping function should be used and then 
the method gives an approximate solution. In particular, this 
method gives simple elementary expressions for the internal 
stresses within the inclusion in an entire plane, even without the 
need of determining D(z). This fact makes the present method 
particularly useful for internal stress analysis and optimal design of 
the shapes of inclusions in some practical problems, such as those 
mentioned in the Introduction. Several example are discussed to 
illustrate the method and its efficiency. It is believed that the 
method provides an effective approach to obtain an analytical 
solution for the Eshelby's problem of an inclusion of arbitrary 
shape in a plane or a half-plane. 

A c k n o w l e d g m e n t  

The author is grateful to Dr. P. Schiavone and Dr. A. Miodu- 
chowski for useful discussions. The financial support of the Nat- 
ural Science and Engineering Research Council of Canada is 
gratefully acknowledged. 

References 
Burges, U., Eppler, I., Schiling, W., Schroeder, H., and Trinkaus, H., 1996, 

"Analysis of stresses in passivated metal lines," Stress-Induced Phenomena in Met- 
alization ed. P. S. Ho, J. Bravman, C. Y. Li and J. Sanchez, eds., AIP Conference 
Proceedings 373, AIP, New York. 

Cherepanov, G. P., 1974, "Inverse problem of the plane theory of elasticity," J. 
Mech. AppL Math. (PMM), Vol. 38, pp. 963-979. 

Chiu, Y. P., 1980, "On the Internal Stresses in a Half-Plane and a Layer Containing 
Localized Inelastic Strains or Inclusions," ASME JOURNAL OF APPLIED MECHANICS, 
Vol. 47, pp. 313-318. 

Dowries, J. R., Faux, D. A., and O'Reilly, E. P., 1997, "A simple method for 
calculating strain distribution in quantum dot structures," J. AppL Phys., Vol. 81, pp. 
6700-6702. 

England, A. H.,' 1971, Complex Variable Methods in Elasticity, Wiley-Interscience, 
London. 

Faux, D. A., Downes, J. R., and O'Reilly, E. P., 1996, "A simple mefimd for 
calculating strain distribution in quantum-wire structures," J. Appl. Phys., VoL 80, pp. 
2515-2517. 

Faux, D. A., Downes, J. R., and O'Reilly, E. P., 1997, "Analytic solutions for strain 
distribution in quantum-wire structures," J. AppL Phys., Vol. 82, pp. 3754-3762. 

Gosling, T. J., and Willis, J. R., 1995, "Mechanical stability and electronic 
properties of buried strained quantum wire arrays," Z Appl. Phys., Vol. 77, pp. 
5601-5610. 

Hu, S. M., 1989, "Stress from a parallelepipedic thermal inclusion in a semispace," 
J. Appl. Phys., Vot. 66, pp. 2741-2743. 

Hu, S. M., 1990, "Stress from isolation trenches in silicone substrates," J. Appl. 
Phys., Vol. 67, pp. 1092-1101. 

Hu, S. M., 1991, "Stress-related problems in silicon technology," Z Appl. Phys., 
Vol. 70, pp. R53-R80. 

Jaswon, M. A., and Bhargava, R. D., 1961, "Two-dimensional elastic inclusion 
problems," Proc. Camb. Phil. Soc. Math. Phys. Sci., Vol. 57, pp. 669-679. 

Kantorovich, L. V., and Krylov, V. L, 1958, Approximate methods of higher 
analysis, Wiley Interscience, London. 

List, R. D., and Silberstein, J. P. O., 1966, "Two-dimensional elastic inclusion 
problems," Proc. Camb. Phil. Soc. Math. Phys. Sci., Vol. 62, pp. 303-311. 

Milne-Thomson, L. M., 1968, Plane Elastic Systems, Springer-Verlag, Berlin. 

Muller, W. H., Harris, D. O., and Dedhia, D., 1994, "Stress Intensity Factors of 
Two-Dimensional and Three-Dimensional Cracks Next to a Thermally Mismatch 
Inclusion," ASME JOURNAL OF APPLIED MECHANICS, VOI. 61, pp. 731-735. 

Muskhelishvili, N. I., 1963, "Some basic problems of the mathematical theory of 
elasticity," P. Noordhoff Ltd., The Netherlands. 

Niwa, H., Yagi, H., Tsuchikawa, H., and Kato, M., 1990, "Stress distribution in an 
aluminum interconnect of very large scale integration," ,L Appl. Phys. Vol. 68, pp. 
328 -333. 

Nozaki, H., and Taya, M., 1997, "Elastic Fields in a Polygon-Shaped Inclusion 
With Uniform Eigenstrains," ASME JOURNAL OF APPLIED MECHANICS, VOI. 64, pp. 
495-501. 

Okabayashi, H., 1993, "Stress-induced void formation in metallization for inte- 
grated circuits," Materials Science and Engineering, Vol. R, pp. 191-241. 

Rodin, G. J., 1996, "Eshelby's inclusion problem for polygons and polyhedra," J. 
Mech. Phys. Solids, Vol. 44, pp. 1977-1995. 

Ru, C. Q., and Schiavone, P., 1996, "On the elliptical inclusion in anti-plane shear," 
Math. Mech. Solids, Vol. l, pp. 327-333. 

Savin, G. N., 1961, Stress Concentration A/ound Holes, Pergamon Press, London. 
Sendeckyj, G. P., 1970, "Elastic inclusion problems in plane elastostatics," lnt. Z 

Solids & Struct., Vol. 6, pp. 1535-1543. 
Seo, K., and Mura, T., 1979, "The Elastic Field in a Half-Space due to Ellipsoidal 

Inclusion With Uniform Dilatational Eigenstrains," ASME JOURNAL OF APPLIED ME- 
CHANICS, VOI. 46, pp. 568-572, 

Sherman, D. I., 1959, "On the problem of plane strain in non-homogeneous media," 
Nonhomogeneity in Elasticity and Plasticity, Pergamon Press, London, pp. 3-20. 

Theocaris, P. S., and Ioakimidis, N. I., 1977, "The inclusion problem in plane 
elasticity," Quart. Z Mech. Appl. Math., Vol. 30, pp. 437-448. 

Varley, E., and Cumberbatch, E., 1980, "Finite deformation of elastic materials 
surrouuding cylindrical holes," J. Elasticity, Vol. 10, pp. 341-405. 

Wu, L., and Du, S. Y., 1995, "The Elastic Field Caused by a Circular Cylindrical 
Inclusion. Part I and Part ll," ASME JOURNAL OF APPLIED MECHANICS, Vol. 62, pp. 
579-584 and 585-589. 

Wu, L., and Du, S. Y., 1996, "The Elastic Field in a Half-Space With a Circular 
Cylindrical Inclusion," ASME JOURNAL OE APPLIED MECHANICS, Vol. 63, pp. 925-932. 

YU, H. Y., and Sanday, S. C., 1991, "Elastic field in jointed semi-infinite solids with 
an inclusion," Proc. Royal. Soc. London, Vol. 434, pp. 521-530. 

A P P E N D I X  

Here, a simple method is described to construct the auxiliary 
function D(z), which is analytic in the exterior of the inclusion 
and satisfies the condition (2.5) along the boundary of the inclu- 
sion. First, according to the conformal mapping theory (see, e.g., 
Kantorovich & Krylov, 1958), the exterior of the inclusion can be 
mapped onto the exterior of the unit circle in the ~-plane by an 
analytical function of the form 

z = ~(~)  = ~ + ~ eke -k 
k=O 

(AI) 

where A is a real number and ck (k = 0, 1 . . . .  ) are some 
complex constants. Various methods for accurate or approxi- 
mate determination of the expansion (A l) are described in the 
literature (see Savin, (1961) and Kantorovich and Krylov 
(1958)). For many simple boundary curves, the mapping func- 
tion (Al)  includes only a finite number of terms. On the other 
hand, for many practical problems, the truncation of the infinite 
series (A1) to finite (say, N) terms offers a good approximation 
to (A1). In fact, almost all existing methods of conformal 
mapping are based on an expansion with only a finite number of 
terms. Hence, under fairly general conditions, one can reason- 
ably assume that the conformal mapping (Al)  is a finite poly- 
nomial in (1/~) as follows: 

N 

z = w(~) = A~ + ~ ck~ -k. (A2) 
k=0 

In this case, at the boundary F (or equivalently, along the unit 
circle of the t-plane), we have 

k=0 

Thus, the desired function D(z) can be defined by 
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D(z) = ~ = to l(z--- ~ + ~ UkEoo-'(z)] k (A4) 
k=0 

where oo-l(z) is the inverse function of (A2). Because W-~(z) is 
analytic in the exterior of the inclusion (except at infinity where it 
has a simple pole) and the right of (A3) is analytic in the exterior 
of the unit circle in the ~-plane (except at infinity where it has a 
pole of the degree N) D(z) is analytic in the exterior of the 
inclusion (except at the point at infinity where it has a pole of the 
degree N). Therefore, the auxiliary function D(z) complying with 
the condition (2.5) and (2.6) exists. 

To determine the asymptotic expansion of D(z) at infinity, let us 
assume that 

N 

D(Z) = ~ bkz k, [zl (AN) 
k = - ~  

where b, (k = N, N - 1 . . . .  ) are some complex constants. 
Combining (A2), (A3) with (A4) yields 

+ Uk¢ k = bk A¢ + c.~-"  (A6) 
k = 0  k =  - ~  n = 0  

The coefficients bk (k = N, N - 1 . . . .  ) can be determined by 
equating the coefficients for like terms of ~. In particular, the 
polynomial P(z) is related to only (N + 1) coefficients bk (k = 
N, N - 1 . . . .  0) and then can be determined easily. In what 
follows, some examples serve to illustrate the details. 

El l ip t i c  I n c l u s i o n  

Let the ellipse have the semimajor axes a and the foci 2d (2d < 
a). Assume that the center of the ellipse is located at y = Yo (with 
x = 0) and its principal axes are parallel to the coordinate axes. 
Thus, the required conformal mapping and its inverse can be given 
by (see Muskhelishvili (1963) and Ru and Schiavone (1996)) 

(.5) z =  to(i) ~ d R~ + + iyo, 

- 2dR 1 + 1 - (A7) 

where 

a +  .fd~ - 4d 2 
R = 2d > 1. (A8) 

Thus, using (A4) and (A7), the function D(z) is of the form 

d 
D(z) = R2(Z - iyo) + ~ (1 - R4)~o-l(z) - iyo (A9) 

where to-J(z) is given by (AT). Obviously, from (A6), (A9), P(z)  
is easily obtained as 

z R 2 + l  
P(z) = ~ -  iyo R 2 (A10) 

H y p o t r o c h o i d a l  I n c l u s i o n s  

Next, let us consider the hypotrochoids defined by 

z = ~ o ( ~ ) = p  ~ +  +iyo, p > 0 ,  0 ~ - m - -  < -  (A l l )  
n 

with I~1 = I. It is known that the mapping (Al l )  maps the outside 
of the hypotrochoid onto the exterior of the unit circle (see 
Muskhelishvili (1963) and England (1971)). Further, for the hy- 
potrochoids (A11), we have 

z = p  ~ + m ~  n - i yo ,  z ~ F ,  I ~ l = l .  

Thus, the function D(z) is given by 

(1 m2o 
D(Z) = p ~-=1~ + z -  i yo~ )o ) - l ( z ) ]  - iyo (A12) 

where the inverse w-J(z) should be determined by (Al l ) .  The 
asymptotic expansion of D(z) can be obtained through (A6). For 
example, when Y0 = 0, it is easy to verify that 

then 

m 

bo = bl = . . .  = bN-i = O, b N -  p N - I  (A13) 

m z  n 
P(z) = p,,_l. (A14) 

R e c t a n g u l a r  I n c l u s i o n  

Finally, let us consider the rectangle, centered at the origin and 
with the sides parallel to the coordinate axes. In this case, the exact 
mapping function ~o(~) includes infinite terms and, therefore, a 
truncated polynomial mapping function should be used. To the 
lowest-order approximation, the exterior of a rectangle can be 
mapped onto the exterior of the unit circle by the mapping function 
(see the formula (1.26) of Savin (1961)) 

z=~o(~)=c ~+ 2 ~+ 

c > 0 ,  P=-- e 2ik~ (A15) 

with I~1 = 1, where c and k are two real numbers determined by the 
size and aspect ratio of the rectangle, respectively. In particular, 
the corner in the first quadrant is identified by e ~k~. Thus, the 
rectangle becomes a square when k = 4 l-. In this case, the mapping 
function (AI5) reduces to (Al l )  with n = 3 and m = ~ through 
a rotation of the coordinate system. 

It is seen from (A4) and (A15) that 

D(z) 

[ 1 P + P  1 (p - 2 ] 
= c ~ ( ~  + ~ to- (Z) + @ [o~-i(Z)] 3 (A16) 

where o)-l(z) is the inverse of (A15). Further, it can be verified 
from (A6) that 

P(z) ( p _  ~)2 p + ~ [ ( p _  ~)2] - z 3 + 1 z. (A17) 24c 2 ~ 
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Electrokinetic and Poroelastic 
Coupling During Finite 
Deformations of Charged 
Porous Media 
Due to microstructural interactions between the charged solht matrix and ionic interstitial 
fluid, hydrated biological tissues and other porous media may exhibit macroscopic 
coupling between solid deformation, fluid, and electrical flows'. In the present manuscript, 
we develop a variationally motivated finite deformation continuum theory for describing 
such coupled phenomena. The theoretical formulation combines descriptions qf poroelas- 
tic and electroquasistatic subsystems along with a continuum electromechanical coupling 
law, and leads to a five-fieM finite element formulation. Several axisymmetric problems 
are presented as examples of  mechanical-to-electrical and electrical-to-mechanical trans- 
duction phenomena in common experimental configurations. 

1 Introduction 

Models for saturated porous media are often used to describe 
the mechanical response of hydrated biological tissues, includ- 
ing articular cartilage (Mow et al., 1980; Eisenberg and Grodz- 
insky, 1987), blood vessels (Kenyon, 1979; Simon and Gaballa, 
1988), corneal stroma (Friedman, 1971; Eisenberg and Grodz- 
insky, 1987), intervertebral disk (Simon et al., 1985), and skin 
(Oomens et al., 1987). In such continuum formulations, micro- 
structural fluid-solid interactions are represented by macro- 
scopic coupling between tissue deformation, fluid pressuriza- 
tion, and fluid flow. Although this approach accurately 
represents tissue behavior over a wide range of physical situa- 
tions, other microstructural interactions of electrical or chemi- 
cal origin may produce additional macroscopic behaviors be- 
yond the scope of such theories. 

The solid matrix of articular cartilage, which occupies ap- 
proximately 20 percent of the total tissue volume, is composed 
of a complex network of biological macromolecules, primarily 
collagen and aggregated proteoglycans (Fig. 1). The proteogly- 
cans contain a large number of sulfated glycosaminoglycan side 
chains which are negatively charged at physiological pH. Prin- 
cipally due to these molecules, the solid matrix contains a high 
negative fixed (or immobile) charge density on the order of 0.2 
M (Maroudas, 1979). Conversely, the interstitial fluid contains 
an excess of positively charged dissociated ions in order to 
maintain tissue electroneutrality at a macrocontinuum length 
scale. Microstructurally, these ions form electrical dipole layers 
(double layers) with the fixed charge groups of the solid matrix. 
Because the microstructural arrangements of solid, fluid, and 
ionic constituents must satisfy both microscopic and macro- 
scopic balance laws, the macroscopic mechanical, electrical, 
and chemical fluxes are all coupled. Manifestations of such 
coupling mechanisms include the phenomena of streaming po- 
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tential and streaming current, (mechanical-to-electrical) elec- 
troosmosis (electrical-to-mechanical), and osmotically induced 
swelling (chemical-to-mechanical) (Dukhin and Derjaguin, 
1974). 

A number of continuum theories have been proposed to 
describe these macroscopic couplings in porous membranes and 
biological tissues, including single continuum (Helfferich, 
1962; Eisenberg and Grodzinsky, 1987; Frank and Grodzinsky, 
1987b; Simon et al., 1996) and multiple continuum mixture 
theory (Swenson, 1979; Lai et al., 1991; Snijders et al., 1992; 
Gu et al., 1993; Huyghe and Janssen, 1997) approaches. Al- 
though analytical solutions are possible for simple geometries 
and material property distributions, treatment of more complex 
physical situations requires a numerical implementation. To 
date, the majority of such implementations have been restricted 
to situations where boundary conditions are primarily mechan- 
ical or chemical in nature and macroscopic electric fields are 
assumed to have negligible impact (Snijders et al., 1995; Simon 
et al., 1996). In the present study, we address a different class 
of problems in which boundary conditions are primarily me- 
chanical or electrical in nature and macroscopic chemical con- 
centration gradients are assumed to have negligible impact on 
the electromechanical phenomena of interest. Analytical (Neev 
and Yeatts, 1989) and finite element (Lewis and Garner, 1972; 
Mass6 and Berthier, 1996) approaches have been introduced for 
modeling electrokinetic coupling in geomechanics, but these 
methods have been primarily restricted to rigid or infinitesi- 
mally deformed solids and deformation-independent material 
properties. In contrast, consideration of the effects of finite 
deformation and deformation-dependent material properties is 
required for many practical problems in the mechanics of gels 
and biological tissues. 

In the present study, we derive a finite deformation theory for 
analysis of coupled fluid and electrokinetic flows in deformable 
porous media. In Section 2, we develop the continuum theory 
within the variational framework of the principal of virtual power 
by combining descriptions of finite deformation poroelasticity, 
electroquasistatics of deformable media, and continuum electro- 
mechanical coupling. In Section 3, we then discuss numerical 
implementation of the theory using the finite element method, 
resulting in a five-field mixed finite element formulation. Finally, 
in Section 4 we utilize the model to examine several case studies 
of electromechanical coupling in a sample of articular cartilage 
during commonly used experimental configurations. 
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Aggrecan 

Chondroc~ 

Fig. 1 Microstructural makeup of articular cartilage. The aggrecan mol- 
ecules contain a large number of sulfated glycosaminoglycan subunita, 
which contribute to the highly negative fixed charge density of the solid 
matrix. 

2 T h e o r y  

2.1 C o n t i n u u m  M e c h a n i c s  Pre l iminar ie s .  In the following 
treatment, we consider a porous medium to be a single continuum 
defined by the boundaries of the solid matrix. As a preliminary, we 
state some standard definitions from continuum mechanics (Erin- 
gen, 1967; Marsden and Hughes, 1994). 

Let the volume ~2o C ~3 bounded by the surface Fo be the 
Lagrangian reference configuration for the solid matrix and let X 
indicate the material coordinates of a particle in ~o (Fig. 2). Let 
~p(X, t) : 12o × [0, t] ~ ff~3 represent the invertible deformation 
map from ~o to the present Eulerian configuration 12,. The spatial 
position of a particle in [1, is given by 

x ( X ,  t) = ~o(X, t) = X + u ( X ,  t) (1) 

where ~ is a continuously differentiable, invertible mapping and n 
is the solid displacement. The invertible deformation gradient F 
and its Jacobian J are defined as 

09  
F = o-X (2) 

J = det F (3) 

where det is the determinant operatorl The Jacobian J must be 
strictly positive to prohibit self-penetration of the continuum. The 
right Cauchy-Green tensor C and its inverse, the Piola deformation 
tensor B are defined as 

C = F r F  (4) 

B = F - I F - r  (5) 

where the superscript T indicates transposition. 
A vector a and its divergence V • a defined on 12, are related to 

their respective Lagrangian "images" on rio by the Piola transfor- 
mation and Piola identity, 

A = J F - l "  a, (6) 

DIV A = JV • a, (7) 

where V • and Div are the Eulerian and Lagrangian divergence 
operators, respectively. Likewise, the Eulerian and Lagrangian 
gradients of a scalar b are related by 

GRAD b = F r .  Vb, (8) 

where V and GRAD are the Eulerian and Lagrangian gradient 
operators, respectively. 

The spatial time derivative is defined as the partial time deriv- 
ative holding the spatial position x fixed, 

0 0 
= a t  " (9) 

Likewise, the material time derivative is defined as the partial time 
derivative holding the particle X fixed, 

(') - d t  - x ~ t  + v" V,  (10)  

where the solid velocity v = dx/dt is the material time derivative 
of the spatial position. Finally, the convective time derivative of a 
is defined as 

, Oa 
a = ~ +  v ' ( V a )  + a V . v -  a . ( V v ) .  (11) 

If a is an objective vector field, then ~ is an objective rate. 

2.2 V a r i a t i o n a l  F r a m e w o r k .  In the subsequent sections, 
we motivate our theoretical formulation within the variational 
framework of the principle of virtual power (PVP) (Penfield and 
Haus, 1967; Maugin and Eringen, 1977). We first define a power 
balance functional xF for the medium 

d 
~2'(d, d) = dt  Ei"t + pdis~ _ pext (12) 

where E +nt is the internal energy in the medium, pd~s is the 
dissipative power, and pext is the external power supplied across 
the boundary. In a quasi-static formulation, q~ depends on the 
independent variables d and their time derivatives (or generalized 
velocities) d. In addition to the requirement that • itself be 
identically zero (as implied by the first law of thermodynamics), 
we require the first variation of • in a generalized virtual velocity 
field to vanish, 

0 

where the virtual velocities ~d represent arbitrary admissible vari- 
ations in / !  and ~ is an arbitrarily small parameter. For a nonequi- 
librium open system, this condition is analogous to requiring the 
first variation of the Gibbs free energy to vanish for thermody- 
namic equilibrium of a closed system. Enforcement of Eq. (13) 
will directly imply the local governing equations for the physical 
system of interest. 

To apply this formalism to the electromechanically coupled 
porous medium, we must identify appropriate forms of E ~'', pdiss, 
and pox,, as well as a consistent set of independent variables d. In 
the present study, this will be achieved by uniting descriptions of 

F ° A ( X , t ) ,  .~(X,t) Ft 

g 

• ~ x(X , 0 a(x, t ), a(x, 0 

Fig. 2 Kinematic relationship between the Lagrangian reference config- 
uration ,Qo and the Eulerian present configuration ~ t  
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interacting poroelastic and electroquasistatic "subsystems" such 
that 

= ~p~ + ~qs .  (14) 

Additionally, we will introduce a continuum electromechanical 
coupling law describing interactions (energy transfer) between the 
subsystems• 

2,3 Poroelastie Subsystem. Kinematic descriptions of po- 
rous media are often posed within the framework of continuum 
mixture theory, where the porous medium is treated as the super- 
position of two interacting continua simultaneously occupying the 
same physical space (Bowen, 1980; Kwan et al., 1990; Thomas, 
1991). In the present treatment, we adopt an alternate approach 
(Biot, 1972), viewing the porous medium mechanically as a single 
continuum defined by the boundaries of the solid material and 
considering area-averaged fluid flow (or volumetric flux) relative 
to the solid. Under assumptions about the mixture commonly 
invoked for biological tissues (e.g., immiscible, nonreactive, iso- 
thermal, quasi-static), the two finite deformation formulations are 
mathematically equivalent (Simon, 1992; Levenston et al., 1998). 

We previously utilized the PVP to generate a three-field mixed 
poroelastic formulation appropriate for finite deformation analysis 
(Levenston et al., 1998) when electrokinetic phenomena have 
minimal influence on the mechanical response. In that formulation, 
we modeled quasi-static deformations of an isothermal, 2 saturated 
porous medium in which both the solid and fluid constituents are 
treated as intrinsically incompressible• The combination of the 
saturation condition (i.e., the sum of the solid and fluid volume 
fractions must be 1) with intrinsic constituent incompressibility 
produces a constraint on the relationship between solid and fluid 
dilatations, 

J -  1 - ~ = 0 ,  (15) 

where ~ is defined as the change in fluid volume content, 

= - D l v  W, (t6) 

and we have introduced W as a Lagrangian. fluid "displacement" 
relative to the solid. Physically, W represents the net volume of 
fluid that has passed through a unit area since the medium "left" 
the reference state. Consequently, W is the Lagrangian relative 
fluid velocity (or volumetric flux). 

Thus, Eq. (15) states that any change ( J  - 1) in the volume 
occupied by an initially undeformed continuum region must be 
accompanied by an equal change (,~) in the fluid volume content. 
This constraint implies the mass continuity equation for the porous 
medium, 

V" (v + *)  = 0, (17) 

where the relative fired velocity w is the convective time derivative 
of w, the Eulerian relative fluid displacement. Note that ~,, repre- 
senting the fluid volumetric flux relative to the solid, is objective. 

By introducing the scalar fluid pressure p and treating it as a 
Lagrange multiplier enforcing Eq. (15), we formulated the internal 
energy of the porous medium as 

E~P'~ = f [U(C) - p ( J -  1 - ,~)]dfl. (18) 
d no 

The (Lagrangian) hyperelastic stored energy density U(C) repre- 
sents the energy stored through deformation of the solid matrix 

2 We assume that the rate of dissipation is small with respect to the cbaracteristic 
thermal conduction rate and that the medium resides in an infinite bath of constant 
temperature (typically, ~37°C fur biological systems). Thus, we do not explicitly 
model the beat conduction "subsystem," and instead assume that the system remains 
isothermal. 

irrespective of any fluid pressurization. 3 Likewise, we wrote the 
dissipative 4 and external powers as 

p~i~ = _ ~  GRADp" "~rdgQ (19) 
J ,  

P;~' = ~ (f. v - pW.  N)dC (20) 
d r,, 

where f and N are, respectively, the traction and surface normal 
vectors defined on the Lagrangian boundary F o. 

Were we to consider this subsystem in isolation, we would close 
the poroelastic formulation by combining Eqs. (12), (18), (19), and 
(20) and explicitly introducing Darcy's law (defined in the Eule- 
rian configuration) relating fluid flow to the gradient in fluid 
pressure, 

w = - k a ( u ) '  Vp, (21) 

where kd is the deformation-dependent rank-two permeability ten- 
sor. For a total Lagrangian formulation, we considered (u, W, p) 
to be the set of independent variables, with (3v, 3~;V, @) as the 
corresponding generalized virtual velocities. 

2.4 Eleetroquasistatic Subsystem. We consider the electro- 
quasistatic (EQS) subsystem to be governed by the electroquasi- 
static form of Maxwell's equations for an electrically linear di- 
electric medium (Haus and Melcher, 1989): 

V × E = 0; E = - V ~  (Faraday'slaw) (22) 

V" EE = p, (Gauss's law) (23) 

3 
V ×  H = j , , + ~ - ~ e E +  V ×  ( P ×  v) (Ampdre'slaw) (24) 

where ~ is the scalar electrical potential, E is the electric field 
intensity, p,, is the net macroscopic density of unpaired charges, E 
is the dielectric permittivity for the medium, H is the magnetic 
field intensity, j ,  is the unpaired current density (not associated 
with polarization), and P is the polarization density. 

The EQS energy balance (or Poynting's theorem) for such a 
system may be written in a fixed (or "laboratory") spatial fi'ame as 
(Haus and Melcher, 1989; Penfield and Haus, 1967) 

E E ' E  + E ' [ j u + V X ( P X v ) ]  d a  

b 

+ | ( E × H ) . n d F = 0 ,  (25) 
Ji 't 

where n is the surface normal vector on F,. In this laboratory 
frame, ½ eE" E represents the spatial density of energy stored in the 
electric field, E" [j. + V X (P X v)] represents the spatial density 
of electrical dissipation, and E X H (the Poynting vector) repre- 
sents the flux of power into the spatial region. 

Utilizing Eqs. (22)-(24), Stokes's theorem and the divergence 
theorem, Eq. (25) can be rewritten as 

3 For a porous medium with compressible constituents, the "total" euergy density 
would be the sum of U(C) and a term describing the energy stored through dilatation 
of the individual constituents by the fluid pressure. Because we treat botb the solid and 
fluid constituents as incompressible, this second term becomes p(J - 1 - ~), an 
energy of constraint which is identically zero. See Simon (1992) or Levenstnn et al. 
(1998) for a mine thorough discussion of this point. 

4 The "dissipative" power p~L~ss for a given subsystem actually represents the total 
rate of energy transfer out of the subsystem, not merely the dissipative power. 
Consequently, p~iss for any given subsystem may be negative. However, the net 
dissipation for the system (obtained by summing the contributions from all sub- 
systems except the heat transfer subsystem) must be non-negative. 
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~ Vqb . j ,  d O +  qbj . n d F = 0 .  (26) 

d t "t 

In this form, ~(Op,/Ot) represents the rate of capacitive energy 
(density) storage in the dielectric medium. We next consider a 
pointwise Galilean transformation from the laboratory frame to a 
frame moving with the solid medium at a velocity v. Under this 
transformation, Eq. (26) becomes 

f ( c ~ , , - V ' b ' j ) d " +  f r q ~ j ' n d F = O ,  (27) 
~r t 

where the scalar convective time derivative Pu and the free current 
density relative to the solid j are defined as 

p,, = p,, + p,(V • v) (28) 

j = j ,  - puv. (29) 

Note that the relative current density j, representing the net charge 
flux relative to the solid, is objective. 

We now define g (with Lagrangian image G) representing the 
net "displacement density" of charge relative to the solid, such that 

p, ,= - V ' g ;  ~6,= - D w G  (30) 

j = ~ ;  J=G (31) 

where IS. and J are the Lagrangian charge density and relative 
current density, respectively. The charge displacement density 
vector g can be interpreted as describing the net amount of charge 
that has passed through a unit surface since the medium "left" the 
reference state. Equations (28)-(31) imply three equivalent state- 
ments of charge continuity: 

3p. 
V • j .  + -0t- = 0 (total current, spatial frame) (32) 

V • j + ~. = 0 (relative current, spatial frame) (33) 

Div J + t~,, = 0 (relative current, material frame). (34) 

Strictly speaking, we now view p,, as the change in charge density 
relative to the undeformed reference state If we stipulate macro- 
scopic electroneutrality as an initial condition, then p~ is also the 
present charge density. The Lagrangian form of the energy balance 
can now be written as 

f a  q '~ ,da + f a  - D w ~ ' J d f Z  
o o 

- f ( - q , j ) .  Ndr = o. (35) 
J r  o 

Finally, we consider the limiting case of a medium with no 
macroscopic capacitive energy storage. In this situation, the elec- 
tric potential becomes mathematically decoupled from the charge 
density, 5 and we can write the energy balance for the EQS sub- 
system as 

~q'* = dt dPt~"dO + (-DIV qb • J ) d ~  
o o 

- f~ ( - q b J ) . N d r = 0  (36) 
"o 

5 This is analogous to the decoupling of the pressure and the volumetric deforma- 
tion wheo incompressible elasticity is viewed as a limit of compressible elasticity. 

where • now functions as a Lagrange multiplier enforcing con- 
tinuum electroneutrality as a constraint, 

~. = 0. (37) 

The three integrals in Eq. (36) represent the rate of energy storage, 
dissipative power, and external power supply, respectively, for the 
EQS subsystem. Were we to consider this subsystem in isolation, 
we would close the formulation by introducing a constitutive law 
(e.g., Ohm's law) relating the current density to the potential 
gradient. We consider (G, qb) to be the independent variables for 
this subsystem, with (3J, 80) as the corresponding generalized 
virtual velocities. 

REMARK I. A distinction should be noted between our macro- 
scopic notions of electroneutrality and zero capacitive energy 
storage and the underlying microstructural picture. Clearly, elec- 
troneutrality will be violated microscopically within the double- 
layer region of the fluid adjacent to a charged region of the solid. 
With Eq. (37), we require that the charge in the double layer 
exactly balance the solid charge, so the net charge at a continuum 
length scale is identically zero. 

Likewise, maintenance of this charge distribution requires that 
energy be stored in the double layer. Deformation of the solid 
matrix alters' the spatial density of matrix fixed charge, and con- 
sequently alters the double-layer charge distribution and the 
double-layer energy. In the present treatment, we view these 
phenomena as functions of the solid deformation, and incorporate 
this energy storage into the hyperelastic stored energy function for 
the solid (see Eq. (18)). Thus, microscopic double-layer interac- 
tions are manifest as contributions to the macroscopic solid elas- 
ticity. By considering the medium to be noncapacitive at the 
continuum level, we adopt the view that the establishment of a 
macroscopic electric field within the material will negligibly alter 
the microscopic double-layer energy. As the microscopic electric 
fields are typically in the range of eight orders of magnitude higher 
than the macroscopic fields' associated with streaming potentials, 
this assumption is reasonable. 

2.5 Electromechanical Coupling. The two subsystems 

have now been formulated in such a way that the pairs (~v, Vp) 
and ( j ,  V~) are sets of conjugate fluxes and thermodynamic 
"forces." To close the formulation, we introduce a phenomenolog- 
ical coupling law relating the fluxes ~ and j to the forces Vp and 
Vqb (DeGroot and Mazur, 1969; Frank and Grodzinsky, 1987b): 

f ~ t  ~ [ - k l l ( C )  k l 2 ( C  ) ~ ( V(~)} (38) 
k2,(C) -k22(C)]  

where the k~j are deformation-dependent rank-two coupling ten- 
sors. This coupling law plays the role that Darcy's law plays in the 
poroelastic formulation: with the first line representing a gener- 
alized Darcy's law and the second line representing a generalized 
Ohm's law. The tensors kH and k~2 represent the "short circuit" 
permeability and the effective electrical conductivity at zero pres- 
sure gradient, respectively, and the off-diagonal tensors represent 
electrokinetic coupling. Statistical thermodynamic arguments us- 
ing the property of "time reversal invariance" lead to Onsager's 
reciprocity theorem (DeGroot and Mazur, 1969), a basic theorem 
of nonequilibrium thermodynamics implying that the macroscopic 
coupling matrix in Eq. (38) is symmetric. Consequently, k .  and 
k22 a r e  symmetric tensors, and k21 = kr2. Additional relationships 
between the macroscopic coupling tensors can be derived from 
microstructural models or from macroscopic constitutive models 
(see Section 4). 

6 Under open circuit conditions ( j = 0), an "effective" Darcy permeability can be 
derived for use in Eq. (21): 

kd = k~ l -  (k12k~2~k2~). (39) 
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Table 1 Local equations implied by the global variational equation (Eq. (46)) for an electro- 
mechanically coupled poroelastlc medium. Note that/~ and ~ are values prescribed on portions 
of the boundary and the total first Piola-Kirchoff stress 1" is defined in the text (Eq. (48)). The 
reference configuration must be defined such that the mass and charge conservation con- 
straints are initially satisfied. 

Linear momentum balance DIV T = 0 in rio 

Mass conservation J - 1 - ~ = 0 in f~o 

Charge conservation /~u = 0 in rio 

Generalized Darcy's law GRADp + ~"ll " W -}- 7"12 ' j .  = 0 in ~o 

Generalized Ohm's law GRAD • + r21 • ~1  + I"22 ' j ,  = 0 in I~o 

Traction boundary condition N .  T - f = 0 on Po~ 

Pressure boundary condition p - fi = 0 on Po~ 

Potential boundary condition ff - ~ = 0 on Fo® 

The coupling relationship can be posed in an equivalent La- 
grangian form as 

{~ / }  : [ -K I I  K|2 l f GRAD 
K21 -K,.J [ GRAD ~ } '  (40) 

where the Lagrangian forms of the coupling tensors are given by 

Ko = j F - l k 0 F  r. (41) 

Inversion of Eq. (40) leads to expressions for the Lagrangian 
gradients of pressure and potential, 

GRAD p ) -R,, l [ ~ R I  l 
GRAD ~ J  = L 

where the inverse coupling tensors R 0 are functions of the K0, 

Rii = (KIi - N12K~2tK21) - l  

Ra2 = (K22 - K21K{ilKi2) -I 

R12 = RiiKi2K221 

R21 = R22K21K221 = Ri2. (43) 

2.6 Variat ional  Formulat ion for a Coupled Medium.  The 
power balance for the electromechanically coupled porous me- 
dium can now be stated as 

'L ,I, = ~ [ u ( c )  - p ( J  - 1 - ~) + O ~ ° ] d a  

o 

--  f l ' t  (GRAD p" W + GRAD ¢I) • J)dl~ 
o 

f - ( f . v  - p W  • N - qbJ • N)dF = 0. 
Fo 

(44) 

We require the first variation of ~ with respect to the generalized 
virtual velocities to vanish: 

0 
• (u, W, G, p, ~ ,  v + ~Sv, W + rlS~V, J + r/6.1, 

p + ' r l3  p, ~ + ' r lS~ ) l ,=  0=  0. (45) 

After explicit introduction of the electromechanical coupling law, 
we obtain the following variational equation: 

f~ [ ½ ( S  e - pJB) ~C + p6~ + (W"  + 6W R ~ l  J .  R/12) • 

+ 4~L, + ( w .  Ri, + J .  R~,)" ~J 

- 8pC J -  1 - ~) + 8~p,,]dl~ 

- ~ ( t .  8v - p N .  8W - ¢bN. 8J)dF = 0, (46) 
a l  o 

where 8C, 8~, and 8t3 u are defined consistently with By, 8W and 
6J, respectively, and S t is the elastic (or "extra") second Piola- 
Kirchoff stress tensor, defined by 

OU(C) 
S t =  2 0C- -  (47) 

As the virtual velocities are arbitrary and independent, Eq. (46) 
implies the local equations shown in Table 1. Note that we have 
defined the total first Piola-Kirchoff stress T as 

T =  (S e - P J B ) . F  r = T ' - P J F  ~, (48) 

indicating that the total stress on the medium is carried by a 
combination of solid matrix deformation and fluid pressurization. 
Thus, the variational formulation implies the appropriate govern- 
ing equations for our coupled medium, and requires only the 
specification of the geometry, boundary conditions, and constitu- 
tive relations for a fully posed problem. 

REMARK 2. A discussion of  boundary conditions is appropriate at 
this point. In this formulation, we must specify boundary condi- 
tions on F o for the porous medium as a whole. Thus, we must 
prescribe either the solid displacement u and corresponding ve- 
locity v on Fo,, or the traction f on Fo I, where Fo,, and For are 
complementary portions of Fo: 

Fo = Fo,, U F,,j, Fo. 71 For = 0 .  (49) 

Likewise, we must prescribe either the relative fluid displacement 
W and corresponding relative fluid velocity W on F ow or the 
pressure p on Fop, where Fob,, and Fo, are also complementary 
portions of Fo: 

Fo = Fo,~ U Fo,,, Fo,~ N Fo, = Q. (50) 

Finally, we must prescribe either the relative charge displacement 
density G and corresponding relative current density J on F o~ or 
the electric potential dp on Fo., where Fo~, and Fo. too are 
complementary portions of  17 o: 
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Fo= Fo, OFo,,  Fo, 7 1 F o , = O .  (51) 

In general, the solid, fluid, and electrical boundary partitions need 
not coincide. 

3 Finite Element Implementation 

Finite element matrix equations for a total Lagrangian imple- 
mentation are derived from the variational formulation in the usual 
manner. We approximate the reference domain ~o as the union of 
ne~ nonintersecting elements 12o ~, and spatially discretize the pri- 
mary variables and their real and virtual velocities. Within an 
element 

u h = N,~u~ v h = NUrve ~V h = N , ~ t v ,  

W h : NwTWe W h = Nw~W~ 8 W  h = Nw~SWe 

G h= Ng~G~ jh=NS~j~  8 jh=NgrSj~  

p h  pT t~ h = pT, = = N p,, N Pe 8P h NI'~SP~ 

qbh = N,Tripe ~ h =  N.rOe ~ h  = N,ZS~)e (52) 

where ( )h indicates a discretized approximation to the corre- 
sponding variable; ( )¢ indicates a vector of nodal values; and N", 
N ~, N ~', N p, and N ~' are the element shape functions for the solid, 
fluid, current density, pressure and potential, respectively. As is 
typical of mixed finite element formulations, the pressure interpo- 
lation will generally be of lower order than the solid and fluid 
interpolations, and the potential interpolation will generally be of 
lower order than the current density interpolation. We require Co 
interelement continuity for the vector interpolations, but the scalar 
interpolations (pressure and potential) may be discontinuous. Ad- 
ditionally, the solid displacement is isoparametric with the element 
coordinates 

X h= NUrXe . (53) 

Introduction of the discretizations into Eq. (46) produces a 
semi-discretized nonlinear system of equations that must be solved 
via an iterative method (e.g., modified Newton-Raphson). Appro- 
priate linearization produces the following matrix equation for 
iteration (i) of the present loading increment: 

0 C ww C wg 0 A W  R w 

+ 0 C wgr C ~g 0 AJ = -  R ~ (54) 
0 0 0 0 A~b R' 
0 0 0 0 A~ R* 

where A(-) and A(~) indicate iterative updates to the correspond- 
ing vector of nodal variables and their respective velocities. The 
stiffness terms K are derived from the internal energy expression, 
the damping terms C are derived from the dissipative power 
expression, and the force terms R are derived from the power 
supply expression. All global submatrices and vectors are defined 
in Appendix A. 

In the present study, we discretized the linearized system in time 
using the backwards Euler algorithm. This produced a fully dis- 
cretized linear system: 

A t !  .... 0 0 AtK "p 
C ww C wg AtKWP 
C wg~ C ~ 0 

[AtKoUt'T AtKwpT 0 0 
0 A t K  gq'T 0 

0 
0 

AtK 8~ 
0 
0 

= -  R g (55) 
R p 
R ¢' 

<i)( A0] <i) 

a~ 

(0 

where At is the time-step and the iterative updates to the general- 
ized displacements are computed as 

AG = At A) (56) 
app a b  ' 

a¢ a+ 

For each time increment, iteration continued until the norm of the 
residual vector fell below a specified tolerance. We utilized mod- 
ified Newton-Raphson iteration in the current study, retaining the 
initial stiffness and damping matrices for each time increment. 

As with any mixed method, care must be taken to choose 
element configurations that are numerically well behaved. Because 
the saturation/incompressibility constraint acts on two vector fields 
(u and W) while the electroneutrality constraint acts on only one 
vector field (G), an interpolation scheme that satisfies the inf-sup 
(or Babugka-Brezzi) condition (Brezzi and Fortin, 1991) for one 
constraint may not be suitable for the other. 

In the following examples, we utilize a simple Q1/P0 element 
formulation that does not satisfy the inf-sup condition, yet still 
performs adequately for a large class of problems. Specifically, we 
utilized axisymmetric, quadrilateral elements with bilinear inter- 
polations of solid, fluid, and current variables and constant (within 
an element) values of the pressure and electrical potential, for a 
total of 26 degrees-of-freedom per element. A simple constraint 
count (Hughes, 1987) indicates that the inf-sup condition is not 
satisfied for the EQS subsystem, and this element may be prone to 
the development of spurious electrical potential modes analogous 
to pressure modes in the incompressible elements. Exploration of 
alternate interpolation strategies or enhanced-strain-like ap- 
proaches may lead to more generally optimal element formula- 
tions. As a practical matter, the axisymmetric Q1/P0 elements 
appear to perform adequately in our example problems. 

4 Numerical Examples 

4.1 Constitutive Models. Although the formulation is ame- 
nable to the use of anisotropic material models, in the present study 
we restrict our analysis to isotropic (on 12,) constitutive laws with 
material parameters chosen to be representative of articular carti- 
lage (Maroudas et al., 1973; Armstrong and Mow, 1982; Frank and 
Grodzinsky, 1987b). We consider homogeneous samples of tissue 
with an initial solid volume fraction qS~ = 0.2 and corresponding 
initial fluid volume fraction ~b~ = 0.8. The initial matrix fixed 
charge density (expressed as matrix charge per unit fluid volume) 
was chosen as Pint = --16 MC/m 3 (~0.17 M). Note that the 
constraint of continuum electroneutrality implies that Pm = --P~, 
where Pl is the charge density inthe ionic fluid (expressed as the 
net ionic charge per unit fluid volume). Due to the intrinsic 
constituent incompressibility, the solid and fluid volume fractions 
and the matrix fixed charge density vary as functions of the 
volumetric deformation: 

4,; 
4/= 7- (57) 
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S- l++{  
4 I  = 1 - + ' -  j (58) 

Pro=( dp~y) p . . . .  = ( j  Jqb~l+ ~bYo) pm'' (59) 

For the present study, we utilized the following hyperelastic 
energy density function for the solid matrix (Holmes and Mow, 
1990): 

exp[c~=(l I - 3) + a2(I 2 - 3)] 
U(C) = /3  1(~,+2~) , (60) 

*3 

where the three principal invariants of C are defined as 

I1 = tr C, (61) 

12 = det C tr C - J, (62) 

13 = det C = j2, (63) 

where tr is the trace operator. The positive constants a, ,  a2, and/3 
were assigned values of 0.2333, 0.0333, and 0.4261, respectively, 
corresponding to a reference state linearized Young's modulus of 
0.5 MPa and a Poisson's ratio of 0.1. This function produces an 
experimentally observed stiffening at large compressive deforma- 
tions (greater than ~20  percent) and maintains monotonicity in the 
nominal stress-deformation relationship for large compressive 
strain magnitudes. 

Relationships between the macroscopic coupling tensors of Eq. 
(38) can be derived if we consider the free current density to be the 
sum of Ohmic and convective currents: 

j = - ~ .  Vdp + pity, (64) 

where or is the rank-two conductivity tensor for the medium. 
Combining Equations (38) and (64) yields 

k12 = k21 = - p i k l l  ~ (65) 

k=  = tr + P~kll. (66) 

We modeled the deformation dependence of the isotropie short- 
circuit permeability kH using an approximation to a unit-cell-based 
microstructural model (Happel, 1959; Eisenberg and Grodzinsky, 
1988). Over a reasonable range of volumetric deformations, this 
model can be approximated quite well by a two-parameter qua- 
dratic function in J: 

(J - 4';)(Y + J - + ; )  
k11(C) = ko (1 - qb•)(y + 1 - 4~ s) 1 (67) 

where ko is the permeability in the undeformed state, y is a unitless 
constant, and 1 is the rank-two identity tensor. Note that k,~ 
vanishes as the fluid volume fraction goes to zero (Eq. (58)). For 
the present study, the fit parameters had values of ko = 5 × 10 -~s 
m 4 / N  - -  S and 3' = 1.08. 

Macroscopically, we can view the conductivity of the medium 
as proportional to the effective mobility of the ionic solutes, which 
in turn depend on the volumetric deformation through a "tortuos- 
ity" factor (Mackie and Meares, 1955; Helfferich, 1962). Conse- 
quently, the deformation-dependent isotropic conductivity can be 
modeled as 

[+ s(2 - ,¢>~) ]~  
o'(C) = ~o q5~(2 ~7~J 1 

( S -  +:)(1 - 4 - + : ) ]  2 
= O'o (S + 4~;)(1 - qb•)] 1. (68) 

where ~ro is the conductivity in the undeformed state, taken to be 
1 S/m for the present study. Note that the solid matrix itself is 

d 

/ / / / / / / / / 7 / / /  

(confined compression) 

J 

(current generated stress) 

z - - t  - -  

Z=0  - -  

r=0  r=1.5 

Fig. 3 Geometry and finite element mesh for confined compression and 
current generated stress, In the confined compression configuration, the 
chamber walls and base are rigid, impermeable and nonconducting, and 
a displacement d is applied via the rigid porous platen. In the current 
generated stress configuration, the chamber base and platen are con- 
ductlng and the porous platen is held in position while an imposed 
current density i is applied through the tissue. The finite element mesh 
(not shown to scale) contained 30 quadrilateral elements, with mesh 
spacing biased towards the porous platen. 

considered to be nonconducting, with all conduction taking place 
in the ionic interstitial fluid. The remaining coupling coefficients 
were determined using Eqs. (65), (66), (59), (67), and (68). 

4.2 Example Problems. We first examined two one- 
dimensional test configurations that have been used to assess 
material properties of articular cartilage and other biological tis- 
sues (Frank and Grodzinsky, 1987a). The first, "confined compres- 
sion," demonstrates mechanical-to-electrical transduction under 
finite deformations. The second, "current generated stress," dem- 
onstrates electrical-to-mechanical transduction, with large internal 
deformations. We then examined the two-dimensional example of 
"unconfined compression," which has been utilized in experiments 
investigating the effects of mechanical stimulation on the biolog- 
ical activity of live tissue samples (Sah et al., 1989). 

4.2.1 Confined Compression. In the confined compression 
configuration, we modeled a disk of cartilage (3-ram diameter, 1 
mm thick) placed in a confining chamber with rigid, impermeable, 
nonconducting walls and compressed by a rigid, highly permeable 
porous platen (Fig. 3). The pressure and electrical potential were 
taken to be zero (ambient) at the top surface, allowing free flow of 
fluid through the platen. Note that these boundary conditions 
ensure that no net current flow will occur in this configuration. A 
30 element mesh was utilized, with mesh spacing biased towards 
the loaded surface where the highest strains are expected. A 50/xm 
compressive displacement (or five percent nominal strain) was 
applied at the platen in a 60 s constant velocity ramp, followed by 
a 300 s hold (or relaxation) period. A uniform time-step of 1 s was 
used during the ramp, and a variable time-step from 0.01 s to 10 s 
was used during the relaxation. 

Application of the constant velocity displacement required a 
monotonically increasing compressive stress at the platen (Fig. 
4(a)). At the end of the ramp, the matrix deformation and fluid 
velocity profiles were highly nonuniform, with the greatest defor- 
mation (over 20 percent compression) and fluid flow occurring 
beneath the platen (Fig. 4(b)). In regions with little matrix defor- 
mation, the majority of the load was carried by fluid pressurization 
(Fig. 4(c)). During the hold period, the total stress decayed to a 
lower steady-state value (Fig. 4(a)). As no further fluid exudation 
occurred during the hold period (because the total sample volume 
was constant), this relaxation period represents gradual internal 
redistribution of fluid (and matrix deformation) and a correspond- 
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Fig. 4 Simulation results for the confined compression example: (a) 
total stress at the platen as a function of tlme durlng the 60 s ramp and 
300 s hold, (b) axlal deformation gradient and fluld velocity profiles at the 
end of the ramp dlsplacement, and (c) fluld pressure and electrlcal 
potential profiles at the end of the ramp displacement 

ing decay of the fluid pressure. At steady-state, the fluid carried no 
pressure and the entire load was equilibrated by uniform matrix 
deformation. This predicted mechanical behavior is typical of 
porous media, but additional electrokinetie effects are predicted by 
our model. Because the fluid carries a net positive charge, con- 
vection would tend to create a net charge imbalance within the 
tissue. To oppose this, an induced electrical potential (and associ- 
ated internal electrical field) was generated within the tissue (Fig. 
4(c)). Like the pressure, this induced electrical potential decayed to 
zero at steady-state. The large variations in matrix deformation 
(Fig. 4(b)) produced corresponding variations in the strain- 
dependent material properties. Consequently, the temporally 
evolving relaxation phenomena predicted by our model were more 
complicated than those predicted by previous linear or noncoupled 
models. 

4.2.2 Current Generated Stress. The current generated stress 
configuration is similar to that of confined compression, with 
different mechanical and electrical boundary conditions. Although 
the walls of the confining chamber were still modeled as rigid, 
impermeable, and nonconducting, the base of the chamber was 
modeled as a conducting electrode used to drive current through 

the sample. The porous platen (also conducting) was held in a fixed 
position, and a constant amplitude current density (2 mA/cm 2) was 
applied through the tissue (from the platen towards the base). The 
same mesh was used as in the previous example, and a constant 
time-step of 10 s was utilized. 

The electrical-mechanical coupling in this configuration can be 
seen by examining the stress required to hold the platen in its 
original position (Fig. 5(a)). Application of the current density 
immediately required the application of a compressive stress, 
which increased in magnitude with time and eventually reached a 
steady-state value. In the absence of this restraining stress, the 
specimen would tend to expand under this applied current. An 
examination of the tissue sample at steady-state reveals the mech- 
anisms responsible for this transduction phenomenon. 

To impose this current density, it was necessary to induce an 
electrical potential gradient across the tissue (Fig. 5(c)). If the 
boundaries at both ends of the sample were permeable, this 
current flow would have induced an electroosmotic fluid flow 
due to drag between the ions and the solvent fluid. Because the 
base was impermeable and the specimen volume was fixed, 
however, no fluid flow could take place across the porous 
platen. Consequently, a fluid pressure gradient was induced 
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Fig. 5 Simulation results for the current generated stress example: (a) 
total stress required to hold the platen In its original position as a 
function of time, (b) axial deformation gradient profile at t = 600 s, and (c) 
fluid pressure and electrical potential profiles at t = 600 s 
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Fig. 6 Unconfined compression example. (a) Geometry and finite ele- 
ment mesh, Because of symmetry, only one quadrant of the plug was 
modeled. The mesh contained 120 quadrilateral elements, with mesh 
spacing biased towards the loading platen and the radial edge, (b) Rel- 
ative fluid velocity. (c) Electrical current density distributions at the end 
of the ramp displacement, Streamlines have been included to aid In flow 
visualization, and results are displayed only for the meshed quadrant of 
the plug. 

within the tissue to prevent any net fluid flow (Fig. 5(c)). This 
in turn required a gradient in stress supported by the solid 
matrix (so that the total stress was a constant), producing a 
nonuniform deformation field within the sample (Fig. 5(b)). 
This matrix deformation varied from approximately 30 percent 
compression at the porous platen to approximately 30 percent 
tension near the specimen base. Thus, imposition of the current 
flow through the tissue produced deformations (and correspond- 
ing changes in strain-dependent material properties) beyond the 
range of a linear model. 

4.2.3 Unconfined Compression. To examine electromechan- 
ical interactions in a two-dimensional setting, we considered "ra- 
dially unconfined compression" of a disk of cartilage (3-mm 
diameter, 1 mm thick) between two rigid, impermeable platens 
(Fig. 6(a)). To approximate the effects of boundary friction, we 
considered the bounding case of perfectly adhesive platens (no 
radial displacement at the platens). The fluid pressure and electri- 
cal potential were taken to be zero (ambient) on the radial surface, 
allowing free flow of fluid and current along this boundary. For the 
analogous purely mechanical problem, linear analytical (Kim et 
al., 1995) and nonlinear numerical solutions (Spilker et al., 1990; 
Levenston et al., 1998) are available, allowing verification of the 
mechanical predictions of the model. Taking advantage of geo- 

metric and material symmetry about the midptane, we modeled 
only the upper quadrant of the sample with a mesh of 120 quad- 
rilateral elements. A 25/zm compressive displacement was applied 
at the platen (50 ~m total compression) in a 60 s constant velocity 
ramp. A uniform time step of 3 s was utilized during the ramp. 

As would be expected for any poroelastic medium, a monoton- 
ically increasing compressive stress was required to apply the 
constant velocity platen displacement. Because very little fluid 
exudation could occur during the displacement ramp, the material 
effectively responded as a nearly incompressible hyperelastic 
solid. Due to the physical restraint imposed by the adhesive platen, 
a two-dimensional deformation field was produced within the 
specimen. Consequently, two-dimensional profiles developed in 
all of the mechanical and electrical phenomena. At the end of the 
ramp, the predominant pattern of fluid flow was radial, with 
maximal flow near the radial edge (Fig. 6(b)). Superimposed on 
this, however, was an axial flow distribution, with fluid flowing 
from the relatively constrained material beneath the platen to the 
relatively unconstrained material near the midplane. Similarly, the 
pressure field (not shown) developed two-dimensionally, with both 
radial and axial pressure gradients. The pressure was maximal in 
the center of the sample beneath the loading platen, and dropped 
off to ambient at the free radial edge. The electrical potential 
distribution (not shown) was qualitatively similar to the pressure 
distribution, with the lowest electrical potential coinciding with the 
highest fluid pressure. 

Interestingly, while the total current across the specimen bound- 
ary was zero, the current density was not zero at every point in the 
sample (Fig. 6(c)). Relatively high current densities were produced 
beneath the loading platen at the radial edge (where the largest 
deformation occurred), 7 and were equilibrated by lower, more 
distributed current densities towards the midplane. This produced 
an overall circulating pattern of current flow. We note that this 
solution satisfied the requirements of a divergence-free current 
density (Eqs. (34) and (37)) and a curl-free electric field (Eq. (22)). 

Examination of the electromechanical coupling relationship (Eq. 
(38)) provides some insights into the induced current density field. 
In this example, the physical restraint at the platen gave rise to 
two-dimensionally varying deformation field. Because the various 
coupling coefficients depended on the deformation through differ- 
ent relationships, the induced gradients in pressure and potential 
were themselves no longer collinear. Consequently, the resulting 
convective and migration current densities were no longer col- 
linear, and a nonzero net current arose. Utilizing Eq. (38), the curl 
of the current density can be written (for isotropic k~j) as 

x j  = (V 'k21  X V p - V . k 2 2 X V ~ )  

+ ( k 2 ~ ' V X ~ r p - - k 2 2 " V x ' V @ ) .  (69) 

The second grouping in this equation vanishes, and the first van- 
ishes if the coupling coefficients are spatially uniform. The first 
grouping also vanishes if the divergences of k2~ and k22 are 
collinear with the pressure and potential gradients, respectively. 
This was the case in the confined compression example, where all 
variations were purely axial. In this unconfined compression ex- 
ample, however, the deformation-induced inhomogeneities were 
not collinear with the pressure and potential gradients. Conse- 
quently, the induced current density distribution was not curl-free. 
We note that the same analysis applies to baseline inhomogeneities 
in the undeformed material properties. For example, if the material 
properties varied with radial position in the confined compression 
example, we would also expect induced current patterns to arise. 
This may be of biological relevance to adult articular cartilage, 
which is known to have a highly inhomogeneous composition and 
material properties (Maroudas, 1979). 

Overall, the mechanical predictions of this model were consis- 

7 If the purpose of this example were to accurately predict the current patterns near 
the platen edge, we would need a much finer mesh (or alternate formulation) to 
capture the boundary layer behavior. 
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tent with previous purely mechanical analyses (Spilker et al., 1990; 
Kim et al., 1995; Levenston et al., 1998). None of these previous 
models, however, could represent the induced current patterns 
found in the present study. We note that other physical situations 
where the forced boundary conditions are primarily electrical (i.e., 
electroosmotic flow or the current generated stress example dis- 
cussed earlier) fall entirely outside of the realm of the previous 
mechanical models. 

5 S u m m a r y  
In the present study, we developed a variational theory for 

quasistatic analysis of coupled electrokinetic and fluid flow in 
porous media with intrinsically incompressible constituents. Uti- 
lizing the principle of virtual power, we combined mathematical 
descriptions of poroelastic mechanical behavior, electroquasistat- 
ics, and continuum electromechanical coupling. This produced a 
five-field mixed finite element formulation, with the fluid pressure 
and electrical potential acting as Lagrange multipliers enforcing 
the mechanical saturation/incompressibility constraint and the bulk 
electroneutrality constraint, respectively. As examples, several ex- 
perimental configurations involving finite deformations and elec- 
tromechanical coupling were considered. 

For a restricted class of problems with specific combinations 
of boundary conditions and material homogeneities, this for- 
mulation is equivalent to purely mechanical theories (with 
appropriate post-processing for electrical potential distribu- 
tions). The confined compression example (with homogeneous 
properties) is one such problem, and the model predictions 
agree with those of previous poroelastic analyses. However, for 
general problems with complicated boundary conditions and/or 
inhomogeneity patterns, the new formulation predicts addi- 
tional coupling phenomena that earlier approaches could not 
represent. In the current generated stress configuration, an im- 
posed current flow through the tissue induced large tensile and 
compressive deformations within the sample despite the fact 
that the overall specimen size was held fixed. In the unconfined 
compression example, inhomogeneities induced by the spatially 
varying deformation field led to the development of circulating 
current distributions, although the boundary conditions ensured 
that the total current into the specimen was zero. The phenom- 
ena described in the latter two examples are beyond the scope 
of earlier formulations, and can only be predicted by a model 
that includes electromechanical coupling while accounting for 
finite deformations and deformation-dependent material prop- 
erties. This new formulation may be of use in analyzing geo- 
metrically and materially complex problems in charged porous 
media in the fields of biomechanics, membrane physics, and 
geomechanics. 
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A P P E N D I X  
The following are general definitions of the global vectors and 

matrices in the incrementally linearized matrix equation (Eq. (54)), 
which are assembled from the corresponding element vectors and 
matrices in the usual manner. These definitions are applied using 
the appropriate compacted matrix forms, depending on the spatial 
order of the particular implementation. Following Einsteinian in- 
dicial notation, repeated subscripts imply summation. Uppercase 
subscripts indicate material coordinates, lowercase subscripts in- 
dicate spatial coordinates, and Greek superscripts indicate a global 
node number. Components of the consistent tangent elasticity 
tensor for the solid are represented by DtXLM, and components of 
the rank-two identity tensor are represented by ~,. 

f a  ON"" K' t  °' = ,, ~ {(S~:L - pJBKL)6,, + F~,[DtKrM 
o 

ON"' 
- pJ(BmB,~M - BxLBm - BtLBxM)]FtM} ~ d~  (70) 

K2P"" = - O~x JF{]NP~dII (71) 

K~ 't':" = - ~ NP'dI'~ (72) 

:?o' 

t" ON g, 
K~ *'~ = - I J , oxL N*~dl) (73) 

= N rlL~.MN d~ (74) 
J,  2', 

wg ~l~ ( w 13 g l~ CLM = N ri2LMN dD~ (75) 
J, 2': 

CLM = Ng"r221ouNg~d~t (76) 

Ri~ ° = - -  e - p J f ~ ] ) d a  - N"'ZdF (77) 

f a  [_ ~ p  r,2,.^,JM)ld~' R[ ~ = ! - + NW~(rli,.MWM + 

+ ~ N ~ n r d F  (78) 
J r  I; 

R~" = - O 2 L  ~ + N (r2,~,WM + r~2jM) d a  
21; 

+ ~ Ng'~nLdF (79) 
Jt 

R p" = ~ Nt'A(1 -- J + ~ ) d a  (8o) 
J ,  21: 

Rq'~ = f a ]  
N* "¢3.d~ (81) 
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A Steady-State 
Thermomechanical Solution of 
Continuously Quenched 
Axisymmetric Bodies 
A finite element methodology to solve steady-state thermochemical problems is presented 
in this paper, where axisymmetric geometry is considered, and small strain and small 
rotation are assumed for the mechanical problem. Both thermal and mechanical problems 
are formulated in the Eulerian frame with the finite element method. The heat transfer 
problem is solved with the Petrov-Galerkin method due to the convection-diffusion nature 
of the governing equation, and the virtual work principle is applied to the equation of 
motion to obtain the finite element formulation. To determine the inelastic deformation, an 
additional system of equations is formed by applying the Petrov-Galerkin method to the 
material derivatives of the inelastic strain rates. Studies in this paper focus on continuous 
axisymmetric problems with quenching examples. Generally, the computational time with 
the steady-state (Eulerian) method presented in this paper is significantly less than that 
with transient (Lagrangian) approaches. 

1 Introduction 

Many industrial processes involve continuously heating and 
Cooling in a product line, where the product experiences various 
mechanical defornmtion such as that in the continuous rod and 
tube quenching processes. During the quenching process, a certain 
level of cooling rate must he maintained in order to obtain proper 
material properties. The cooling is generally performed in a cool- 
ing chamber or cooling region, and the quenched body continu- 
ously passes through the cooling region. Because of the nature of 
the cooling process, the temperature in the quenched body is not 
uniform, consequently, high thermal stresses may result. The 
stresses in the body after the quenching process (residual stresses) 
are undesirable because they may cause a finished product to have 
excess distortion. In addition, the residual stresses may have a 
deleterious effect on fracture and corrosion performance. There- 
fore, it is important to understand the stress evolution in order to 
control the stresses and have quality products. 

Thermomechanical analysis of the quenching process can be 
performed with a transient (Lagrangian) approach by including a 
large computation domain to ensure that steady-state conditions 
are reached. Examples for transient (Lagrangian) analyses of non- 
continuous quenching problems can be found in the references by 
Fletcher and Lewis (1985), Zabaras et al. (1987), and Becket et al. 
(1994). 

The transient approaches may not be desirable to simulate the 
continuous quenching process because a significant amount of 
computational time is required. To overcome the drawback of the 
transient approaches, a steady-state method is developed in this 
paper to perform the thermomechanical analysis of continuous 
processes such as the continuous quenching process. 

2 The Heat Transfer Problem 

The heat transfer for the steady-state quenching problem is 
governed by the advection-diffusion equation, that is 

pcV.  VT = V . kVT r,z ~ A (1) 

where p, c, and k are the density, specific heat, and conductivity, 
respectively; r and z are the radial and axial coordinates (Fig. 1); 
the gradient operator and the velocity vector are V = rO/Or + 
zO/Or and V = rVr -1- zVz, respectively, where r, and z are the unit 
base vectors in the cylindrical coordinate system and Vr and Vz are 
the steady-state radial and axial velocity components, respectively; 
and A is the control volume. In this paper, the component related 
to 0/00 is dropped because only axisymmetnc problems are con- 
sidered. 

Generally, the quenched material is solution heat treated at a 
uniform temperature, T,,, to allow solute elements to defuse into 
the solid solution. Then the material is quickly cooled to retain the 
solute in the solid solution. Therefore, at the upstream of the 
control volume, the temperature is 

T(r,z)  = T,, r, z E  OA,, (2) 

and the convection and radiation boundary conditions can be used 
to represent the cooling effect at the surface of the axisymmetry 
body, i.e., 

- k  OT/On = h ( T -  T=)+R (T4-T4~) r, zEOA,. (3) 

where h and R are the convection and radiation heat transfer 
coefficient, respectively; and T= is the environmental temperature 
(the temperature of the cooling medium). Here OAc represents the 
surface of the body where it is cooled and OA, denotes the 
upstream boundary of the control volume. 
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3 The Mechanical Problem 
The equations that governs the mechanical deformation for the 

axisymmetfic problem are as follows: 

10(rtT,.) Oo-~z ~ro DV~ 
r Or Oz ~---r = p b r - p  Dt (4) 
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where o',., ~r~, ~r~, and ~0 are the components of the vector form 
of the Cauchy stress tensor. 

The relationship between the stress and elastic strain is governed 
by Hook's law, that is, 

cr = D(T)a e (6) 

where o" is the Cauchy stress tensor with the vector form, o- = (~r~ 
err ¢r,.~ ~ro) r, a e is the elastic strain sensor, D(T) is the temperature- 
dependent elastic constant tensor and the matrix form of D(T) is 
given as 

E ( r )  
D =  

(1 + v)(1 - 2v) 

1 - v 1) 0 v 
v 1 - v  0 v 

(1  - 2~ , )  
0 0 0 

2 
v v 0 1 - - v  

(7) 

where E(T) is the Young's modulus and v is the Poisson's ratio. 
Because small strain and rotation problems are studied here, we 

can assume that the total strain tensor ~ can be additively decom- 
posed into the elastic, e E, the thermal, a ~, and the inelastic, E N, 
part, respectively, that is 

a = a ~ + a r + ~ N  (8) 

where E is total strain tensor, whose vector form is a = (a~ a~ a~ 
Eo~r, and a N have the same form as ~ does. The total strain tensor 
can be calculated through the displacement field as a~ = OuJOr, 
a~ = OuJOz, ao = u Jr, a~z = 0.5 %~ = 0.5 (OUr/OZ + 
OuJO r). 

The thermal strains are dilatational and can be expressed as 

Y/ aN(T) = az~(r) = , ~ ( r )  = a(v)dv, a ~ ( r )  = 0 (9) 

R 

where a(T) is the temperature dependent thermal expansion coef- 
ficient and Tk is the reference temperature at which the thermal 
strains are zero. 

The inelastic deformation can be represented by the following 
generalized constitutive equation; 

d N = f(~,  e N, T . . . .  ) (10) 

where eN is the inelastic strain rate tensor. 

4 Finite  E l e m e n t  Formula t ion  of  the Heat  Transfer  

Prob lem 

Since standard Galerkin method may lead to unstable solutions 
for convection-diffusion problems with high Peclet numbers, the 

Petrov-Galerkin approach is used for the heat transfer analysis. 
With the trial and test functions, T, i? E V = { v E H~ }, where 
H~ is a Soblev space, the following variational statement can be 
derived from the governing equation for the heat transfer problem, 
Eq. (1): 

f A OCV" VT(7' + 8" V~I')dA + f a kVT" VTdA 

- f A V ' k V T ~ ' V T d A -  f z , A k V T ' n T d F = O  (11) 

where 8 is the function of the element size and velocity, dA = 
rdrdz and dF = rds (ds 2 = dx 2 +dy2). 

The control volume A can be divided into E elements and N 
nodes, and the temperature in the domain is represented with 
interpolation functions. The interpolation function for the temper- 
ature can be expressed as T = ~ T , ~ , ,  (a = 1, 2 . . . . .  M), where 
T~ is the nodal temperature, and ~q_ is the isoparametric finite 
element shape function. The function T can also be expressed with 
the finite element_shape function as T = N~v,,~,,, where T, is the 
nodal value of T. Based on the element size and steady-state 
velocity, the function 6 in Eq.  (11) can be defined as 3 = 
0.5(coth Pe-1/Pe)sV/lVI, where s is the element size and Pe = 
0.51Vts/k (Zienkiewicz and Taylor, 1991). After the finite element 
discretization, the following system of equations can be obtained: 

K T = F  (12) 

where K and F are the stiffness matrix and load vector, respec- 
tively; and T is the vector of temperatures at nodal points. The 
components of K and F are 

K~, = f A pc(alP, + ~" V~o)V"  V~hdA 

+ fA kV~ ,"  V~bdA - fa V " kV~bS" V~,dA 

+ f;, (h + at(T, T=))~,dPbdF (13) 
A c  

f 
Fa = I (T~ + a,(T, T=)T=)dP,dF (14) 

aa 
e 

where at(T, r=) = R ( r  2 + T~)(T - T=). Notice that when k is 
constant, some of the high-order terms in Eq. (13) will vanish 
when the linear or bilinear elements are used. More discussions on 
the calculation of the high-order term can be found in the book by 
Johnson (1987). 

5 Virtual  W o r k  and Finite  E l e m e n t  Formula t ion  for 
the Stress Prob lem 

Applying the virtual work principle to Eqs. (4) and (5), we can 
derive the following weak formulation: 

(15) 

where u (u = (ur uz) r) is the displacement field and fi is virtual 
displacement field, dF = rds, and dA = rdrdz. The body force 
and the acceleration term in Eq. (15) can be neglected when their 
contribution to the mechanical deformation is negligible. 
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Although the finite element analysis of the stress problem can be 
performed with the same discretization as that used for the heat 
transfer analysis, we consider a general case with a different finite 
element discretization for the stress problem. Assuming that the 
control volume is discretized with N nodes and E elements, we can 
express the displacement field with isoparametric shape functions 
N as d = Nu. The corresponding strain and stress field are e = Bu 
and o- = DBu, respectively, where B is derived through differen- 
tiation of the shape function N. After the discretization and using 
Eqs. (6) and (8), we can derive the following system of equations 
from Eq. (15): 

A U = P  (16) 

where A is the stiffness matrix, U is the vector of the nodal 
displacement field, and P is the load vector. The components of A 
and P are 

A = fa B TDBdA (17) 

B~D(~T + ~N)dA 

+ fa  Nro(b  + DV/Dt)dA 08) 

6 Calculation of the Inelastic Strains 
To obtain the inelastic strain, we employ the concept of the 

material derivative. The material derivative of the inelastic strain 
can be expressed as follows: 

6N = oEN/ot + V.VCN. (19) 

Substituting Eq. (19) into Eq. (10), we can derive the following 
equation: 

OEN/Ot+V'VE N= f(~r, ~N, T . . . .  ) r , z ~ A .  (20) 

For the problem considered here, Eq. (20) involves four indepen- 
dent scalar equations corresponding to the inelastic strain compo- 
nents, E~, ~ ,  ¢~, Co N, and represents the evolution of inelastic 
strain with time. For a steady-state process, to an observer in the 
Eulerian frame, o¢N/Jt = O. In this analysis, the term o¢N/ot is 
kept for the purpose of iteration. 

Before the quenched body enters the quenching chamber, it has 
a uniform temperature. At this stage, there is no deformation in the 
body. Therefore, the value of the total inelastic strains at the 
upstream of the control volume A is 

~N = o r, z ~ OA~. (21) 

To obtain the inelastic strains, a weak formulation is applied to 
Eq. (20) on the control volume A. The Petrov-Galerkin method is 
also used here to stabilize the algorithm. The variational statement 
of Eq. (20) employing the Petrov-Galerkin method is as follows: 

o¢N/Ot(w + 3"~V" Vw)dA 

+ fay. vEN(w -~- 3"~V" Vw)dA 

= fa  f(o', E N, T . . . .  )(w + 3'{W" Vw)dA 

where w ~ V = { v E H~ } (H~ is a Soblev space), 3' is a constant, 
and ~ is the element parameter which represents the element size. 
Equation (22) can be considered as the summation of two equa- 
tions with the standard Galerkin method for two different test 
functions, i.e., w and (3'~V • Vw). 

Equation (22) can be discretized with the finite element inter- 
polation functions for the inelastic strains, E N, and the function w 
as E N = 5~E~ ~t~, w = 5~wt~t3 (/3 = 1, 2 . . . . .  L ) ,  respec- 
tively, where L is the number of nodes, • ~ is the nodal value of the 
inelastic strain tensor, and To is shape function which may be the 
same as, or different from those used for temperature and displace- 
ment interpolations. Generally, integration of the inelastic strains 
can be performed with the mesh used for thermal or stress analysis. 
With the finite element interpolation functions, the following equa- 
tion can be derived: 

f a (T ,  + 3"~V" V ~ ) q t  ~dAO~/Ot 

+ fA ( ~ "  + 3'~V" VW.)V" VWt3dA~ ~ 

= fa  (W~ + y~V" VW~)f(o-, ¢N, T . . . .  )dA. (23) 

Equation (23) can be written in the following compact form: 

C ~ +  Q e = g  (24) 

where the vector e contains inelastic strains, the components of the 
matrix C and Q are 

C . ,  = fA ( ~  + y,~V. VaIt.)~dA (25) 

Q"~ = fA ( ~ "  + y ~ V '  Vq%)V'  g ~ d A  (26) 

and the components of the vector g is 

g~ = f A ( q t  + 3'~V" VW~,)f(o-, E N, T . . . .  )dA. (27) 

Equation (24) can be integrated with the backward Euler scheme 
a s  

C ) C e"- 1 , (28) ~ + Q  e ' = g + ~  

where n represents the current step number. 
The term Ce"- 1 in Eq. (24) is the inelastic strains at the previous 

step. When the term Ce "-t is combined with the load vector g to 
form a modified load vector g*, the following equation can be 
obtained: 

where the components of g* are 

(29) 

JA g*~ = {(qF~ + 3'~V' VW~)(f(~r, E N, T . . . .  ) 

(22) 
+ (~N)"-l/At}dk. (30) 
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Fig. 2 Temperature variation along the moving direction of the 
quenched rod 

Matrix Q and C are independent of the inelastic strains. When At 
is constant, the stiffness matrix will be constant. In this case, 
matrix forward elimination during iterations may not be needed. 

7 Implementation Procedure 
The methodology presented in this paper can be implemented 

with the following steps: 

A. Solve the system of Eq. (12) to obtain the temperature filed. 
B. Apply thermal loading. 

B. 1. Divide the thermal loading into m increments so that 
A e r =  Erlm. 

B.2. Apply the thermal loading incrementally, i.e., 
(Er)~ = (Er)i_~ + A~ T with (er)o = 0, where i is 
the increment number. If the full thermal loading is 
applied to the system (i.e., i = m), go to step C; 
otherwise, go to step B.3. 

B.3. Solve the system of Eq. (16) by substituting (er)~ for 
E r to update the stress field. 
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Fig, 4 Surface temperature variation along the moving direction of the 
quenched tube 

B.4. Solve the system of Eq. (29) to update the inelastic 
strains with the updated stress field, then go to step 
B.2. 

C. Iteration. 
C. 1. Solve Eq. (16) to update the stress field with the full 

thermal loading. 
C.2. Solve Eq. (29) to update the inelastic strains with the 

updated stress field. 
C.3. Check convergence. If convergence is achieved, i.e., 

OC:N/OI "~" O, stop iteration; if not, go to step C.1 with 
the updated inelastic strain obtained from step C.2. 

Generally, the step B is necessary when a process, such as the 
quenching process studied here, involves a fast evolution of in- 
elastic strains. Generally, the convergence tolerance should be 
small. In this paper, it is 1 0  - 7 ,  that is, iterations stop when o~N/ 
0t < 10 -7, where ~N is the effective inelastic strain and is defined 

2 N N as ~u = ~¢/~EOEij " 

8 Results 
The material considered here is an aluminum alloy. The thermal 

conductivity of the material is k = 222 W/re-°C, the specific heat 
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Fig. 5 Stress variation along the moving direction of the quenched tube 
in the surface of r = 0,0256 m 
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Fig, 6 Stress variation along the moving direction of the quenched tube 
in the surface of r = 0,0299 m 

is c = 904 J/kg-°C, and the density is /9 = 2650 kg/m 3. The 
Young's modulus of the material varies with temperature, that is, 
E(T) = 7310-48.6T MPa if T --< 340°C and E(T) = 103000- 
139T MPa if 340°C < T --< 540°C; the Poison's ratio is v = 0.37. 
The thermal expansion coefficient of the material is a(T) = 25.5 
/xm/m. 

The inelastic deformation of the material obeys the following 
hyperbolic sine law: 

4~ = fij(o', e N, T, •) = -~ ae  -c/(r+273)[sinh Bt ' ] "  
S ij 

• -~  (31 )  

where A, B, C and n are the material constants, 6" is the effective 
stress defined as 6" = ~ j s ~ j .  (&j are the deviatoric stresses and 
s o = ~ j  - ½0"kkS~j.) The temperature T is in degrees Celsius. The 
parameters of the hyperbolic-sine law are A = 8.557 × 10 ~1 
see -i , B = 0.03223 MPa -~, C = 21320°K, and n = 4.75 
(Becker et al., 1994). 

To verify the methodology presented in this paper, a steady-state 
rod quenching problem is studied and the results are compared 
with a transient solution. The diameter of the rod is 0.03 m. The 
control volume is as shown in Fig. 1, where Ro = 0.015 m and 
Ri = 0.0 m, and the length of the control volume is L = 0.7 m. 
The rod moves at a steady-state velocity, V = (0, 0.15) m/sec and 
is water cooled from z = 0.06 m to z = 0.46 m with the cooling 
heat transfer coefficient h = 14200 W/m2-°C. When the rod is 
outside of the cooling region, it is cooled by the surrounding air 
with h = 30 W/m2-°C. The temperature of the water and air is  
T~ = 25°C. Before the rod is quenched, it has a uniform temper- 
ature, T,, = 510°C. With the assumption of uniform cooling 
around the rod surface, axisymmetric conditions can be applied to 
the rod. In addition, traction-free conditions are applied to the rod 
surface and ends with the point at (0, 0) fixed to eliminate rigid- 
body motion. 

In the quenching problem studied here, the mechanical defor- 
mation is induced mainly by temperature gradient in the quenched 
body and the velocity due to mechanical deformation is negligible 
compared to the rigid-body velocity (steady-state moving velocity 
of the quenched body). Therefore, the rigid-body velocity can be 
used in Eqs. (12), (24), and (29). 

With the steady-state methodology, the control volume is des- 
cretized with 455 elements (seven elements in the radial direction). 
Stress elements are quadrilateral with eight nodes and four inte- 
gration points and thermal elements have four nodes and four 
integration points. The computational time is about 1.5 CPU hours 
on an HP 750 machine. 

With the transient (Lagrangian) method, the rod 1 m long is 
selected to ensure that the solution can reach steady-state and end 
effects can be eliminated• Nine hundred ninety-five quadrilateral 
elements are used to descretize the domain with five elements in 
the radial direction. The stress elements have eight nodes and four 
integration points and the thermal elements have four nodes and 
four integration points• In addition, the elements are carefully 
generated to minimize the level of computation. To simulate the 
process, the cooling zone is fixed and the quenched body is 
moving• The transient analysis is performed with the commercial 
program ABAQUS (1995). The run time for this problem is about 
30 CPU hours on the same HP 750 machine. 

The steady-state and transient solution for the rod quenching 
problem are given in Figs. 2 and 3. Figure 2 shows the comparison 
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Fig. 7 Variation of the inelastic strain rate along the moving direction of the 
quenched tube 

338 / Vol. 66, JUNE 1999 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



of temperatures of the quenched rod. Figure 3 shows the stress 2.0E-03 
variation at two locations, i.e., r = 0.0052 m (close to the rod 
center) and r = 0.0147 m (close to the rod surface). The agree- 1.5E-03 
ment between the results obtained from the two methodologies are 
good. But the computational time is significantly less with the 1.0E-03 
steady-state approach. 

A tube quenching problem is also solved with the steady-state = ~ 5.0E-04 
method presented in this paper. The same aluminum material is 
also used. The inner diameter of the tube is 0.05 m and the outer '~ 0.0E+00 
diameter is 0.06 m with 0.005 thick wall (i.e., Ro = 0.030 m and 

-5.0E-04 R~ = 0.025 m). The length of the control volume is also 0.7 m. .~ 
The tube moves at a constant velocity, V = (0, 0.15) m/sec and i s  ,~ 
water cooled from z = 0.1 m to z = 0.4 m with the cooling heat ~ -1.0E-03 
transfer coefficient h = 14200 W/mL°C. Outside the quenching 
area it is cooled by the surrounding air with h = 30 W/mL°C. The -1.5E-03 
the water and air temperatures are T~ = 25°C. Before the tube is 
quenched, it has a uniform temperature, T,, = 510°C. -2.0E-03 

Figure 4 shows the surface temperature variation along the tube. 
Figures 5 and 6 show the stress evolution along the tube at r = -2.5E-03 
0.0256 m and r = 0.0299 m, respectively. Figure 7 illustrates the 
variation of the inelastic strain rate at r = 0.0256 m and r = 
0.0299 m, respectively. Figures 8 and 9 show the variations of the 
inelastic strains along the tube at r = 0.0256 m and r = 0.0299 
m, respectively. 

9 Conclusion 
The steady-state method presented in this paper is effective and 

efficient to analyze the stress evolution involved for a continuous 
thermomechanical process. Test problems have shown that the 
results obtained with the steady-state (Eulerian) approach agree 
well with those obtained with the transient (Lagrangian) method. 
With the steady-state methodology, a significant amount of com- 
putation time can be saved. It is advantageous when repeated 
computation is required such as in an optimization procedure. 

Generally, inelastic deformation occurs in a short period of time 
and it requires a fine mesh and small time steps to integrate the 
inelastic strain rate. With the transient method, the time step must 
be kept sufficiently small through the entire simulation and the fine 
mesh is needed in the entire domain. But with the steady-state 
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Fig. 8 Inelastic strain variation along the moving direction of t he  
quenched tube in the surface of r = 0.0256 m 
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Fig, 9 Inelastic strain variation along the moving direction of the 
quenched tube In the  surface of r = 0 .0299 m 

approach, a fine mesh is only needed in the region where the 
inelastic deformation occurs. 

The control volume should be selected larger than the region 
where the stresses need to be determined. According to the Saint 
Venant principle, the boundary conditions at the upstream and 
downstream of a control volume will only affect the local stress 
distribution. Once the computation region is large enough, the end 
influence to the stresses and deformation can be neglected. 

In the examples studied here, the magnitude of the inelastic 
strain increases quickly at the beginning of the quenching process, 
then stays at almost constant level during the rest of cooling 
process. Axial and Hoop stresses in the region close to the outer 
surface are tensile at the beginning of the quenching process, and 
change from tensile to compressive at the early stage of the process 
and stay compressive. In the center area or near the inner surface, 
axial and Hoop stresses are compressive at the beginning and are 
tensile later on. 

The inelastic deformation contributes significantly to the resid- 
ual stresses of the end product. Therefore, the region where the 
high inelastic strain rate occurs must be studied carefully in order 
to minimize the residual stresses. 

The methodology presented in this paper can also be applied to 
other steady-state processes with small deformations, i.e., small 
strains and small rotations. 
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Application of the Hybrid 
Method to the Transient 
Thermal Stresses Response in 
Isotropic Annular Fins 
This paper presents the transient stress distribution in a perfectly elastic isotropic annular 
fin. The nonlinear transient conduction-convection-radiation heat tranafer annular fin 
equation is solved by the hybrid method of  the Taylor transformation and the finite 
difference approximation. The temperature distribution curve is employed by the natural 
cubic spline fitting. The stress distribution is directly integrated to obtain the transient 
thermal stress distribution. 

1 Introduction 
Fins are employed to enhance the heat transfer between the 

primary surface and its convective, radiative, or convective- 
radiative environment. Annular fins (thin annular disk) are exten- 
sively used in various industrial applications (Kern et al., 1972). 
For proper prediction and control of the performance of a fin, it is 
necessary to know the dynamic response of it when an expected or 
unpredictable change occurs. Naturally, the plane-stress ther- 
moelasticity problems of radial heating of annular fins are impor- 
tant in engineering practice (Boresi et al., 1974). 

In this paper, the nonlinear conduction-convection-radiation 
heat transfer equation is solved by the hybrid method, which 
combines the Taylor transformation and the finite difference ap- 
proximation. For the transient temperature distribution curve, we 
use the natural cubic spline fitting. Since a spline is a flexible strip, 
according to the law of beam flexture, it passes through each of the 
given points and moves smoothly from one interval to another. It 
is particularly advantageous when we want to find derivatives to 
the data. In the stress field of the annular fin, the ratio of the 
thickness, W, to the outer radius, re, is even smaller compared with 
unity. Therefore, we can make a statement that the annular fin is 
plane-stress field and the end faces are free of traction (Misra et al., 
1983). We use the direct integration method to obtain the transient 
thermal stress distribution. 

2 Analysis 

Transient Heat Transfer Problem, We consider one- 
dimensional conduction of an annular fin with base radius, rb, tip 
radius, re, and uniform thickness, W. The heat transfer coefficient, 
h, along the peripheral surfaces and at the tip surface of the fin is 
constant and uniform. The fin is a homogeneous, isotropic constant 
property material with thermal conductivity, k. Thermal genera- 
tion is not considered. We assume that the heat dissipates from the 
fin surfaces with convection and radiation to the surrounding area. 
The fin initially is uniform in thermal equilibrium with the sur- 
rounding at temperature Ta. At time t = 0, the fin base temper- 
ature is suddenly changed to Tb and kept constant thereafter. 
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Referring to the Fig. l, the energy equation with the aforesaid 
initial and boundary conditions of the fin is 

0 2 0  1 00 1 00 
~r 2 + - - m ( O  - 1) - n ( E O  4 - c~04~)  - 

r ~r c~* at ' 

t > 0 ,  r b < r < r e ,  O= O(r, t), (1) 

0 = 1, t = O ,  rb--<r--<re, 

0 =  0b, t > 0 ,  r = r b ,  

00 
o r - P ( O -  1) + U ( e 0 4 -  aO~), t > O ,  r = re, (2) 

where m = 2h/kW, n = 2~rT3/kW, P = h/k, U = ~rT3/k, a* = k/oc p, 
0 = T/T,,, Oe = Te/To, Ob = Ti,/T,,, and r is the radius of the fin, t is the 
time, t9 is the density of material, and c~, is the constant pressure 
specific heat. T is the temperature of the fin, Te is the effective 
temperature of the radiative surface except for the fin, c~ is the 
absorptivity of the fin, e is the emissivity of the fin, and ~r is the 
Stefan-Boltzmann constant. In order to consider the effect of possible 
differences in the emitting and absorbing spectra, the emissivity e, and 
the absorptivity o~, are not taken to be equal. 

After taking the Taylor transformation (Chen et al., 1996; Yu et 
al., 1997) with respect to time domain t, Eqs. (1) and (2) become 

d20(r ,  k) l dO(r,  k) 
dr 2 + -r dr m(O(r,  k) - 8(k)) 

k e 

- n(e Z O ( r , k -  e) 2 ®(r, e -  s) 
£=0 s=0  

s 

× Z O(r, s - q)O(r,  q) - c~O~3(k)) 
q 

1 k + l  

or* H 
- - O ( r , k +  1), (3) 

O(r ,  0) = 1, (4) 

O(rb, k) = 0ha(k), (5) 
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• T a 

Tb ~ 1 2 
q - 0 -  I 

rb L 

r e 

Fig. 1 Rectangular profile annular fins 

dO(re,  k) 
dr - P (O( r , ,  k) - 8(k)) 

k t 

+ U(E E O(re, k - f )  ~ O(r~, f - s) 
~=0 s = 0  

s 

X ~ O(r~, s - q)O(re, q) -- ceO;8(k)), 
q=0 

(6) 

where 

{~ f o r k =  0 
5(k) = otherwise, 

and O is the Taylor spectra of 0, H is the time interval, and k is the 
transformation parameter. The fundamental properties of the Tay- 
lor transformation are given in the Appendix. 

For the finite difference approximation with respect to r in Eqs. 
(3)-(6), in this paper the region rj, -< r <- r~ (Fig. 1) is divided into 
two equal subregions and each of the thickness, 8, is given by 

r e - -  r b 

8 - 2 (7) 

Equations (3)-(6) are discretized by using the second-order accu- 
rate central difference formula for both the second and first deriv- 
atives (Ozisik, 1994). We obtain 

0~ ,(k) - 20 , (k )  + e,+, (k)  1 0i+1(k ) - -  Oi_l (k  ) 
8 2  + r b + i 8  2 8  

k e 

- m(O,(k) - 8(k)) - ne ~ e , ( k  - e) ~ 0 , ( e  - s) 
£ = 0  s = O  

~ k + l  
X E Oi(s - q)Oi(q) + neeOe48(k) = - ~ -  O~(k + 1), 

q = 0  

i = 1, (8) 

19,(0) = 1, i =  l,  2, (9) 

Oo(k) = ObS(k), (10). 

O~(k) - e , ( k )  
28 - n(O2(k) - 8(k)) + Ue ~ 02(k - f )  

f = O  

e s 

X ~ 02(e-s) ~ 02(s-q)e2(q)- U~O48(k). (11) 
a=O q=O 

Now, to eliminate the fictitious spectrum O3(k) by utilizing the ex- 
pressions obtained from Eq. (8) with i = 2 and Eq. (11), we obtain 

k + l  2 k 
a*H O2(k + 1) = g (P(O2(k) - 8(k)) + Ue ~ 02(k - e) 

e=O 

s 

X ~ 02(e  - s) ~ 02(s - q)O2(q) - Uc~O~8(k)) 
s = O  q = 0  

2(Ol(k)  - 02(k)) 1 
+ 82 + ~ (P(O2(k) - 8(k)) 

k e s 

+ Ue ~ 02(k - e) ~ 02(e  - s) ~ 02(s  - q)O2(q) 
= 0  s = 0  q = 0  

k 

- UaO~8(k)) - m(e2(k)  - 8(k)) - nE ~ 02(k - e) 
t=O 

s 

X E 02(e - -  S) E 02(S - -  q)Oz(q) + naO~48(k), 
s=o q = 0  

(12) 

where H is the time interval. Take k = 0, 1, 2 . . . . .  5, and i = 
0, 1, 2; we may obtain On(k) as follows: 

00(0) = Ol,, (13) 

O,(0)  = l ,  (14) 

02(0) = 1, (15) 

0o(1) = O, (16) 

Oo(O) - 2 o , ( o )  + o~ (o )  
0 , ( 1 )  = ~ * H  82 

0=(o)  - 00(0)  

28(rb + 8) 

- m(O,(O) - 1) - neO{(O) + naOe4), 

2 U~ Ue 
- - - g - -  + - - -  

r b  + 28 

o,(2) = 2_7_(°°(1) - 

(17) 

o~*H((2P  
02(2) = - 5 - \  i T  + 

r b +  28 m ( 0 2 ( 0 ) -  1) 

2 ( 0 , ( 0 )  - 02(0))  
n~ 0~(0)  + ~2 

+ - U  + ~  +n°~ 0~ 4 , (18) 

00(2) = 0, (19) 

201(1)  .-I- 02(1) 02(1) - 0o(1) 
82 F 28(r~ + 8) 

- mOl (1 )  - 4 n e O l ( 1 ) O ~ ( 0 ) ) ,  

r h +  28 m 02(1) 

[2UE UE ) 
- 4 / T + ~ + n e  O1(1)O~(0) 

+ 2(01(1~_~ O2(1))), 

00(3)  = o, 

(20) 

(21) 

(22) 

a * H [  0 0 ( 2 ) -  2 0 1 ( 2 ) +  02(2) 
O 1 ( 3 )  32 

02(2) - O0(2) 
28(rb + 8) 

- m 0 1 ( 2 ) - n e ( 4 0 , ( 2 ) O ~ ( 0 )  +60~2(1)O2~(0))) ,  (23) 
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Table 1 Nodes temperature of convection and radiation 

time (s) T~ (K) T~ (K) T~ (K) 

I0 600 469.30 436.56 
20 600 525.41 507.72 
30 600 547.72 536.02 
40 600 556.51 547.16 

steady state 600 561.31 553.24 

Table 2 Nodes temperature of pure convection 

time (s) Z~ (K) T~ (K) T*2 (K) 

10 600 470.53 437.91 
20 600 529.09 512.18 
30 600 553.65 543.37 
40 600 563.96 556.46 

steady state 600 570.10 564.26 

Table 3 Nodes temperature of pure radiation 

time (s) T~ (K) T*~ (g) Z~ (K) 

10 600 475.50 442.84 
20 600 539:31 523.44 
30 600 566.90 558.29 
40 600 578.69 573.16 

steady state 600 585.81 582.14 

02(3)  = + -  m 02(2)  r~, + 28 

- + ~ + n e  "(4®1(2)0~(0) 

2(01(2~_ 7 02(2)) )  
+ 6®~2(1)0~(0)) + 

00(4) = 0, 

o~H(Oo(3)  - 20,(3) + 02(3) 02(3) - 00(3) 
0, (4)  = - -  82 I.-, 28(rb + 8) 

- me, (3 )  - ne(4®,(3)@~(0) 

+ 12®,(2)®1(1)®~(0) + 4®~(1)0,(0))), 

®+*HI [ 2P P "~ 
®2(4) = - - 4 - / 1  ~ -  + rb + 26 m) ®2(3) 

- + - - + h e  " ( 4 0 t ( 3 ) ® ~ ( 0 )  
rb + 26 

+ 12®a(2)Ot(l)®~(O ) + 40~(1)01(0))  

2(0,(3) - 02(3)) 
+ ~2 , 

00(5)  = o, 

oe*H/Oo(4) - 201(4) + 02(4) ®2(4) - 00(4)  
O1(5)  ~2 'q- 28(r+, + 6) 

- m®t(4) - ne(4®1(4)®~(0) + 6®tz(2)®~(O) 

+ 120,(3)0t(1)0~(0) + 12®,(2)0~(1)0t(0) 

+ 0'~(1))), 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

600 

550 ~ . .  steady =tote 

• ~ 500 ~ ~ ¢  20 s 

E deneltyy=27o0 kg/m*m*m 

he50 w/awm-k 
em|uM~,==obmorptlvlty=0.8 

400 I i I I I I i I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

0.02 0.03 0.04 0.05 0.06 
R (rn) 

Fig. 2 The transient temperature response of annular fins with convec- 
tion and radiation boundary conditions 

02(5) = - ~ +  m 02(4) rb+  26 

[2Ue Ue ) 
- ~ - ~ - + ~ + n e  " ( 4 0 , ( 4 ) ® ~ ( 0 )  

+ 6®~(2)®~(0) + ]2®,(3)®,(1)®~(0) 

+ 12®,(2)®{(1)0t(0) + Or4(1)) 

+ 2(®1(4) _~ ®2(4))) .  
(30) 

60O 

mteedy st®t® 
\ ,0 ,  

.e E dene|&~,,2700 kg/m*rn*m 

k=186 d]m-- k 
he50 w/m*m-k lU s 
emimlvl(y= abmor~tlvtty =0 

l l l l  l l l + l l  l l l l l  l l  I l l l l l  I I  I I I I I I I I I  l l l l  I 

0.02 0.03 0.04 0.05 0.06 
R (m)  

Fig. 3 The transient temperature response of annular fins with pure 
convection boundary condition 

6O0 
steody =tote 

~" 450 dens lt~/~=2790 ~/m*m*m 

d/m m ,o g - - - - -  
emlssivlty-,o bsorptivRT-0.8 

400 l l I l I I I l I l I I I I I I I I I l I I I I I I I I J I I I I I I I I I ' 

0.02 0.03 0.04 0.05 0.06 
R (m) 

Fig. 4 The transient temperature response of annular fins with pure 
radiation boundary condition 
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The transient radial thermal and radiation heat transfer 

I 

,,,,10 e 

/ 2 : t - 2 0  a 
I 3 : t - 5 0  s 

f 4 : t -4 .0  s 
5: =teody =tote 
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Radial (m) 

Fig. 6 The transient tangential thermal stresses of annular f in for con- 
vection and radiation heat transfer 

From Eqs. (13)-(30), we may obtain O~(k); i = 0, 1, 2, k = 0, 
1, 2, 3, 4, 5, for each time interval. 

Now, from the inverse Taylor transformation formula (Chen et 
al., 1996), the temperature of the ith node and thejth time interval 
Ou(t) is 

%(t)  = ~ O~j(k), Hi_, _< t -< Hi, (3~) 
k=0 

02)(t) = O2j(k), Hj , _< t --< Hi, (32) 
k=0 

and 

5 

0,j(0) = ~ Oij.~,(k), (33) 
k=0 

5 

0zj(0) = ~ O2j_,(k). (34) 
k=0 

Thermal  Stress Analysis. The stress associated with a radial 
temperature field, T(r,  t), is independent of the axial dimension. 
Also, the temperature is symmetrical about the center. For the thin 
annular disk, the temperature does not vary over the thickness of 
the disk. We may assume that the stress and displacement due to 
the heating also do not vary over the thickness. For thin annular 
disk/fins (W/r~ ~ 1, Fig. 1), it is an axisymmetrically plane stress 
problem (Timoshenko et al., 1970). 

In the absence of body forces, the equation of equilibrium is 

~-fo 

g 
03 

• ~ - 2 0  

~5 
0 (Z t - l O  s 

- - ~  I l l l l l = l l l l l l l l l l l l l l l l l l  I I I I I I I I I I I I I 1  

0,02 0.03 0.04- 0.05 0.06 
Radius (m)  

Fig. 7 The transient radial thermal stresses of annular fin for pure 
convection heat transfer 

do, .(r ,  t) O'r(r, t) - o'o(r, t) 
d-~--;-- + = 0 (35) r 

and the strain-displacement relations are 

d u ( r ,  t) 
er(r, t) - d r  

u(r, t) 
~0(r, t) - 

F 

%o(r,  t) = 0 (36) 

where O'r is the radial stress of the fin, o'0 is the circumferential 
stress, er is the radial strain, Eo is the circumferential strain, %o is 
the shear strain, and u is the radial displacement. 

In this case of plane stress, the applicable equations of stress and 
strain are as follows: 

E 
err(r, t) = ~ _ - ~  (er(r, t) + yea(r ,  t) - (1 + u ) a * * T ( r ,  t)) 

(37) 

E 
O-o(r, t )  - 1 - 112 ( E ° ( r '  t )  -~- ue , , ( r ,  t )  - ( l  + v ) a * * T ( r ,  t ) )  

(38) 

where u is the Poisson's ratio, c~** is the coefficient of linear 
thermal expansion, and E is the modulus of elasticity. 

The equation of equilibrium, Eq. (35) is now 

/ 1: t - l O  / ,-20 : 

-50  
--4.0 

c i n  I : .  3 : t - 5 0  s 
-~"~ I- 1 4 : t - 4 0  = 

~-~o0~U ~ /  5: =teQdy =tote 

3 - f f 0  E /  
- - t 2 o  I~ 

-130 ~ " "J~' '~,=25,==~,==~,=~ 
0.02 0,03 0.04 0.05 0.06 

Radius (m)  

Fig. 8 The transient tangenilal  thermal stresses of annular f in for pure 
convection heat transfer 
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Fig. 9 The transient radial thermal stresses of annular fin for pure 
radiation heat transfer 
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Fig. 10 The transient tangential thermal stresses of annular fin for pure 
radiation heat transfer 

d 
r ~r (Er(r, t) + Ueo(r, t)) + (1 -- v)(~r(r, t) -- Eo(r, t)) 

dT(r, t) 
= (1 + v)c~**r dr (39) 

Introducing Equations (36) into Eq. (39), we obtain 

d2u(r, t) 1 du(r, t) u(r, t) dT(r, t) 
dr 2 + = (1 + v)a** - -  r dr r 2 dr 

which may be written as 

d _1 d(ru(r, t )) .  = ( 1  + v)a** (40) 
dr r dr dr 

Integration of this equation yields 

1 r rT(r, t)dr + clr + --  (41) u(r, t) = (1 + v)a** 7 r 
b 

where rb is the inner radius of the annular fin. 
The stress components are now found by using the solution (41) 

in Eqs. (36) and substituting the results into Eqs. (37)-(38). Then 

~ ( r ,  t) = - c~**g  ~ r ( r ,  t)rdr 

+ ~ c,(1 + v) - c2(1 - v) 7~ (42) 

344 / VOI. 66, ,JUNE 1999 

l£r 
<To(r, t) = a**E T~ T(r, t ) r d r -  a**ET(r,  t) 

b 1) 
+ 1 - ~  Cl(1 + v) +c2(1  - u ) ~  . (43) 

In this article, the constants cl and c2 are determined on the basis 
of the boundary conditions (~r)r~., = 0, and (O'r),-e., = 0. Equation 
(42) thus gives 

(1 - v)a** ("~ 
cl = -~ -_7~ Jr rT(r, t)dr 

T e  - -  r b 

(1 + v)oe**r~ ( "  
c 2 =  72 - _~ Jr  rT(r, t)dr. re -- rb b 

From Eqs. (42), (43), the stresses are therefore 

~rr(r, t) = ~**E - ~  rT(r, t)dr 
h 

+ 2~..s---2 rT(r, t)dr (44) 
r ( r , -  rb) 

b 

( lir ~r0(r, t) = c~**E - T ( r ,  t) + 7 r r ( r ,  t )dr  

r 2 + r ~  f re ) 
+ 277.~- -a rr(r ,  t)dr (45) 

r (r e - rt, ) 
rb 

Now, let St(r, t) = err(r, t)lee**E, S,(r, t) = cro(r, t)/ee**E; 
then, for radius interval [r~, ri = r,, + 8], the two kinds of stress 
distribution are, respectively, given below 

St(r, t) = - ~  rro(r, t)dr 

+ r2(r~ - r~,) rTo(r, t)dr + rTl(r, t)dr , 
rh i 

rb--< r--< r i, (46) 

l frr S,(r, t) = -To(r,  t) + 7 rTo(r, t)dr 
b 

r Z + r ~ f  f[~ ) + r2(r~ - r~) ~rTo(r, t)dr + rr~(r, t)dr , 
rb i 

ro_.~r--<r i. (47) 

The radius interval [ri = rb + & re], and the stress distribution 
are as follows: 

l ( f  f r  ) St(r, t) = -- 7g "'rTo(r, t)dr + rT,(r, t)dr 
r~, r~ 

2 2 + r (r~ - r~) r'rTo(r, t)dr + rTl(r, t)dr , 
rb i 

r i-~ r ~ re, (48) 

T r a n s a c t i o n s  o f  the  A S M E  
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,(f fr ) St(r, t) = - T l ( r ,  t) + ~ r~rTo(r, t )dr  + rTl(r ,  t )dr 
rb 

r~ 

r - rl, "rTo(r, t )dr  + rTl(r ,  t )dr  + 2772-- --2 
r (re - rt,) \ d ,,,, 

r i - < r ~ r e ,  (49) 

where To is the temperature distribution between nodes 0 and 1, 
and T~ is between the nodes 1 and 2. From Eqs. (46)-(49), we may 
obtain the radial and circumferential stress distribution. 

3 Numerical Results and Discussion 
In order to illustrate the foregoing analysis, numerical calcula- 

tions have been carried out. We take the following values, for 
example. 

Material properties: 

t g = 2 7 0 0 k g / m  3, c ~ , = 9 2 5  J/kgK, k =  186W/mK,  

a = 0 . 8 ,  • = 0 . 8 .  

Dimension of annular fin: 

r b = 0.02 m, re = 0.06 m, W = 0.004 m. 

Convection condition: 

h = 50 W/mZK. 

Given temperatures: 

T, ,= 3 0 0 K ,  Te= 3 0 0 K ,  T ~ = 6 0 0  K. 

Time-step interval: 

H j = I  s, t = l s .  

Radiation parameter: 

o" = 5.67 × 10 8 W/m2K 4. 

The different nodes of temperatures after calculation as shown in 
Tables 1, 2, and 3 (7*o: node 0, 7~: node 1, ir~: node 2). The transient 
temperature response for convection-radiation is shown in Fig. 2, pure 
convection in Fig. 3, and pure radiation in Fig. 4. From Eqs. (46)- 
(49), the transient thermal stress for convection and radiation is 
presented in Figs. 5 and 6, pure convection is presented in Figs. 7 and 
8, pure radiation is presented in Figs. 9 and 10. 

It appears that the hybrid method, which combines the Taylor 
transformation and finite difference approximation, is one of the 
most useful methods for solving nonlinear heat transfer equations 
for annular fins with nonlinear boundary conditions. Although the 
temperature distribution solution requires numerical calculations, 
the solution is a closed-form series (See Eqs. (31), (32)). 

4 Conclusions 
We have described the hybrid method for the transient annular 

fin heat transfer problem with homogeneous isotropic material in 
constant thermal properties, and also formulated the transient 
linearly elastic thermal stress distributions for the traction-free 
annular fin. 

From the results of the analysis, it appears that the present 
method is a useful and practical method, and the solutions can 
predict quite accurately the dynamic performance of an annular fin 
in a transient state. 
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A P P E N D I X  
If x(t)  is analytic in the T domain, then the spectrum of x(t)  at 

t = ti in the K domain can be represented as 

r °*x(')l X(k):+(t , ,k)=L ot~ J .... ' V k e g .  (A1) 

If x(t)  can be expressed by the Taylor series, then x(t) can be 
represented as 

~-~ (t - ti) k 
X(t) 2_, ~! X(k) .  (A2) 

k=0 

Table 4 shows the Taylor transformation. The symbol "/V' 
denotes the differential operator, and "*" denotes the convolution 
operation in the K domain. 

The operation properties of Taylor transform are as follows. 
I f f ( t )  and g(t)  are two uncorrelated functions of t, and F(k),  

G(k)  are the corresponding Taylor transformations, respectively, 
then the basic properties of the Taylor transform are shown as 
follows (T denotes Taylor transformation): 

1 Linearity: 

If F(k)  = T[f(t)], G(k) = T[g(t)] ,  and ct and c2 are 
independent of t and k, then T[ct f ( t )  + c2g(t)] = 
ClF(k) + czG(k).  

2 Convolution: 

If z(t) = f ( t )g ( t ) ,  f ( t )  = T- t[F(k)]  and g(t)  = T-r iG(k)]  
then 

Table 4 Operation in K domain 

Spectrum X(k) X(k) = ~. \ Otk ] ,=o 

function x(t) x(t) = E X(k) 
k=O 

Convolution X(k) * Y(k) = ~ X(f )Y(k  - f)  
e=0 

k + l  
Derivative /k × (k) = ~ - -  X(k + 1 ) 
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T[z(t)] = T[f(t)g(t)] 

= F(k)  • C ( k )  

k 

= ~ F(e)C(k - e) 
e=o 

k 

= ~ F(k  - £ ) G ( f )  (A3) 
f = 0  

Therefore, the Taylor transform of fro(t), where m is a positive 
integer, can be obtained as 

z[fm(t)] = F~,(~:) 

= F~%-'(k) * F(k) 

k 

= Z F ~ - l ( e ) F (  k - e). (A4) 
g=0 

3 Derivative: 

I f f ( t )  and its derivatives f ' ( t ) ,  f"(t)  . . . . .  f("/(t) are con- 
tinuous functions for interval [0, H], then 

L - - ~ - - J  = A "F(k) 

(k + 1)(k + 2) . , .  (k + n) 
= H" F(k + n). (a5)  
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Convection Effects for Rapidly 
Moving Mechanical Sources on 
a Half-Space Governed by Fully 
Coupled Thermoelasticity 
The two-dimensional steady-state analysis of  rapidly moving mechanical sources over the 
insulated surface of  a thermoelastic half-space is extended by allowing surface heat 
convection. An exact transform solution based on the fully coupled (dynamic) equations 
of  thermoelasticity is obtained, and robust asymptotic expressions for the surface dis- 
placements and temperature change ate extracted. Convection is manifest in these 
expressions in terms of a positive dimensionless parameter of  small magnitude, and 
results in a surface response that is more complicated than that for the insulated surface. 
In particular, surface temperature changes decay less with distance from the source, and 
convection effects can dominate all surface responses at low and near-critical speeds. 

Introduction 
The study of rapidly moving forces over the surface of an elastic 

half-space sheds light on processes of contact, tribology, and 
impact. Isothermal steady-state analyses can be found in work by 
Cole and Huth (1958) and Georgiadis and Barber (1993). When 
thermal effects are included, analyses generally use un- or partly 
coupled thermoelasticity theory (Boley and Weiner, 1985), mini- 
mize inertial (dynamic) effects, and treat the motion of heat 
sources alone over the surface (e.g., Ling and Mow, 1965; Mow 
and Cheng, 1967; Barber, 1984; Bryant, 1988). 

Brock and Georgiadis (1997), therefore, considered the steady- 
state motion of a line mechanical/heat source over the surface of a 
half-space governed by fully coupled (dynamic) thermoelasticity 
(Blot, 1956; Chadwick, 1960). A two-dimensional plane-strain 
model was assumed, and exact bilateral Laplace transform solu- 
tions obtained. Asymptotic forms of the solutions, valid when the 
distance from the moving line surface source was large in com- 
parison with a thermoelastic characteristic length, were then in- 
verted analytically, and evaluated on the half-space surface. Be- 
cause, however, the length is of order O(10 -4) p~m, the results 
were robust. They showed, in fact, that thermoelastic coupling 
influences the surface displacement and change in temperature, 
especially when source speeds are high. 

However, that work treated an insulated half-space surface, i.e., 
no surface heat flux occurred except at the heat source itself. Such 
models are common, e.g., in contact problems (Brock, 1996a), but 
neglect heat exchange with the medium surrounding the solid. 
Moreover, even if such heat exchange is negligible, manufacturing 
processes give surfaces that may differ in microstructural detail 
(Bayer, 1994) fl'om the material underneath. Such a de facto 
surface layer might not affect the elastic properties of the solid, but 
any surface layer with a significant Biot number can give rise to 
surface heat flux by convection (Boley and Weiner, 1985). 

As a first step, therefore, in examining the effects of surface heat 
convection in the response to dynamic loads of a solid that obeys 
the laws of fully coupled thermoelasticity, this article extends the 
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work of Brock and Georgiadis (1997) by treating the steady-state 
motion of mechanical line sources over a half-space surface which 
now allows a surface heat flux. This effect is represented (Chad- 
wick, 1960; Boley and Weiner, 1985) by a proportionality law 
between the heat flux and the temperature change at surface points. 
To highlight the effect, no heat source is included, and only 
subcritical source speeds are considered. As in the earlier work, 
robust asymptotic expressions for the surface displacements and 
temperature change are obtained. It will be seen that convection 
modifies the solution response observed by Brock and Georgiadis 
(1997). This first-step approach allows a clear comparison of an 
insulated and a convective surface in terms of basic Green's 
function solutions. 

Problem Formulation 
Consider a thermoelastic half-space defined in terms of the 

Cartesian coordinates (x, y, z) as y > 0. The half-space is initially 
at rest at a uniform (absolute) temperature To > 0 when normal 
and tangential line loads of magnitude (P, S) are applied to the 
surface. These loads are then moved across the surface in the 
positive x-direction at a constant subcritical speed v, so that a 
steady-state situation is eventually attained. 

This process is two dimensional, so that z-dependence can be 
ignored, and Fig. 1 used as a schematic representation. As depicted 
there, it is convenient to fix the xy-axes to the sources, i.e., (x, 
y) = 0 always locates them. The boundary conditions for y = 0 
can then be written as 

O0 0 
axy = -S~(x ) ,  O'y = -P ~(x ) ,  Oy hc O. ( l a - c )  

In (1), ~() is the Dirac function, 0 is the change in absolute 
temperature from To, and hc > 0 is a characteristic length (Chad- 
wick, 1960; Boley and Weiner, 1985), while the line loads (P, S) 
have the same meaning in the work by Brock and Georgiadis 
(1997). The convection law (lc) allows hc to characterize either 
the effects of heat exchange with the surrounding medium or, in 
terms of the dimensionless Blot number 

l 
B, = h~-~ (2) 

the effects of heat flux through a de facto effective surface layer, 
where /--here assumed to be of microscale order--is the layer 
thickness. 
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Fig. 1 
space 

p ~__ 

S 

Line sources moving at constant speed on a thermoelastlc half- 

The two-dimensional steady-state problem involves only 0, dis- 
placement components (u~, Uy), and tractions (cry, ~ry, ~ . ) .  
Furthermore, these field quantifies depend only on (x, y), and time 
derivatives in the absolute (inertial) frame reduce to the form 
- vO(  )/Ox. Thus, from Chadwick (1960) and Brock (1996b), the 
governing field equations of fully coupled thermoelasticity for y > 
0 are 

(V2--  m2c20~2)(Ux, bty) 

+ Ox' [(m - 1 ) A + x  0 ] = 0  (3a) 

h V 2 0 + C o x  0 A = 0  (3b) 
X 

1 Oux Ouy 
~ crx' = ~ y  + O--~- ' 

{ Ou~ Ouy i i /~(~rx,~y)=(m 2 - 2 ) A  + X 0 + 2 ~ - ~ x , - ~ y ]  . (3c) 

In (3), (V 2, A) are the two-dimensional Laplacian and dilatation, 
and 

X = X o ( 4 - 3 m 2 ) ,  e = - -  , h -  
C~, p~mc v ' 

v d v 
m = - - ,  c = - -  (4) 

Dr ~d 

where (Xo, c~, k, tz) are the thermal expansion, coefficient, 
specific heat, thermal conductivity, and shear modulus. The pa- 
rameters (v ,  va) are the rotational and isothermal dilatational 
wave speeds while (e, h) are the dimensionless thermoelastic 
coupling constant and therrnoelastic characteristic length. It can be 
shown (Chadwick, 1960; Brock, 1992) that for many materials 

e ~ O ( 1 0 - 2 ) ,  h ~ O ( 1 0 - 4 ) ~ m ,  m >  ,f2. (5) 

In addition, we expect (Crx, ~y, ~,~., 0) to vanish as 
~ ~, y > 0, and for these fields to be nonsingular 

everywhere except perhaps at y = 0, x = 0. 
At this point we define subcritical source speed to be that which 

does not exceed v~, i.e., 0 < c < 1/m. 

E x a c t  T r a n s f o r m  S o l u t i o n  

To consider this problem, the bilateral Laplace transform oper- 
ator pair (van der Pol and Bremmer, 1950) 

g* = L(g) = f ~ g(x)e-e~dx, 

,f g(x) = L l (g , )  = ~ /  g.eP~dp (6a,b) 

is introduced, where p is generally complex and integration in (6b) 
is along the Bromwich contour. Application of (6a) to (3) in view 
of the boundedness conditions noted above gives the transform 
solution set 

0* 

1 • 

1 j[A+e y 1 o9+ o9_ 0 A e -~-y (7a) 
- K p  - K p  - 2  Be-~Y 

- 1  - 1  - p  -ol_A_e " y 
03+ O9- 0 
- 2  - 2  Kp - ~Be-t~y 

(7b) 
for y > 0. Here the coefficients (A +, B) are as yet undetermined 
functions of p, while 

m 2 

w . = - - ( 1  - c 2 -  a~) (8a) 
X 

am= 1 + p  ('r+ + ,r._) z, b =  ~jl - mac ~, 

K =  mac 2 - 2  (8b) 

_ =- - + ~,  o9+o9_ x2ph (8c) 

where branch cuts must be chosen so that Re(a+,/3) --> 0 in the cut 
complex p-plane. 

Operation on (1) with (6a) and use of (7) then gives the equa- 
tions necessary to find 

+ 1 
i.zpR,A+ = o9 ( oz_ ~ )  (2/3S - KpP) (9a) 

t-zpR~A-=o9+(o~+ + h c ) ( K p P - 2 / 3 S )  (9b) 

Izp ~ B = w+ ~+ + (KpS + 2o~ P) 

- o9_ a_ + (KpS + 2c~+P) (9c) 

where R~ is the thermoelastic Rayleigh function defined by 

R+ = 4a~/3 + K2p 2. (10) 

It should be noted that letting hc ~ ~ in (9) gives forms that, 
appropriately, agree with those obtained by Brock and Georgiadis 
(1997) for the insulated surface case. 

With (7)-(10) available, the problem solution is complete, and 
inversion of (7) can be performed by means of (6b). As noted at the 
outset, however, the inversion process will be carried out for 
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robust asymptotic forms of (7)-(10), and the results evaluated on 
the half-space surface y = 0. This will result in more tractable 
expressions and, more importantly, allow a direct comparison with 
the results of Brock and Georgiadis (1997) in order to discern the 
effects of convection. 

Development of Asymptotic Forms 
Brock and Georgiadis (1997) used the fact (van der Pol and 

Bremmer, 1950) that the asymptotic form of a bilateral Laplace 
transform valid for small [hp] gives an inversion that is valid for 
large Ix/hi. The results were solutions in the form of analytic 
functions that were, as demonstrated by the behavior of h in (5), in 
fact, robust. The same basic approach is adopted here: When y = 
0, (7) and (9) show that the expressions for (u~, u~, 0") are 
essentially ratios of functions of p, where R, is the common 
denominator. Expansion of each numerator and R, as Taylor series 
in the dimensionless variable hp, where [hp[ ~ 1, produces the 
asymptotic forms 

R 1( 
tX h U~= h ~  NP - m2cZbS h~.p ] 

× ) 

2Abce P ~ -I/2) 
+ (1 + e) 2hpD h ~  + O(IhPl ( l l a )  

h u y - h ~  NS+m2c2aP 

x 1 +  

Ace 1 [ + 

+ O(Ihpl ,/2) ( l l b )  

m2c2e 1 ( i - h p l  
t~RO*-x(1 +e)  D K P - 2 b S  ~ / +O(Ihpl ) ( l l c )  

whose inversions will be valid for y = 0, Ix~hi ~> 1. In (11) the 
dimensionless quantifies (A, R, N, a) and the transform function 
D are given by 

h ~/ c 2 
A = / ~ ,  a =  1 1 + e '  

R = 4ab - K 2, N = 2ab + K (12a) 

h 1 4hbcE 
D =  1 + c c ~ + e ) - - ~ p + ( l  + e ) 2 R  h ~  (12b) 

where A is the dimensionless convection parameter, the positive 
real constant a is a manifestation of the asymptotic thermoelastic 
(adiabatic) dilatational wave speed va~/1 + e, and R = R(c) is 
the asymptotic thermoelastic Rayleigh function. It can be shown 
(Brock, 1997) that R has zeros at c = (0, ±ce) in the cut c-plane, 
where 0 < ce < 1/m. The zero ce, which is the asymptotic 
thermoelastic Rayleigh speed nondimensionalized with respect to 
v,~, can be obtained as 

1 +e  m2Go ' 

l ( ,/;+~ ~dt  
In Go = - / 

~" --l/m t 
(13a) 

4 @  + e - t 2 , ~  2 -  1 
= tan-l  ~ + e (m2t 2 - 2) 2 (13b) 

To avoid singular behavior, we now define, finally, the subcriti- 
cal range of source speeds to be 

0 < c < cR. (14) 

The forms of (11) demonstrate that, despite the Taylor series 
expansions in hp, the existence of two characteristic lengths (h, 
h~) allows in effect two sets of lowest=order terms that differ by 
O(ihp],12). In the insulated surface limit (h~ ~ w, A --~ 0), the 
lower of these two orders disappears. 

Transform Inversions 
In view of (8a), (11) and the requirements on (a+,/3) in the cut 

p-plane, the radicals (V~p, V~-p)  must exhibit branch cuts along, 
respectively, the lines Im(p) = 0, Re(p) < 0 and Ira(p) = 0, 
Re(p) > 0. Because D = 1 in the insulated surface limit, it is 
worthwhile to obtain the inverses of (11) as convolutions of the 
inverses of (1/D, 1/hpD) with those terms that multiply them. A 
glance at (11) indicates that these factors are of the four types 

1 1 
l ,  (15) 

Substitution of each element of (15) into (6b) and use of Cauchy 
theory to simplify the resulting integrations leads to, respectively, 
the inversions 

1 H(x) H ( - x )  
8(x), 7r~' , ~ '  ~ (16) 

where H( ) is the Heaviside function. In view of (16); the inversion 
of ( l la ) ,  for example, takes the form 

R [ 
~ u x= NPG(x) + m2c2bS 

2Abce ] 1 ~ G(t) 
(1 + E) 2 P --~r t - x d t  

A [ fx ~ G(t)dt 
+ c ( l ~  NP , f ~ f ~ - x )  

f * G(t)dt 
- m2cZbS -~ , f ~ t )  (17) 

where f denotes Cauchy principal value integration and 

= 1 1 

A direct substitution of (18) into (6b) and use of the Im(p)-axis 
as the Bromwich contour yields the formal result 

f0 " 
1 ~ e 'q*dq 

hG(x) = -- Im ,,KS(q)' 

i4Abce ] )re i~/4 
S(q) = 1 ( 1 + ~  ~-Rj "fq + , ]~1 + e) (19) 

where q is real. Assuming that the order of the (q, t)-integrations 
in (17) can be interchanged, use of Caucby theory and standard 
tables (Gradshteyn and Ryzhik, 1980) gives the relations 
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~ eiqtdt _ iqreiqX 
t - - x  

(20a) L ~ e u 

(24b) 

f 
x ~ e iqtdt _ 

- t ~  ~ ei(qx+Or/4))' 

f x eiqtdt ~ ei(qx-('rr/4)) (20b) 

In view of (19) and (20), each of the terms in (17) can be written 
as real integrals with respect to q. Because S(q) has no zeros in the 
cut q-plane, these integrals can be simplified by use of the Cauchy 
theory. Upon introducing the dimensionless variables 

x P S 
~=h' f=Th' ~=~--h' (21) 

it can then be shown, finally, that (17) and its counterparts for (Uy, 
0) give the forms 

1r ~ u~ = Nfg(~) + m2c2bS 
2hbcE ] 

(l + ~)2 P g~(~) 

A 
× ~ [Nfg+(~) - m2c2bS;g-(~)] (22a) 

g-(~)] = ~ fn ~ 1,~S_- e " [g+(~), 

I X l, (1 + E) 2R ~ du (24c) 

govern, where in the integrands we have 

S+ = ( 1 - T - ~ R J  u + , f~+  x c ( l ~ j  ( ~ >  o) (25a) 

[ 4bcEx/u ~ ]2 
S = u + h  2 (1 + e ) a  R ~ j  ( ~ < 0 ) .  (25b) 

It should be noted that (12a) exhibits the behavior 

( ')  c-->0: R ~ 2  m 2 -  c 2 (26a) 
l + e  

c~c,~: R ~ 2m4C~GR(CR-- C), 

2 ( ~/TW~ t~dt 
l n G R = ~ J  t 2 _ c 2  (26b) 

1 tm 

R [ 1 ~ r ~ u y =  L( 1 + e ) 2 ( K + 2 b ) - N  fg(~)  

[ 2Xbc, ] 
+ m2c2ap + (1 + e) - - - - - - ~  ~ gp(£) 

X 
[NSg+(~) + m2cZaPg-(£)] (22b) 

m2C2E 
~.RO - x ( 1  + ) [Kff(~) + 2bNL(O] (22c) 

for y = 0, I~1 >> 1. When ~ > 0 the dimensionless functions in 
(22) are given by 

If(g)' g(~)] - (1 + e)2R J0 ~ -  , 1 du (23a) 

f0" ( _ _ h  ~ )  e - " [ ~  ] _ ~  ~p(~), gp(~)] = 1 + ~ , 1 du 

(23b) 

f0 ~ 1 - e -"  [g+({~)' g-(~)] = "f~ .fuS+ 

[ 4,,c, , 
× (1 +E) 2R' 1 + ~ du 

while for ~ < 0 the forms 

fo e-" ( 4bcE 
If(g), g(~)] = ,k -~ -  (1 + e)ZR 

(23c) 

 ,4a> 
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where (cR, ~ )  are given in (13). In view of this result and 
(22)-(25), it can be shown that (ux, uy, 0) become unbounded at 
line surface source speeds near the critical (Rayleigh) value. 

Effects of  Convection 
The Eqs. (22) correspond to the formulas numbered as (36)-(38) 

in the paper by Brock and Georgiadis (1997) when their heat flux 
term Q = 0. The latter results are in terms of analytic functions, 
while (22) involve simple quadratures. Despite the differing for- 
mats, the present results (22) show clearly the contributions due to 
convection. Indeed, appearance of the convection parameter A in 
both (22) and the expressions (23) and (24) indicates that convec- 
tion is manifest, for y = 0, Ix~hi >> 1 at least, both as first and 
second-order effects. 

In view of (5) and (12a) it is reasonable to assume that h < 1. 
This assumption allows a more direct comparison of (22) and the 
results of Brock and Georgiadis (1997): By manipulating the 
numerators of the integrands in (23) and (24), expansions to the 
first order in h can be obtained that do not exhibit the denominator 
terms S+. Such expansions can be integrated exactly, and the 
results are that, for y = O, Ix~hi >> i(A < 1), 

R N_ 
ux = ~ Psgn(~) 

[ 2 X c E K ]  m2c2b S + -- f in I l l  + O(A-z) (27a) 
'rr (1 + e) 2 R 

1 guy= -U~+ (1 + e)------if sgn(~) 

m2c 2 [ 2Ace bK 1 + - -  -ap t  + - -  S ln]~l + O(h 2) (27b) ~r (1 + ~)2 R 

R O  - B 

2Ace K I 1 m2cZE 2b ~ + f 
x(1 + ~) × xPs(~) - ~ (1 + ~)2 R 

~ ,  [ H ( 0 _  Kf H(-~)] 
+ (i + E)-------- ~ _ 2 b S - / ~  - - ~ j  + O(A'). (27c) 
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When A = 0, (27) agrees with the results of Brock and Georgiadis 
(1997), save that the S-terms in their formulas (36) and (38) 
exhibit, through typographical error, the wrong sign. In (27), the 
result 2H(~) = 1 + sgn (~) has been used, and it is noted that 
(27a, b) are correct only to within an arbitrary rigid-body motion. 

The expressions (27a, b) also show that convection does not 
alter the functional response of the surface displacements, but does 
couple the moving source components (P, S) more fully into that 
response. Equation (27c) for the temperature change induced on 
the surface, however, indicates that the nature of the functional 
response is altered. In particular, the last two terms in (27c), which 
are convection effects, show less decay at large distances from the 
moving line surface source. That is, allowing convection produces 
a temperature change field that is more prominent far from the 
source than for an insulated surface. Equation (27c) also shows, 
however, that this effect depends on the loading and whether or not 
an observer is located ahead or in the wake of the moving source. 

It is seen that the convection parameter A in (27) always forms 
the product AE. This demonstrates that, to the first order, convec- 
tion effects are proportional to thermoelastic coupling and, because 

~ 1 and (5) holds, suggests that the effects are small. However, 
(26) and the coefficients of the In Ill-terms in (27a, b) and the 
1/~-term in (27c) demonstrate that the effects can actually domi- 
nate solution response at low (c ~ 0) and nearly critical (c ~ CR) 
source speeds. 

Some Closing Comments 
This study extended the work of Brock and Georgiadis (1997) on 

rapidly moving sources over the insulated surface of a thermoelastic 
half-space by allowing, surface heat convection. An exact transform 
solution for the associated two-dimensional steady-state problem 
based on the fully coupled (dynamic) equations of thermoelasticity 
was obtained and, following the procedure of the earlier work, robust 
asymptotic forms extracted. Inversion of these forms for the displace- 
ments and temperature change engendered on the half-space surface 
gave expressions as simple quadratures. 

Comparison of these with corresponding results by Brock and 
Georgiadis (1997) indicated that convection is manifest in terms of a 
positive dimensionless parameter that can reasonably be taken as 
much less than unity, and that it results in a more complicated surface 
response. A first-order expansion of the expressions in terms of this 
convection parameter produced analytic results that, upon comparison 
with those of Brock and Georgiadis (1997), showed that the convec- 
tion effects are proportional to the well-known (Chadwick, 1960) 
thermoelastic coupling constant, and more fully couple the compo- 
nents of the applied surface line loads into the solution response. More 
importantly, convection effects produce a surface temperature change 
that decays tess rapidly with distance from the moving loads than in 
the insulated surface case. The small magnitudes of the radiation 
parameter and coupling constant suggested that the convection effects 
may numerically be small. However, it was found that at both low and 
nearly critical line load speeds, the effects can actually dominate 
solution response. 

As noted at the outset, the Biot number given in (2) is a 
characterization of surface convection due to an effective surface 
layer. Clearly, the model used here of a layer which does not affect 
elastic properties of the solid requires a small effective layer 
thickness l, while some conclusions about convection effects were 
drawn on the basis of the dimensionless convection parameter A 

being small. If, for example, l ~ O(10 -~) ~m and A ~ O(10-2), 
then (2), (5), and (12a) lead to the result that Bi ~ O(10), which 
is a typical (Boley and Weiner, 1985) value. 

Brock and Georgiadis (1997) considered a combined mechanical/ 
heat source, and super-critical source speeds, while the present first- 
step analysis, in order to focus on convection effects, treated only line 
forces, i.e., mechanical loads, and subcritical source speeds. Work is 
proceeding which will extend the present results to the more general 
cases. Moreover, studies that illustrate surface convection effects in 
the mechanical treatment of surfaces and in fracture are under way. 
While the problem treated here exhibited unmixed boundary condi- 
tions, the studies under way involve both mixed thermal and mechan- 
ical boundary conditions. Nevertheless, their Green's function solu- 
tion nature make the present results useful in formulating the newer 
problems, and the comparisons made here with the insulated results of 
Brock and Georgiadis (1997) demonstrate that convection effects 
should indeed be noticeable. 
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Local and Global Bifurcation 
Analyses of a Spatial Cable 
Elastica 
This paper fi)cuses on a boundary value problem governing the equilibrium of a slender 
cable subject to thrust, torsion, and gravity. In the absence of field (gravity) loading, this 
boundary value problem is integrable and admits periodic solutions describing planar 
and spatial equilibrium forms. A bifurcation analysis of the integrable problem reveals the 
conditions controlling local stability of periodic solutions and the existence of two limiting 
(bounding) homoclinie solutions. The addition of field (gravity) loading renders the 
boundary value problem nonintegrable. This effect is first investigated through perturba- 
tion of the limiting homoclinic solutions for weak gravity loading. Approximate existence 
conditions for aperiodic and spatially complex forms are determined using Melnikov's 
method. The effect of field loading is then re-evaluated through numerical solution of tile 
original problem. Spatially complex solutions are determined that might mimic the loops 
and tangles sometimes found in underwater cables. 

1 Introduction 

A large variety of biological, chemical, and structural systems 
may be described by the mechanics of rod elements. Here, the term 
rod follows that used by Antman (1972), and describes a one- 
dimensional solid whose deformation depends on time and a single 
spatial variable. A comprehensive review of rational rod theories is 
described in Antman (1972, 1995) including the original contri- 
butions by Clebsch and Kirchhoff. Their efforts led to the 'clas- 
sical' rod theory (Love, 1944) in which the three-dimensional 
deformation of a rod is described by the differential geometry of a 
space curve with superimposed twist. As reviewed below, the 
classical theory has enjoyed substantial utility in diverse applica- 
tions ranging from the fields of structural mechanics to biochem- 
istry. As discussed by Antman (1972), such "technical" theories 
form special cases of more general theories for one-dimensional 
continua. More general, higher-order theories have subsequently 
followed from modern treatments of the subject (see, for example, 
Green et al., 1967; Green and Naghdi, 1970; Antman, 1972; Green 
et al., 1974, Coleman et al., 1993; Rubin, t996). 

Of primary interest here are the potentially complex deforma- 
tions realized by rod-like elements under steady loading condi- 
tions. Within the field of structural mechanics, such deformations 
may characterize the response of slender structural elements such 
as pipelines and marine risers (Bernitsas, 1982) and mechanical 
(Zajac, 1962) and electromechanical (Liu, 1975) cables. The 
curved and three-dimensional geometries realized in these struc- 
tures may bear remarkable similarity to those observed in certain 
biological tissues. Consider, for example, the spiralling collagen 
bundles forming tendons (Woo and Buckwalter, 1988) and super- 
helical DNA molecules which, following Benhan (1987, 1989), 
may be modeled as hyperelastic symmetric rods. The use of 
Kirchhoff's theory of elastic rods has recently been employed to 
investigate the structure of looped DNA segments (Coleman et al., 
1994, Tobias et al., 1995). The complex writhing forms of DNA 
molecules also motivated a recent study by (Thompson and 
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Champneys, 1996) who note that such forms follow from a dy- 
namic jump from spatially localized forms. Spatially complex 
forms may also characterize the response of marine cables and 
particularly under low-tension conditions. Low-tension conditions 
naturally arise in cable laying operations where the tension is 
reduced as the cable is supported by the sea bed. Prior analysis of 
cable laying (e.g., submarine cables, instrumentation cables and 
fiber optic cables) have focused on how loops (often referred to as 
"hockles") form under low tension; refer to (Zajac, 1962; 
Rosentbal, 1976; Yubata, 1984, Coyne, 1990; Tan and Witz, 1993; 
Lu and Perkins, 1994). Recent experiments by Welch and Tulin 
(1995) suggest that spatially complex forms are created for rapid 
cable payout rates. 

Models of low-tension cables have been proposed starting with 
the classical theory of the elastica. The "kinetic analogy" between 
the temporal response of the classical pendulum and the (static) 
spatial response of the elastica was known to Kirchhoff in 1859 
(see Love, 1944). Recognizing this, global/local bifurcation tech- 
niques developed for time-dependent ordinary differential equa- 
tions (Guckenheimer and Holmes, 1983; Ioos and Joseph, 1980; 
Wiggins, 1992) may also be brought to bear in evaluating the 
spatial bifurcations of the elastica. To this end, Mielke and Holmes 
(1988) determined the existence of spatially chaotic planar equi- 
librium states for nonlinear hyperelastic rods using Melnikov's 
method. This analytical study is complemented by numerical in- 
vestigations of spatial chaos and localization phenomena of (lin- 
early) elastic rods undergoing large deformations (Thompson and 
Virgin, 1988). Further numerical studies include chaotic soliton 
models of elastic chains (El Naschie and Kapitaniak, 1990) and 
spatial chaos forming in long elasticas having (spatially) periodic 
changes in cross section (Davies and Moon, 1993). Recently 
Champneys and Thompson (1996) demonstrated that the loss of 
integrability of an infinitely long noncircular rod subject to end 
tension and moment implies a multiplicity of localized buckling 
modes. These studies have important implications for the study of 
marine cable hockling for which only periodic solution forms have 
been analyzed to date. 

The purpose of this paper is to extend prior analyses of cable 
hockling to include spatially complex forms that may also be three 
dimensional. The existence of spatially complex forms is already 
known from the limiting case of planar deformations (Mielke and 
Holmes, 1988). For marine cable applications, the addition of 
torsion may very well lead to three-dimensional solutions exhib- 
iting spatial complexity. These complex forms may provide further 
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insight into the loading required to induce marine cable hockling 
and tangling. 

This manuscript is organized as follows. Section 2 reviews the 
equilibrium boundary value problem of Lu and Perkins (1994) 
which governs the globally large static response of a cable subject 
to boundary and field loading. Section 3 examines an integrable 
form of the boundary value problem describing a cable subjected 
to uniaxial torque (m0) and thrust (f0). Analysis of this unper- 
turbed problem reveals the bifurcation structure governing planar 
and spatial periodic solution forms. Evaluation of the fixed points 
of the spatial system for this integrable case further reveals coex- 
isting elliptic and (hyperbolic) saddle solutions for various com- 
binations of boundary loads described by the torque/thrust pair 
(m0, f0). Two linfiting cases are identified which are governed by 
a homoclinic bifurcation: (1) a planar system (m0 = 0), and (2) a 
spatial system where the geometric torsion is proportional to half 
the internal torque. Section 4 considers a nonintegrable form of the 
boundary value problem realized through the addition of (small) 
field loading as an approximation to the cable weight. Approxi- 
mate existence conditions for aperiodic and spatially complex 
forms for the perturbed problem are determined via Melnikov's 
method. Numerical solutions of the original boundary value prob- 
lem with field loading are presented in Section 5 and support the 
analytical findings of Section 4. 

2 Equilibrium Boundary Value Problem 
We start with the (nondimensional) equilibrium boundary value 

problem derived in Lu and Perkins (1994) which describes the 
two-axis flexure and torsion of a slender cable of circular cross 
section employing classical Kirchhoff assumptions for rod defor- 
mation. The resulting equilibrium equations, describing globally 
large three-dimensional equilibrium forms, govern the principle 
curvature K(S) and geometric torsion r(s) of the cable centerline as 
well as the resultant cable tension p ( s )  and internal torque h(s): 

pr = _ _ K K  ¢ __ ~ , ~1 

~" = (p + r 2 -- h r ) K  + q"  t2 

t~r' = ( K h ) '  - 2K '  r + ~" 13 

h' = o. (1) 

Here, (') denotes differentiation with respect to the independent arc 
length variable s measured along the equilibrium cable centerline, 
g/denotes any steady external force/length and ([L, [2, /3) denote 
the Serret-Frenet triad defined by the equilibrium centerline; refer 
to Fig. 1. The relationship between the Serret-Frenet triad and the 
Cartesian triad (~ ,  ~2, ~3) of Fig. 1 is determined via the Euler 
angle transformation matrix (cf. Greenwood, 1988). 

where 

[D] = 
cqJcO -stocO sO 

stoc4) + ctosOs4) ctoc4)- stosOs4) -cOs4) 
stos4)- ctosOc4) ctos4) + stosOc4) c0c4) 

(3) 

and c and s denote sine and cosine, respectively, of the Euler 
angles defined in Fig. 1. 

Two forms of the equilibrium boundary value problem are 
subsequently evaluated. The first of these is the integrable form for 
which ~ = 0 which defines the unperturbed problem of Section 3. 
The second of these is the nonintegrable form for which ~ ~ 0 
which defines the perturbed problem of Section 4. The perturbation 
considered represents the addition of cable self-weight, thus 

J 

Fig. 1 Definition sketches 

p g A L  
~t = - 7 ~ 2 ,  Y - E l ~ L 2  (4) 

where y represents the cable weight/length (refer to Appendix A 
for nondimensional scaling). 

2.1 Equilibrium for Three-Dimensional (Spatial) Forms. 
We recast the equilibrium Eqs. (1) with (2) and (4) in state-space 
form: 

p '  = --K/.~ + "Ygl(to, 0, 4)) 

Kr = ~  

/z' = (p + r 2 - hr)K - 3~g2(to, 0, 4)) 

g3(to, 0, 4)) 
K K 

where ,~ is the constant internal torque (h'  = 0 in (1)) and 

gt = - s i n  to cos 0 

(5) 

g~ = cos to cos 4) - sin to sin 0 sin 4) 

g3 = COS t o sin 4) + sin to sin 0 cos 4) (6) 

are the components of 02 resolved along the Serret-Frenet triad. 
We complete the state-space formulation with the Euler angle 

evolution equations (Greenwood, 1988): 

q/ = - K  cos 4) sec 0 

0' = -~¢ sin 4) 
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45' = -7" + K cos 45 tan 0. (7) 

The boundary conditions considered here are those considered 
by Rosenthal (1976) and Lu and Perkins (1994) and describe the 
response of a cable subject to uniaxial torque mo and thrust fu 
directed along the El-axis in Fig. 1. From Lu and Perkins (1994), 
the boundary conditions at s = 0 are 

K(0) = m0 sin to(0), IX(0) = 0 

p(0) = f0 cos to(0), ~'(0) = m0 cos to(0) - f o / m o  (8) 

from which the constant internal torque becomes h = h(0) = m0 
cos to(0). The same boundary conditions hold at s = 1 by sym- 
metry. 

2.2 Equil ibrium for Two-Dimensional  (Planar) Forms. 
Planar forms result from the special case of • = 0 (vanishing 
geometric torsion) and 0' = 45' = 0. Consequently, 0 and 45 are 
constants and to is related to the principle curvature through to' = 
-K.  Thus, (5)-(7) reduce to 

p' = -KIx - y sin t~ 

K P = I x  

IX' = p K +  T c o s t  o 

to' = - u .  (9) 

The boundary conditions at s = 0 for the planar forms (~- = 
h = 0) are 

K(0) = 0, p(0)  = f0  cos to(0). (10) 

3 S o l u t i o n s  o f  the  U n p e r t u r b e d  S y s t e m  

In the absence of domain loading, (7 = 0), the system (5) can be 
integrated (incorporating boundary conditions) and reduced to a 
second-order equation governing the curvature re(s) (see Lu and 
Perkins, 1994, Eq. (14) or Coleman et al., 1993, Eq. (4.9)). 
Following Lu and Perkins (1994), this is achieved by 

(i) integration of p '  = --KK' to yield p = - K z / 2  + dl 
where d~ = p(0) + K2(0)/2; 

(ii) multiplication of K~-' = K'(h - 2~') by K and integration 
to yield 7" = h/2 + d2/e: 2 where dz = K2(0)[T(0) -- 
,~/2] ; and 

(iii) substitution o f p  and 7" into K" = (p + 1-2 - hT")K. 

Thus, the integrable structure of the unperturbed boundary value 
problem is revealed to be that of a nonlinear autonomous Hamil- 
tonian system: 

OH 
s:' = / x -  OIX 

I x ' = -  - ~ ' ~  U - 

where 

(11) 

Ix2 b~4 O{/(2 /3 (12) 
H(t~, IX) = ~ - +  8 2 F- 2K 2 

and (a,/3) are parameters obtained from the boundary conditions 
defined by the uniaxial torque/thrust pair (fo, mo) 

c~ = p ( 0 )  + - 5 - -  - (13) 

and 

/3 = 7"(0) -- K4(0 )  -~ 0. (14)  

Note that for/3 = 0, the system returns the (spatial form of the) 
classical Hamiltonian Duffing equation that has either a unique 
center (at the origin of the IX-K phase plane) for a <- 0 or a saddle 
at the origin coexisting with a center at (K, IX) = ((2a) ~/2, O) for 
a > 0. Two limiting forms lead to the Duffing equation: (i) all 
planar forms (for which the torque m0 = 0), and (ii) a special 
spatial form for which ~-(0) = h/2.  In either of these limits, 
(11)-(12) reduces to 

bC 3 

s:" - aK + 5 - =  0 (15) 

where the parameter a for either planar or spatial forms is obtained 
from (13). For the planar forms, K(0) = to(l) = 0 and 7.(s) = 0. 
Consequently, 

a = p(0)  = fo cos to(0). (16) 

For the limiting spatial for_m, IX(0) = Ix(l) = 0, ¢(s) = ,~/2, and 
= 2fo/mo. Recall that h = mo cos to(0). Thus, cos qt(0) = 

2fo/m~ and from (8), p(0) = 2(fo/mo) 2. Consequently, the initial 
curvature is K(0) = mo sin to(O) = (too 2 - (2fo/mo)2) 1/2 and 

c~ = + 2 - > 0. (17) 

We consider further these two 
form periodic solutions and an 
serves as a lower bound to the 
the limiting spatial form. 

2 

limiting forms and provide closed- 
associated homoclinic solution that 
planar form and an upper bound to 

3.1 Planar Forms. The solution of (15) with c~ from (16) is 
found in terms of the following Jacobi elliptic function 

K(s) = Kmcn[K(1 - 2s)], t% = 4 ~ K  (18) 

where m and K = K(m) are the parameter and quarter-period of 
the Jacobi elliptic function (Abramowitz and Stegun, 1970). Con- 
sequently, the derivative of the curvature (/x(s)) can be determined 
as well as the internal axial force p(s)  = i.z'(s)/•(s) employing 
(9). The value of the parameter a (and corresponding applied 
thrustfo) can be determined from p(0) or by integrating K(s) from 
K(0) = 0 to K(½) = K,,. Thus, 

a = 4(2m - 1)K 2, f0 = 4K2. (19) 

Note that apriori knowledge of IX(0) enables solution of (15) as an 
initial value problem as opposed to the boundary value problem 
evaluated by numerical shooting in previous studies (cf. Rosenthal, 
1976). 

/x(0) = 8[m(1 - m)] 1'2K2. (20) 

The Ix-to phase plane of (15) with a (19) and initial conditions 
K(0) = 0 and IX(O) (20) is illustrated in Fig. 2 (for m = 0.99:f0 = 
54.63). Note that above the bifurcation threshold c~ = 0 (corre- 
sponding to m = ½), the planar solutions are bounded from below 
(m ~ 1) by the homoclinic solution (separatrix) of (15). 

Integration of K(s) enables the determination of to(s) for later 
use in the perturbed problem of Section 4; namely, 

to(s) = 2 cos- l{dn[K(1 - 2s)]}. (21) 

We define the projection of the tangent (t~) at midspan (s = ½) 
onto the loading axis (El) as cd = (lj • Ej)l/2 = cos to(½) cos 0(½) 
as illustrated in Fig. 1, and note that for planar forms ca = 1. Thus, 
using the value of cos q,(½) = 1 from (21) results in cos 0(½) = 1. 
However, the angles O(s) and 45(s) are constant for the planar 
forms with their values determined by (7) from cos 0 (s) = 1 and 
cos ,b(s) = 1. 
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F i g .  2 Phase plane for unperturbed planar solution ( f o  = 5 4 . 6 3 1 ,  m 0  = O) 

Substitution of the curvature and its derivative into the Hamil- 
tonian energy function yields the following relationship: 

E= 0 
Note that E = 

(ij~ 2 K 4 K 2) 
+ ~ -  - a ~ ds  = 32m(1 - m)K 4. (22) 

/z2(0)/2. Consequently, solution stability can be 
determined by calculation of extreme values in the /z(0)-f0 pa- 
rameter plane. Furthermore, as f0 increases monotonically with m, 
we differentiate /z(0) with respect to m (cf. Lawden, 1989 for 
d K / d m )  and determine that /x(0) achieves a maxima for the 
following criterion: 

d/x(0) 8K 
- ( 2 E  - K) = 0 (23) 

d m  x/1 - m 

Solving E ( m * ) / K ( m * )  = 2 for m* results in m* ~ 0.82611, 
which provides an upper bound for the system energy correspond- 
ing to a critical thrust va luef  *0 = 4K2(rn *) ~ 21.549. This result 
coincides with the stability findings obtained using variational 
(Maddocks, 1984) and numerical (Lu and Perkins, 1994) methods 
and describes a configuration where the two ends of the cable 
meet; that is d = 0, where d denotes the separation of the ends as 
depicted in Fig. 1. 

3.2 L i m i t i n g  Spat ia l  Form (~ = hi2). The solution of (15) 
with c~ from (17) for ~(0) = /z(1) = 0 is found in terms of the 
following Jacobi elliptic function: 

K(s) = K o n d ( 2 K s ) ,  K0 = 4 x/l - mK. (24) 

As before, the derivative of the curvature (/z), the internal axial 
force (p),  and the geometric torsion (T) can again be determined. 
The value of the parameter o~ and corresponding applied thrust f0 
and torque mo are determined by integrating K(s) from ~(0) = Ko 
to K(½) = K,,, which yields 

~ x = 4 ( 2 - m ) K  2, f 0 =  8x/mK 2, m 0 = 4 K .  (25) 

The equilibrium problem (15) can again be solved as an initial 
value problem with K(0) = K0 and /z(0) = 0. This solution 
coincides with the stability limit for periodic spatial forms found 
by Lu and Perkins (1994). The stability limit describes spatial 
forms for which the tangent at the midspan is orthogonal to the 
loading axis; i.e., c,t = ([, ' E 0 m  = cos tp(½) cos 0(½) = 0. 
Moreover, this stability limit is asymptotic to fo = mo2/2. The 
phase plane of (15) with c~ (25) and initial conditions K(0) = ~0 
and tz(0) is illustrated in Fig. 3. Note that the spatial solutions are 

bounded from above (m ~ 1) by the homoclinic solution (sepa- 
ratrix) of (15). 

The Euler angles for the spatial forms can not be determined 
explicitly but are determined implicitly as follows. Observe that 
the solution 45(s) to (7) (for I" = h / 2 )  may be decomposed as 

t~ 
45(s) = 45L(s) + 45N(S), 45L(S) = -- ~ S + B (26) 

with 

45~v(s) = K cos 45 tan 0. (27) 

Consequently, 0 (s) and qKs) are obtained as functions of K and 
45~: 

and 

,( 45;  
O(s) = tan \ K c o s 4 5 /  (28) 

f0 s q4s) = - ,/(K cos 45)2 + (6~)2ds.  (29) 

The arbitrary constant B in (26) can then be determined using the 
condition c,~ = cos ~b(½) cos 0(½) = 0. In order to determine 45~, 
we differentiate 0 from (28) and equate the resulting expression 
with the second Euler angle Eq. (7), namely 0' = - K  sin 45. The 
result is the nonlinear second-order differential equation for 45~: 

45~ + (2 tan 45)(45~,)2 _ tan 45 + ~ 45N 

+ K 2 s i n 4 5 c o s 4 5 = 0  (30) 

where h = 4 ~ / m K  and 45 = 45L + 45s with 45L given by (26). 
As with the planar limit, substitution of the curvature and its 

derivative into the Hamiltonian energy function yields the follow- 
ing relationship: 

E = 32(1 - m)K 4. (31) 

Consequently, solution stability can be determined by differentia- 
tion of E with respect to m: 

d E  64K 3 
d m -  1/m [ 2 E -  ( 2 - m ) K ]  = 0 .  (32) 

1 0 0 . 0  ~ - -  -~ . . . . . . .  ~ , 

50.0 

0 . 0  

- 5 0 . 0  

- 1 0 0 ' - 0 2 0 . 0  - 1 0 . 0  0 0 10 .0  2 0 . 0  

k 

Fig. 3 Phase-plane for unperturbed spatial solution (fo = 108.714, mo = 
14.783) 
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Fig. 4 Stability diagram for unperturbed periodic forms: d = 1, -1 
solution by Greenhill (Timoshenko and Gore, 1961); ca = 0 solution given 
by Eq. (25); asymptotic limit to Cd = 0 given by fo = m~/2; shaded areas 
denote regions of stable periodic spatial forms 

Solving E ( m * ) / K ( m * )  + m * / 2  = 1 for m* reveals that a critical 
value for the energy is achieved only for m* = 0 which corre- 
sponds to f0 = 0 and m0 = 27r using (25). We summarize these 
results in the stability diagram of Fig. 4. Stable periodic spatial 
forms exist in the two regions that are shaded: 

(i) one is the region for m0 > 2w, bounded from above by the 
condition ca = 0 and from below by the fundamental 
(linear) buckling condition (d = - 1)f0 = (m0/2)1/2 - -  

obtained by Greenhill (1883); 
(ii) another is the region for 0 < m0 < 2~r, bounded from 

above by the condition d = 0 (Lu and Perkins, 1994) and 
from below by the same fundamental buckling load (d = 
1). Note that the region for stable periodic planar forms 
(m0 = 0) is bounded by the condition d = 0 ~0 = 
21.549) and the Euler buckling load (f0 = 7r2). 

3.3 A Limiting Itomoelinie So lu t ion . .  Solution of the spa- 
tial Hamiltonian Duffing Eq. (15) for an orbit including the saddle 
at the origin, results in the classical homoclinic orbit (cf. Gucken- 
heimer and Holmes, 1983) 

K°(s) = ±2 ~ sech [ ~ ( s  - So)] 

/x°(s) = ~ 2 a  sech[ ffd(s - so)] tanh [ ~ ( s  - so)] (33) 

where a is given by (16) and (17) for the planar and limiting 
spatial (1- = h/2)  forms, respectively. We note that this solution is 
valid for the integrable boundary value problem on an infinite 
domain; that is for - w  < s < ~ and describes a saddle orbit 
originating from and returning to the origin in the ~-K plane. This 
homoclinic solution serves as both (i) a lower bound for the 
periodic solution (18) obtained for the planar forms (Fig. 2), and 
(ii) an upper bound for the periodic solution (24) obtained for the 
limiting spatial form (Fig. 3). 

4 Global  Bifurcation of  the Perturbed System 

Having established an integrable structure for the unperturbed 
system, we now integrate the spatial system (5) including the 
steady field loading t e rms  "yg i ( s ) .  This is achieved by 

(i) integration of p '  = --KK' + 7gt(s) to yield p = 
-K2/2 + 7G,(s)  + d l  where Gl(s)  = J" g~(s)ds and 
d l =  p(0) + K2(0)/2 - TG~(0); 

(ii) multiplying KT'  = K ' ( h  --  2"7") -- "yg3(s) by K and 
integrating to yield ~- = ,~/2 - 3/G3(s)/K 2 + dz/K 2 where 

G3(s) = f K(s)g3(s)ds and d2 = Kz(0)['r(0) - h/2] + 
,/G3(0); and 
substituting p and 1" into K" = (p + 1 "2 - h~')K - 

These steps lead to the following parametrically and externally 

(34) 

F1 = [G,(s) - G,(0)]K - g2(s) - 2 ,f~ [G3(s) ~___3G3(0)]- 

[O3(s) - G3(0)] 2 
F2 = K 3 (35) 

with gi(s) given by (6) and with 

G,(s)= f g,(s)as, G3(s)= f K(s)g3(s)ds.  (36) 

Next, we consider the case of weak field loading (3' < 1) and 
neglect the second-order term (T2F2) in (34). Furthermore, we cast 
the spatial system as a perturbation of the two limiting cases 
evaluated in the Section 3. Thus, the (nonintegrable) spatial struc- 
ture of the perturbed boundary value problem is governed by a 
nonlinear nonautonomous Hamiltonian system 

OHo 
K' = tx - Ot x 

( 
IX' = - \ - ~ -  + 

OH0 aHi 
- OK 7 OK (37) 

where/3 = ~/~ < 1, and 

p 2  K 4 K2 

Ho(K, V~) = 5 -  + 8 -  - '~ T (38) 

K 2 

H,(K, s) = [O,(0) - O,(s)] ~-  + g2(s)K 

B + 2 ~ [ o ~ ( o )  - o~(~)]  
+ 2 K 2 (39) 

The spatial system (37) consists of a (spatially dependent) 
Hamiltonian perturbation ('y[F~(K, s) + ~/K3]) of the (spatially 
independent) Hamiltonian (K3/2 - o~K) which has a homoclinic 
orbit to a hyperbolic saddle (see Section 3.3). We investigate the 
boundary value problem where weak field loading (7 < 1) may 
break the global unperturbed bifurcation structure. We formulate 
the Melnikov function for the system via integration of the Poisson 
bracket { H0, H~ } utilizing the unperturbed homoclinic orbit of 
Section 3 (cf. Guckenheimer and Holmes, 1986). 

M(so)=ff{Ho, a,}ds 

IL [ = /x°(x) F,(K°(x ) ;  x + so) + (K0~))3 dx (40) 
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where x = (s - so) and (K °, /x °) denote the homoclinic solution 
(33). Simple zeros of M(so) imply transverse intersections of the 
separatrix manifolds leading to spatially complex solutions of the 
boundary value problem for boundary conditions near the unper- 
turbed separatrix. 

In order to obtain an analytic formulation for the weak pertur- 
bation, we estimate the forcing terms ( F 0  for the two limiting 
cases evaluated in Section 3. In the following we consider: (i) 
planar perturbations of the planar solution (eg., m0 = 0); (ii) 
spatial perturbations of the planar solution (eg., mo small); and (iii) 
spatial perturbations of the limiting spatial solution ( r  = /,/2) 
(eg., perturbations from the stability limit cd = 0). 

4.1 Planar Perturbation of Planar Solutions. In this case 
consider planar perturbations of the planar solutions near the 
separatrix. Recall that for the unperturbed planar system, O(s) = 
0 and qb(s) = ~r. Consequently, G3(s) = 0 and the perturbation 
(Ft(K, s)) reduces to 

F, = [G,(s) - G,(0)]~ - g2(s); 

G1 = - f  sin qt(s)ds, g2 = cos @(s). (41) 

Substitution of q*(s) from (21) yields 

Gi - f cn[K(1 - 2s)], 

g2 : 2dn2[K( l  - 2s)] - 1 (42) 

The Melnikov function can then be determined by substitution of 
(41) and (42) into (40). 

f+~ o [vrmmKo(x)cn(8-2Kx) M(so) = - t* (x) 

+ 2 m c n 2 ( 8 - 2 K x )  + (1 - 2 m ) ] d x  (43) 

where 6 = K(I  - 2s0) and (K °,/x o) are given by (33). The Jacobi 
elliptic functions in the integrand can be approximated by a series 
representation in terms of the nome (q = exp[ -7 rK ' /K] )  and the 
argument (~rx) (Abramowitz and Stegun, 1972). The integrals of 
the first two terms can then be evaluated using the method of 
residues and the integral of the third term vanishes as /,o is odd. 
The resulting Melnikov function 

I 1 M(so) = Q,, sin ~- (1 - 2s0) (44) 

is obtained where Q,, is an infinite series (see Appendix B for 
details). Hence, M(so) has simple zeros implying that perturbation 
of a planar solution with boundary conditions near the separatrix 
(33) results in transverse intersections for a sufficiently small 
gravity field perturbation. 

4.2 Spatial Perturbation of a Planar Solution. We con- 
sider next spatial perturbations of planar solutions for small torque 
03 ~ 1 for m0 small). The planar solution enables estimation of the 
forcing Fi(K, S) that is identical in form to that of Section 4.1 with 
the value of ~ given by (16). However, as we allow deviation from 
the plane, the perturbation (37) consists of T[Fi(K, S) + ~/K3]. 
Thus, 

M(so) : /*°(x) F,(K°(x); x + So) + (~g(x))3 dx (45) 

where the integrals of the first three terms are identical to those of 
(43). Moreover, the integral of the fourth term vanishes (integrand 

is odd). Consequently, the result (44) remains valid for three- 
dimensional perturbations from the plane for small mo. 

4.3 Spatial Perturbation of a Limiting Spatial Solution 
(~- = h/2). This last case considers perturbations of the limiting 
spatial solutions ( r  = /*/2) near the separatrix (33) with a given 
by (17). To this end, we require the Euler angles for the unper- 
turbed problem which, as discussed in Section 3.2, cannot be 
determined explicitly; refer to (26)-(30). Thus, we resort to ap- 
proximations of 4~(s) (which is antisymmetric about s = ½). A 
candidate form is ~(s) = ~bL + 4~N = B - (/*/2)s - tan 
(J(2Ks))  where (/*/2) = 2Kk/m and J is a combination of 
elliptic functions. This approximation enables estimation of the 
remaining Euler angles O(s) and O(s) (which are symmetric and 
antisymmetric about s = ½, respectively) from (28) and (29). 
Substitution of the angles into the forcing components (6) and 
subsequently into the perturbation (35) and (36) yields the Melni- 
kov function 

M(so) = t x ° ( x )  [ C , ( x ;  8 )  - 0 , 0 ] K ° ( x )  - g 2 ( x ;  ,~) 

(K0(X))3 -I- ) ~  dx (46) 

where GL.3(x, 8), ~2(x, 8) can be approximated by a series 
representation and 8 = (2Ks0). The integrals of the first, third, and 
fourth terms can be evaluated using the method of residues 
whereas the integrals of the second, fifth and sixth terms vanish as 
G~0,30 are constants and/x ° is odd. We verify that the result (44) 
remains valid by numerical simulation. Here, as in the previous 
cases, M(so) has simple zeros implying that the perturbation of the 
limiting spatial solution ( r  = h/2) with boundary conditions near 
the separatrix, results in transverse intersections for sufficiently 
small gravity perturbation. 

5 Numerica l  Results  

Numerical results are presented to highlight the major conclu- 
sions of Section 4. These results are obtained by numerical ap- 
proximation of the spatial system (5)-(7) and the planar system (9) 
when subject to weak field gravity loading. The initial conditions 
(s = 0) remain close to those of the limiting unperturbed problems 
of Section 3 and are chosen so that the numerical solution satisfies 
the symmetric end conditions (s = 1) required for this boundary 
value problem. Integration of the spatial system is achieved via a 
sixth-order Runge-Kutta method where an adaptive step size is 
determined (to accuracy imposed for the end conditions) by simul- 
taneous solution of the unperturbed system and monitoring its 
(constant) Hamiltonian function. In order to discern whether a 
solution is periodic or aperiodic (e.g., quasi-periodic or a stochastic 
layer), the simulation is continued in space enabling construction 
of a Poincar6 section (sampled at s = 1). Results are depicted in 
the (/x, K) plane where a finite set of points on the perturbed phase 
plane defines a periodic solution and an infinite set of points 
defining a closed curve represents a quasi-periodic solution. The 
emergence of a stochastic (or resonance) layer occurs for boundary 
conditions near the unperturbed separatrix as the strength of the 
perturbation (7) increases (cf. Lichtenberg and Liberman, 1992). 

5.1 Planar Perturbation of Planar Forms. Figure 5 illus- 
trates the evolution of a perturbed planar solution confined to the 
plane (for example,f0 = 143.6) from a quasi-periodic solution for 
T = 0.01 (Fig. 5(a)), to a confined stochastic layer for y = 0.1 
(Fig. 5(b)) and to a fully developed layer for 3' = 1 (Fig. 5(c)). 
Note that the Poincar6 points of the stochastic layer are immedi- 
ately outside the unperturbed separatrix which remains as a lower 
bound for determining planar solutions in keeping with the anal- 
ysis of Section 3. 
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Fig. 5 Poincar~ maps (3' = 0.01, 0.1, 1) for perturbed planar forms (f0 = 
143.596, m0 = 0) 

5.2 Spatial Perturbation of a Limiting Spatial Form. Fig- 
ure 6 depicts the evolution of a perturbed spatial solution with 
modified boundary conditions near the limiting case of ~- = ,~/2 
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Fig. 6 Poincar~ maps (.r = 0.01, 0.1, 1) for perturbed spatial forms (f0 = 
287.18, m0 = 23 

(for example, fo = 287.18,  mo = 23.97) .  As in the planar case, 
a quasi-periodic solution for 3' = 0.01 evolves to a fully developed 
layer for 3' = 1. Note that the Poincar6 points of the stochastic 
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layer are not confined to the interior of the unperturbed separatrix 
defining the limiting spatial case (/3 = 0). 

6 Closing R e m a r k s  

An equilibrium boundary-value problem for a nonlinear cable 
elastica with pure boundary loading and perturbed by steady field 
loading (gravity) is formulated as a spatial dynamical system with 
parameters defined by boundary conditions. Local and global 
bifurcation analyses of the boundary value problem, comple- 
mented by numerical solutions, are applied to investigate periodic 
solutions in the absence of field loading and spatially complex 
solutions in the presence of (small) field loading. Two limiting 
(homoclinic) solutions of the unperturbed (vanishing field loading) 
boundary value problem are found and identified: (i) a lower 
bound to periodic planar forms, and (ii) an upper bound to a 
periodic spatial form where the geometric torsion is proportional to 
half the internal torque. Perturbations of these limits via weak 
gravity field loading are performed via Melnikov's method to 
reveal the existence of transverse homoclinic intersections. Sub- 
sequent numerical solutions of the original boundary value prob- 
lem illustrate spatially complex solution forms and the evolution of 
a stochastic layer. Thus, the emergence of spatial complexity in 
this boundary value problem arises from steady field loads in 
contrast to other generating mechanisms (e.g., initial imperfec- 
tions, asymmetric cross sections, periodic boundary conditions) 
evaluated in Mielke and Holmes (1988), Davies and Moon (1993); 
and Champneys and Thompson (1996). We close by noting that 
sensitivity to (finite) boundary conditions implies difficulties in 
repetition of numerical (and experimental) results. 
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A P P E N D I X  A 

Nondimens iona l  Parameters  
The following nondimensional parameters are used (Lu and 

Perkins, 1994): s = S/L,  d = D/L ,  q = QL3/EI ,  fo = FoLZ/EI, 
mo = MoL/EI ,  p = FiiL2/EI, h = Mi L / E1 ,  K = K 'L ,  ~- = FiL. 

A P P E N D I X  B 

Evaluat ion of  Meln ikov  Integrals  
Evaluation of the Melnikov function for a planar perturbation of 

the planar solution (43) is achieved via the method of residues with 
use of a series representation of the Jacobi elliptic function 
(Abramowitz and Stegun 1972): cn(utm)  = (27r/m J/2K) ~ A,, cos 
[(2n + 1)rru/2K]; n = 0 . . . . .  ~.  The integral of the first term 
in (43) is 

f +~ t x ° ( x ) K ° ( x ) c n ( 6  - 2 K x ) d x  

-8c~7r 
- K2 ~ A .  sin(4~l,) 

n=O 

f 
+~ 

X sech2 (4) tanh (4) sin ( l ) i ,~ )d  ~ 

_4o4  [ 
K2 (2n + 1)2A,, csch (2n + 1)~ "2] 

n=0 g ~ f ~  j s in  ((])ln) 

(B1) 
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where 

A.-  1 q2,,+l, q =exp - w  , 

7r 71 45,.=~(2n+ 1)(1 - 2s0), ~tl, , = ~ ( 2 n  + 1). 

The integral of the second term in (43) is 

12=f[ 2m~°(x)cn2(8-2Kx)dx 

(B2) 

- K2 A. A, sech (,fax) tanh (.f~x) 
n=0 1=0 

X cos [452,, - (2n + l)wx] c o s  [4521 - (21 + 1)'rrx]dx 

where 

--16w4 ~ ~ { 
K2 A. 2 At (n-  1) 

n=0 I=0 

X sech .f~ ] sin (@2,) 

[ ( n + / - l ) w 2 ]  } 
+ (n + l - 1) sech ~/~ sin (~22) 

~21 = w(n - I)(1 - 2So), 

qb22 = 7r(n + 1 - 1)(1 - 2So). 

(B3) 

(B4) 

Consequently, as the third integral vanishes, the Melnikov function 
becomes 

M(so)=Q, sin[2(1- 2So)] 

(B5) 

where 

R,, = ~, (2n + 1)2A, csch \ 2 ~f~] FI(NI) 
n=0 

~ [N2 /N~rc2\ 
n=0 I=0 

N 2 , / r  2 

and 

(B6) 

Fj(Nj) = (2 cos o3)Nj-1- ( N j - 2  ) 1 (2 COS o3)u,-3 

+ ( N j ; 3  )(2coso3)N, 5 + . . .  

3T 
o3=~- (1 -2So) ,  N l = 2 n +  1, 

N 2 = 2 ( n - l ) ,  N3= 2(n + l -  1). (B7) 
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Buckling of an Elastic Ring 
Forced by a Periodic Array of 
Compressive Loads 
We use an analytical technique based on nonsmooth coordinate transJbrmations to 
study discreteness effects in the post-buckling state of  a circular ring loaded by a 
periodic array of compressive point loads. The method relies on eliminating singulari- 
ties due to the point loads in the governing equations, at the expense of  increasing 
the dimensionality of  the problem. As a result, the original nonsmooth governing 
equations are tran.sformed to a larger set of  equations with no singularities, together 
with a set of  "smoothening" boundary conditions. The transformed equations are 
solved by expressing the variables in regular perturbation expansions, and studying 
an hierarchy of  boundary value problems at successive orders of  approximation; 
these problems can be asymptotically solved using techniques from the theory of  
smooth nonlinear or parametrically varying dynamical systems. As a result, we model 
analytically discreteness effects' in the post-buckling states of  the ring, and estimate 
the effect of  the discrete load distribution on the critical buckling loads. This effect 
is found to be of  very low order, in agreement with numerical results reported in an 
earlier work. 

1 I n t r o d u c t i o n  

We analytically study the buckling of a circular ring that is 
loaded by a discrete periodic array of concentrated compressive 
forces. The singularities due to the discrete loads in the govern- 
ing equations are eliminated by a nonsmooth change of vari- 
ables, at the expense of increasing the dimensionality of the 
problem. The resulting transformed equations ate fl'ee of singu- 
larities and can be analyzed using techniques from the theory 
of smooth nonlinear or parametrically varying dynamical sys- 
tems. The method used in this work enables the analytic compu- 
tation of discreteness effects in the post-buckling state of the 
ring due to the discrete array of compressive loads, as well as, 
the estimation of the effect on the critical buckling load of the 
discreteness of the load distribution. 

The method of nonsmooth transformations employed herein 
was first developed by Pilipchuk (1985, 1988), and subse- 
quently used by Pilipchuk and co-workers to analyze strongly 
nonlinear subharmonic motions of a forced pendulum (Pilip- 
chuk et al., 1997), as well as discreteness effects in free periodic 
oscillations of a discretely nonlinearly supported string (Pilip- 
chuk and Vakakis, 1998). Forced oscillations of this later sys- 
tem employing nonsmooth transformations were studied by Sa- 
lenger and Vakakis (1998). 

The problem of the stability of a circular ring under uniform 
hydrostatic pressure has been formulated and examined in nu- 
merous previous works; see, for example, (Seide and Albano, 
1973) where the bifurcations of circular rings under concen- 
trated loads are examined by employing transfer matrices and 
solving a linear eigenvalue problem, and (Kabanov and As- 
trakharchuk, 1983). In addition, we mention the recent works 
by Troger and Steindl (1991), Chaskalovic and Naili (1995) 
on rings obeying Bernulli-Euler theory, the works by Kfimmel 
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( 1967 ) and Atanackovic (1998) on rings with constitutive laws 
accounting for axial compressibility, and the work by Schmidt 
(1979) on rings with shear deformation and axial compressibil- 
ity. Fu and Waas (1995) studied the effect of ring thickness on 
the postbuckling behavior. A review of numerical methods for 
studying buckling in thin shells is given by Riks and Rankin 
(1997). 

2 G o v e r n i n g  E q u a t i o n s  and  N o n s m o o t h  Trans for -  

m a t i o n s  

Considering a circular ring with material obeying Bernulli- 
Euler beam theory and forced by a periodic array of N compres- 
sive loads, the normalized internal force, moment, displacement, 
and rotation distributions are governed by the following set of 
ordinary differential equations (Atanackovic, 1998): 

t - 6 2t 
q(t)  N k=0 N 

(la) - n(t)[1 + m(t)]  

r~(t) = q(t)[1 + m(t)]  

rh(t) = - q ( t )  

ti(t) = cos O(t) 

~(t) = sin O(t) ( l b )  

O(t) = 1 + re(t) 

Complementing ( 1 ) there exist the following periodicity condi- 
tions: 

q(O) = q(27r), n(O) = n(2zr), m(O) = m(27r) 

u(0) = u(27r), v(0) = v(27r), ~9(0) = ~9(27r) + 27r. (2) 

In the equations above, 6 ( . )  represents Dirac's generalized 
function, and the normalized variables are defined as follows: 
t = S/R,  where S denotes the arc-length of the undeformed ring 
axis, and R is the radius of the undeformed ring; q = QRZ/EI, 
where Q is the shear force, E the modulus of elasticity, and I 
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p • 

t = ~  0 

Fig. 1 The circular ring with discrete load distribution 

the moment of  inertia of the cross section of the ring; n = NR2/ 
El, where N is the axial force; m = MR~E1, where M is the 
bending moment; k = [2p/(21rR/N)] (R3/EI) = NpR2/OrEI), 
where p is the magnitude of each of the compressive loads; u 
= x/R and v = y/R,  where x and y are the horizontal and 
vertical deformations, respectively, of an arbitrary point of  the 
deformed ring; and 0 is the angle between the axial force N and 
the horizontal axis in the deformed ring. The discrete forcing 
distribution of the ring is depicted in Fig. 1, and the discrete 
array of loads are normally oriented to the ring. 

The singularities in the first of Eqs. ( l a )  prevent a direct 
analytical treatment of the system. To circumvent this problem 
we assume at this point that the discrete forces are densely 
placed by requiring that the distance between adjacent forces 
is small: 

271" 
- - = e ~ l .  
N 

For e sufficiently small, we anticipate that the solution of 
( 1 - 2 )  possesses two spatial scales, a long scale t, and a short 
one t/e. Hence the solution is expressed as, w = w(t,  t /e),  where 
w = q, n, m, u, v or zg. We now introduce the following non- 
smooth transformations of the long scale as follows (cf. Fig. 2): 

1 
T(t/e)  = - arcsin sin , 

(3)  

and express the dependent variables of  the problem in the fol- 
lowing way: 

q(t ,  t ie)  = Ql(t,  T) + eQz(t, ~-) 

n( t ,  t /e)  = Nl( t ,  ~-) + eN2(t, -r) 

m(t ,  t /e)  = Ml( t ,  ~) + eM2(t, "c) 

u(t ,  t ie)  = Ul(t,  T) + eU2(t, T) 

v(t ,  t /e)  = Vl(t,  7) + eVz(t, ~c) 

O(t, t /e)  = 01(t ,  ~c) + eO2(t, z ) .  (4) 

Substituting (4) into ( 1 - 2 ) ,  using the chain rule to express 
differentiation with respect to t in terms of the short and long 
variables, and eliminating singular terms by setting their coeffi- 
cients equal to zero, we obtain an alternative system of govern- 
ing equations that does not contain any singular terms. 

To demonstrate this procedure, consider the first of relations 
( l a ) .  Taking into account expressions (4) ,  the first derivative 
of q = q(t ,  t /e)  is expressed as follows: 

OQi 1 I OQ2 OQ2 d q _  10Q1 e + + - Q 2 r " + -  + e (5) 
dt c 0---~ a t  e c -~- - ~  ' 

where the identity ( ' 7 - ' )  2 : e 2 = 1 was imposed. In the relation 
above the term 7-" is singular since it is a series of Dirac's 
functions, 

A comparison of (6) with the summation of the singular terms 
in ( l a )  reveals that these terms are identical in the domain of 
interest (cf. above definition of  e),  

~ 6 2t = - 6 - 1 - 2k 
k=0 N e k=O 

' for 
e k = - ~  

and, hence, the singularities in ( 1 a) can be eliminated by can- 
celing them with the corresponding terms in (5).  Indeed, substi- 
tuting (4) and (5) into the first of Eqs. ( l a ) ,  setting the coeffi- 
cients of terms not depending and depending on e separately 
equal to zero, and eliminating the singular terms depending on 
~-", we obtain the following set of equations: 

OQ1 OQ2 
- -  e 

0~- - -~ - t -  
e[NiM~ + N2(1 + Mi) ] ,  

Qt(0,  T) = Qi(27r, T) 

aQ2 
D e m - -  

0~- 

OQ, 
-~  e[N2M2 + Ni(1 + Mi) ] ,  

Q2(0, 7-) = Qz(2~r, ~-) 

Q21~=_~ = w-cX, (7a) 

where h. = - h / 2 .  The last relation in (7a)  is the smoothening 
condition that eliminates singular terms from the equations; the 
terms in this relation are coefficients of ~-" in the transformed 
governing equation, and the requirement that they vanish at 7- 
= _+ 1 eliminates the singular effects due to ~-" which also appear 

VV VV 'VVVV -..!. 
2 

c(t/~) o. t 

°:IHUHUHH  HH 
I----1 b JL 

gig g g/2 

Fig. 2 The nonsmooth coordinate transformations ~-(t/~) and e(t/~) 
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at these values of  7- (cf. Eq. (3) and (6)) .  The justification for 
setting separately terms depending or not on e equal to zero, is 
that by replacing the scale t/e by the two nonsmooth variables 
7- and e, quantities in the first of Eqs. ( l a )  that originally 
depended on t/e are now partitioned into two independent com- 
ponents: One depending only on 7-, and the other depending 
both on r and e (Vakakis et al., 1996). As a result, there is 
a need to balance separately these two types of terms in the 
transformed equations of motion, a requirement that leads to 
the two Eqs. (7a) .  In essence, we " smoothen"  the first of 
equations ( l a )  by replacing it with two smoothened equations; 
we also note that, whereas the first of Eqs. ( l a )  possesses 
two independent variables, t and t/e, the transformed set (7a)  
possesses three, namely, t, 7-, and e; hence, the appearance of 
partial derivatives in (7a) .  Finally, as pointed out by a reviewer 
of this work, the last smoothening condition in (7a)  appears to 
impose symmetry restrictions on the variable Q2. This, however, 
does not reflect to the physical buckling state which, as shown 
later, can be asymmetric. 

Working similarly, we transform the rest of equations in 
( 1 - 2 )  and obtain the following new expressions: 

ONl ON2 
- e - -  - e[QiMz + Q2(1 + m l ) ] ,  

07- Ot 

Ni(0,  7-) = Nl(27r, 7-) 

ON2 ON1 
= - e  e[Q2M2 + Qi(1 + M,) ] ,  

07- 

N2(0, 7-) = Nz(27r, T) (7b) 

N21~__+, = 0 

OMi OM2 
- -  = - c - - -  eQ2, Mi(0 ,7- )  = Ml(27r, 7-) 
07- Ot 

OM2 Oml 
- ~ - ~Q1, M2(0, 7-) = M2(27r, 7-) (7c)  

07- 

M21~_+_1 = 0 

OUi OU2 
- - =  - ~ - - +  E/~, Ui(0,7-)  = U,(27r, T) 
07- Ot 

OU2 OU, 
- e - -  + ~Rc, U2(0, 7-) = U2(27r, 7-) 

OT Ot 

U21~=_+_, = 0 

OV, OV2 
- e - - +  eL, Vl(0,7-) = Vl(27r, 7-) 

07- Ot 

(7d)  

OV2 OVi 
- e - -  + eR~, V2(0, 7-) = V2(27r, 7-) (7e) 

07- Ot 

v21~ ± , = 0  

0@, 002  
- -  = - e  + eM2, ®1(0, 7-) = ®1(27r, 7-) + 27r 
07- - ~ -  

0®2 0@1 
- -  = - e - -  + e(1 + M 1 ) ,  @2(0,7)  = @2(27r, 7) (7g)  
07- Ot 

O : l  . . . .  1 = 0 

where (Pilipchuk et al., 1997) 

Rc = ( l / 2 ) [ c o s  (O~ + 02) + cos (Oi  - O j ] ,  

I, = ( l / 2 ) [ c o s  ( O  1 + 0 2 )  -- COS ( 0 1  -- 0 2 )  ] 

R.~ = (1 /2 ) [ s in  (®~ + ®z) + sin (®~ - ®2)], 

I~ = (1 /2 ) [ s in  (O1 + 192) - sin (®1 - 02)] .  

Comparing the sets ( 1 - 2 )  and ( 7 a - g )  we note that by using 
the nonsmooth tran.~formations (3) we were able to eliminate 
the singular terms from the governing equations. The trans- 
formed (smoothened) problem consists of a set of smooth non- 
linear boundary value problems (NLBVPs)  in terms of the short 
variable 7-, which can be studied using perturbation methods 
from the theory of smooth dynamical systems. At the same 
time, the elimination of  the singularities was at the expense of  
expanding the dimensionality of  the problem, with two new 
dependent variables replacing each of the old ones. Once the 
solutions of the transformed problems are derived, the solutions 
of the original problem are obtained using relations (4) ,  and 
discreteness effects arising due to the applied point loads are 
analytically incorporated in the final expressions. In addition, 
we note that the solutions for problems ( 7 d - g )  can be derived 
by direct integrations once the solutions of problems ( 7 a - c )  
are computed. Hence, in the following analysis we will focus 
mainly on the solution of  the later problems; however, problem 
(7g)  must be taken into consideration at certain stages of the 
following analysis in order to obtain compatibility conditions 
necessary for the solution. 

Using e as a perturbation parameter, we seek solutions of the 
problems ( 7 a - c )  and (7g)  in the following regular perturbation 
expansions: 

Q1,2(t, r )  = Q~?}(t, T) 

Ni.2(t, 7-) At(®)t, 7-) = iv 1,2 \ t  , 

M,,2(t, 7-) = Ml[~)(t, 7-) 

®),2(t, 7-) -- @?2)(t, r )  

k =  k® 

~2,q(2)(, T) + "" • + eQil)2(t, 7-) + ~ ~,.2~,, 

~2xr(2)(, 7-) + . . . + ~N~l;(t, 7-) + ~ ,* 1,2,.., 

+ eM~Iz)(t, 7-) + e2M~24(t, 7)  + " ' "  

+ ~o~!;(t,  7-) + ~o~22(t, 7-) + . . .  

+ ek~ + ezk2 + . . . . .  (8) 

Substituting (8) into ( 7 a - c )  and matching the coefficients of 
equal powers of c we obtain a series of subproblems governing 
each of the successive approximations of the solution. In what 
follows we discuss the leading-order subproblems separately. 

O ( 1 )  Subproblem.  Considering terms of O(e° ) ,  we obtain 
the following leading-order approximations for the variables 
under consideration: 

Q~°)(t, 7-) = ao(t) ,  

N]°)(t, 7-) = Bo(t), 

M~°)(t, 7-) = Co(t), 

Ao(0) = Ao(2X), 

Bo(0) = Bo(27r), 

Co(0) = Co(27r), 

Q ? ( t ,  7-) = 0 

N(2°)(t, 7-) = 0 

M(2°)(t, r )  = 0 

®]°)(t, r )  = T0(t), y0(0) = yo(27v) + 27r, ®(2°)(t, r )  = 0. 

(9) 

The t-dependent functions in (9) result as constants of integra- 
tion with respect to r ,  and are determined by considering higher- 
order subproblems. Moreover, at this order of approximation 
no information regarding the variable (nonlinear eigenvalue) k 
is extracted. 

O(E)  Subproblem.  Solving the O(c  ~) subproblem we ob- 
tain 

O?)( t ,  7-) = Al ( t ) ,  Al(0 )  = A j ( 2 ~ ) ,  O~)( t ,  7-) = -k0~- 

N?)( t ,  7-) = Bl ( t ) ,  Bl(0 )  = Bl(27r), N?)( t ,  7-) = 0 

M?) ( t ,  7 ) = Cl( t ) ,  Cl(0)  = Cl(27r), M~I)(t, T) = 0 

® ? ) ( t ,  7-) = yL(t),  y t (0 )  = yl(27r),  ®(zl)(t, 7-) = 0 (10) 

as well as the following expressions governing the yet undeter- 
mined coefficients of the previous order of approximation, 

Ao(t) = -B0( t ) [1  + Co(t)] + k0 

/~o(t) = - A o ( t ) [ 1  + Co(t)] 
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Co(t) = - A t ( t )  

yo(t) = 1 + C0(t), (11) 

with the periodicity conditions in (9) enforced. Note that the 
last of the above equations can be decoupled from the first three 
ones which constitute a NBVP with k0 as the eigenvalue. The 
solution of this problem is discussed in Section 3, but at this 
point we remark that the NLBVP (11) governs the buckling 
problem with uniform (hydrostatic)forcing and no discreteness 
effects. Indeed, (9) and (11 ) provide the O( 1 ) smooth approxi- 
mation to the solution and nonsmooth discreteness effects start 
appearing only at higher orders (for example, see the expression 
for Q~l)(t, 7-) in (10)).  These discreteness effects will be more 
evident in higher order approximations and will be manifested 
by the presence of the nonsmooth variables 7-(t/e) and e ( t / e )  
in the solutions. In essence, problem (11) governs the depen- 
dence of the solution on the long variable t, whereas dis- 
creteness effects depend on the short spatial scale t/e. 

O ( e  z) Subproblem. Proceeding to the next order of the 
asymptotic analysis, we derive the expressions 

Q~2~(t, 7-) = A2(t) ,  A2(0) = A2(27r), Q(22)(t, 7-) = -k17- 

7-2 
N]2~(t, 7-) = - b o i l  + Co(t)] -~- + B2(t) ,  

B2(0) = B2(27r), N(22)(t, 7-) = 0 

7-2 
m]2)(t, 7-) = )to ~ + C2(t), 

C2(0) = C2(27r), M~Z>(t, 7-) = 0 

®]2)(t, 7-) = yz(t) ,  y2(0) = yz(27r), y(22~(t, 7-) = 0 (12) 

and the complementary equations for the coefficients of the 
previous order of approximation: 

An(t)  = - B o ( t ) C ~ ( t )  - B~(t)[1 + Co(t)] + hi 

Bl ( t )  = - A o ( t ) C l ( t )  + Al(t)[1 + Co] 

Ca(t) = - a t ( t )  

% ( t )  = c , ( t ) ,  ( 1 3 )  

with the periodicity conditions in (10) enforced. Note the dis- 
creteness effects in terms Q~2~(t, 7-), N~2~(t, 7-), and M~Z~(t, 
7-), and the absence of discreteness effects in the remaining 
terms. Similarly to ( 11 ), the first three equations in (13) form a 
parametrically varying linear boundary value problem (LBVP) 
with M as the eigenvalue which will be discussed in the next 
section. The last of Eqs. (13) provides compatibility conditions 
for the solutions of the boundary value problems. Relations 
(13) govern the dependence of the O (e) approximation on the 
long spatial scale, whereas (12) computes O(e 2) discreteness 
effects in the solution. The unknown t-dependent coefficients 
in (12) represent constants of integration and for their determi- 
nation it is necessary to consider O(e 3) terms. 

O(e  3) Subproblem. The solutions of this order of approxi- 
mation are given by 

Q~3)(t, 7-) = A3(t), 

{ O~3)(t, 7-) = Bo(t) -~  - ko[l 

N~3)(t, 7-) = B3(t), 

M]3~(t, 7-) = G ( t ) ,  

A 3 ( 0 )  = A3(27r), 

+ Co(t)]  2 - ~.~}7- 

T 3 
- {B0(t) - [1 + C0( t ) ]2}ko- -  

6 

B3(0) = B3(27r), N(23)(t, 7-) = 0 

C3(0) = C3(27r), M~3~(t, 7-) = 0 

O]3)(t, 7-) = y3( t ) ,  '73(0) = y3(27r), 

7") = - -~(7- - 7-3), (14) O ~ 3 ) ( t ,  

and the undetermined coefficients in the previous order of ap- 
proximation are governed by the following linear nonhomoge- 
neous parametrically varying LBVP: 

/~2(t) = - B o ( I ) C 2 ( I )  - B2(t)[l + Co(t)] 

_ ~.__o B o ( t )  + Xo[1 + Co(t)] 2 + K2 
6 

/32(t) = - a o ( t ) C 2 ( t )  + az(t)[1 + C0(t)] 

(~2(t) = - a 2 ( t )  

j/2(t) = C2(t) + X--2, (15) 
6 

with the periodicity conditions in (12) enforced. 
The unknown parameters in (14) are similarly computed by 

considering the equations of the subproblem at the next order of 
approximation, but this task will not be pursued further herein. 
Instead we will now focus on the boundary value problems 
(11), (13), and (15) whose solution is required for studying 
the discreteness effects in the buckling behavior of the ring. 
We also note that by computing the eigenvalues hi and h2 we 
obtain an estimate of the effect of the discreteness of the load 
distribution on the critical buckling loads of the ring. 

3 Study  of  the B o u n d a r y  Va lue  P r o b l e m s  ( 1 1 ) ,  ( 1 3 ) ,  
and  ( 1 5 )  

We first consider the NLBVP ( 11 ) which as mentioned pre- 
viously governs the buckling problem with no discreteness ef- 
fects. The base (unbuckled) state of the ring is obtained by 
setting the derivatives in the first tl2ree equations equal to zero; 
this provides the relation/~0[1 + Co] = ko. We then solve the 
last of Eqs. (11 ) and enforce its boundary conditions. This 
determines uniquely the base state in the following form: 

do = 0, /it  = ko, 0o = 0, '~o(t) : t. (16) 

To analytically study the bifurcation leading to buckling we 
introduce the following coordinate transformation in the neigh- 
borhood of the base state, 

: 

~,o(t) J (x.(t) J 
where/z is a second perturbation parameter independent from c, 
denoting the closeness of the buckled state from the unbuckled 
(trivial) one. Substituting (17 ) into (11 ) we obtain the follow- 
ing local NLBVP in the neighborhood of the unbuckled state: 

2t = -k0x3 - x2(1 + #x3) 

22 = x l ( 1  + #x3) 

2 3 : --Xl 

2 4 : X 3 

xi(O) =xi(27r) ,  i =  1 , 2 , 3 , 4 .  (18) 

Seeking a solution in the form 

x i ( t )  = x!°>(t) + #x~l~(t) + #2xlZ)(t) + . . . .  i = 1, 2, 3, 4 

and k0 = k~0 °) + #k~ ~ + . . . .  (19) 
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substituting into (18), and matching coefficients of correspond- 
ing powers of #, we obtain a series of linear, constant-parameter 
boundary value problems that can be conveniently solved using 
standard linear analysis. Omitting the details of the analysis, 
and combining the perturbation solution of (18) with (17) we 
obtain the following asymptotic solution to problem ( 11 ): 

I Ill } Bo(t) ~to [ - ( l / j )  cos j t  

Co(t) 6 [  (1/ j)  cos j t  

To(t) [ - ( l / j  2) s inj t  

f (1 /2 j  3) sin 2jt 
+ 6 2 (1 /4 j4 ) [2 j  2 - (1 + j2 )  cos 2jt] 

(1 /4 j  n) cos 2it 

(1 /8 j  5) sin 2it 

where 6 is a small parameter defined as in terms of the buckling 
load as 

+ 0(63 ) (20) 

6 = + [  8j4(~k°- - 1 + j2) ] t /2  

- L  3(1 j2) ] , 

j = 2, 3 . . . .  and 161 ~ 1. (21) 

The new perturbation parameter 6 was obtained by expressing 
in terms of k0 from the last of expansions (19), and substitut- 

ing into the perturbation solutions for Ao(t), Bo(t), C0(t), and 
7o(t). The plus and minus signs in 6 correspond to the two 
bifurcating states of the ring, which at this order are identical. 
When we consider higher-order terms below, we show that the 
discrete loading gives rise to asymmetries in the buckled states. 
We also point out that the periodicity requirements of the last 
of Eqs. (18) provides compatibility conditions that are neces- 
sary to uniquely determine the solutions of the first three equa- 
tions. 

Observing the solution (20-21)  we remark that the critical 
buckling loads for the O(1) NLBVP (11) are given by koc = 
_j2 + 1,j = 2, 3 . . . . .  a result that is consistent with previous 
ones dealing with buckling of hydrostatically loaded circular 
rings. The solution with j = 2 corresponds to the first buckling 
mode, and will be examined more closely in the next section. 
We note that, by construction, the above asymptotic results are 
valid only close to points of bifurcation (buckling), i.e., only 
for0  < h 0 -  1 + j 2 . ~  1,j  = 2 ,3  . . . . .  

Proceeding to problem (13) we realize that it admits the 
trivial solution, 

Al(t)  = Bt(t)  = Cl(t) - ~  y l ( t )  = hi = 0, ( 2 2 )  

indicating that there are no O (e) t-dependent coefficients in the 
solution. Hence, we focus on the O (e 2) LBVP (15) which does 
not admit the trivial solution. Taking into account solution (20), 
this nonhomogeneous, parametrically varying LBVP is ex- 
pressed as 

with the periodicity conditions (12) imposed. We note that 
although 0(62) are not shown explicitly in (23), these were 
taken into account in the perturbation analysis in order to com- 
pute the 0 (6 )  approximation for X2. 

To obtain the solution of the LBVP (23), we express the 
dependent variables and the eigenvalue in formal series in terms 
of the small parameter 6 (for example, A2(t) = A~°~(t) + 
6A~l~(t) + . . . .  k2 = X~ °~ + 6X~ ~) + . . . ) ,  substitute into (23), 
and solve the resulting series of LBVPs with constant parame- 
ters at each successive order of 6. We then derive the following 
asymptotic solutions: 

A2(t) = 0 + 0(62),  

Bz(t) (1 _ j 2 )  + 6 (1 _ j 2 )  cos j t  + 0(62),  
6 6 

Cz(t) - (1 _ j 2 )  + 0(62) ,  
6 

) ' 2 ( t )  = 0 + O ( 6 2 ) ,  ~-2 = 0 + 0(6 2) j = 2, 3 . . . . .  (24) 

From these results we note that the correction to the criti- 
cal buckling load due to discreteness effects is at least of 
0(e262, e3), and, thus, small. This is in agreement with the 
numerical results reported in (Seide and Albano, 1973), where 
it was found that for dense discrete loading distribution the first 
critical buckling load is almost identical (actually, is slightly 
smaller) compared to that of the uniformly loaded case. In fact, 
they proved that for N = 2, 4 discrete loads, the discreteness 
of the loading distribution increases the critical buckling load; 
however, for N >- 5 the discreteness effects result in a slight 
decrease of the critical buckling load. The result for N = 4 was 
obtained also by (Kabanov and Astrakharchuk, 1983). 

In addition, from the expression of B2 (t) we note that the post- 
buckled state of the discretely loaded ring depends on the sign 
of 6; as a result, the two bifurcating states of the ring correspond- 
ing to the positive or negative values of 6 are not identical (as 
in the case of hydrostatic loading), and asymmetries develop in 
the buckled shapes. Again, this finding is in agreement with the 
numerical results of (Seide and Albano, 1973). 

Summarizing, the post-buckling state of the discretely forced 
circular ring is approximated as follows: 

I- 
= [A0(t) + 0(63, eZ62, e3)]  + e / - e k 0 7  q(t, t/e) 

- ~ [Bo(t) - [1 + Co(t)] 2] + O(E3~ 3, E 4) 

n(t, t/e) = Bo(t) + e 2 -ko[1 + Co(t)]-~- + B2(t) 

+ 0(63 , e262, e3)/ + e[O(e4)] 
] 

/ (2( t )}  [ 0 1 + 6(1 / j )  cos j t  
Bz(t) + -1  - 6 ( l / j )  cos j t  0 
C2(t) 1 0 

- 6  s inj t  B2(t) 
0 C2(t) 

- [ ( 1  - j2)/6][1 _ j 2  + 6 ( 1 / j ) c o s j t ]  + [(1 - j2)/61[1 + 26(1 / j ) cos j t ]  + k2 
= 0 

0 

"%(t) = C2(t) + X0/6, 

+ O(62) (23) 
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Fig. 3 Numerical results for t E [0, 7r] and t E [zr, 2~r]: Normalized (a) shear force, (b) axial force, 
and (c) bending moment; - -  discrete, - - -  uniform load distribution 

= -~- "7"2 + C2(t)} m(t,t/e) [ c 0 ( t )  ~2{ k0 -~- 

+ 0 ( ~  3, E262, e 3 ) ]  + e [ O ( c 4 ) ]  

= - 2 k o +  O(c262,e3), j = 2 , 3  . . . . .  (25) 

with r = r(t/e) and e = e(t/e) defined by (3) and the small 
parameter (5 by (21). The remaining variables in (4) can be 
determined similarly, taking into account the above solutions. 
The nonsmooth effects in the solution due to the point load 
distribution are analytically evaluated in (25) by the terms con- 
taining the nonsmooth variables r and e. 

Finally, we observe that in contrast to the normalized shear 
force q, the normalized axial force n, and bending moment m 
in (25) do not possess any e-dependent terms; as shown in the 
next section this result is compatible with the presence of C °- 
discontinuities in the shear force, but only CO-discontinuities, 
p -> 1 in the internal axial force and bending moment due to 
the applied point loads. 

4 Numerical Application 
The solutions (25) are depicted in Fig. 3 fo r j  = 2, e = 27r/ 

20 = 0.3146 and 6 = 0.5. These parameters correspond to the 
first buckling mode of the ring, and a discrete distribution of 

20 point loads, each of normalized magnitude k = -3.0176. 
For comparison purposes we also show the results for e = 0, 
corresponding to a hydrostatically loaded buckled ring with 
identical magnitude of load distribution and no discreteness 
effects. Note the C°-discontinuities in the shear force distribu- 
tion due to the applied point loads and the Cl-discontinuities 
in the distributions of the axial force and bending moment. 

5 Conclusions 
In this work we employed an analytical technique based on 

non-smooth transformations of the short spatial scale of the 
problem to study discreteness effects in the post-buckling state 
of a circular ring loaded by a periodic array of point loads. The 
novelty of this technique is that it eliminates singularities in the 
governing equations due to the point loads, at the expense of 
increasing the dimensionality of the problem. As a result, the 
three nonsmooth governing equations were replaced by six 
smoothed ones, together with a set of smoothing conditions. The 
transformed equations were solved by expressing the dependent 
variables in regular perturbation series, and analyzing an hierar- 
chy of boundary value problems at successive orders of approxi- 
mation. These problems were asymptotically solved using tech- 
niques from the theory of smooth nonlinear or parametrically 
varying dynamical systems. 

The technique presented herein can be applied to the study 
of a more general class of buckling problems, such as the ones 
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of circular rings or cylindrical shells obeying more general con- 
stitutive laws (for example, allowing ring axis compressibility 
(Atanackovic, 1998)) under compressive point loads. Also, 
nonlinear effects can be handled conveniently with only slight 
modifications of the NLBVPs. Finally, this technique can be 
used to validate the results of other buckling studies of such 
systems that rely on purely numerical methods. 
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Elasticity Interior Solution for 
0rthotropic Strips and the 
Accuracy of Beam Theories 
The interior problem of an orthotropic strip subject to any given continuous distribution 
of normal and shear loads is solved by means of a polynomial expansion for the Airy 
stress function. The polynomial .functions defined in the transverse direction are deter- 
mined recursively by solving a Fredholm equation of second kind. Explicit formulas for 
displacements are given. A sufficient condition for the convergence of the series expansion 
is derived. This solution is used to evaluate the error in Timoshenko and higher-order 
theories. A new beam theory is finally proposed, whose error has the same asymptotic 
form as second-order theories but approaches zero for strips made of strongly orthotropic 
material. 

1 Introduction 

The solution of two-dimensional problems for long rectangular 
strips in the form of polynomial series is a classical result in the 
theory of elasticity. Usually, the Airy stress function is represented 
by a double series expansion in powers of axial and transverse 
coordinates, and the corresponding coefficients are obtained from 
the field equations and boundary conditions. This technique is used 
in Timoshenko and Goodier (1970), Silverman (1964), and Hashin 
(1967) for isotropic, orthotropic, and anisotropic strips, respec- 
tively. The main drawback of these methods is that the computa- 
tion becomes rather involved if the degree of the polynomial load 
prescribed on the long sides increases. 

A different type of solution can be obtained by a series expan- 
sion for the Airy stress function in terms of polynomials in the 
transverse coordinate multiplying the top and bottom loading 
functions. In this case, the first term of the series represents 
classical beam theory, and the next terms are corrections involving 
higher derivatives of loading functions. This technique has been 
proposed by Donnell (1952, 1976) for an isotropic beams in plane 
bending, and extended in Boley (1956) and Boley and Tolins 
(1956) to distributed shear forces and thermal loading. Stress fields 
for orthotropic strips subjected to uniform and linearly varying 
transverse loads can be also found in Tsai and Soler (1970), 
Rehfield and Murthy (1982), and Rychter (1988). Duva and Sire- 
mends (1990) developed a formal asymptotic expansion in term of 
the slenderness ratio, so generating approximate strain and stress 
fields of "any accuracy" for orthotropic strips subjected to equal 
distributed transverse loads acting on the top and bottom faces. 

In summary, the referenced solutions provide for closed-form 
solutions for power loading functions, series solutions for arbitrary 
continuous loads, or, in some cases, simple improvements on 
classical beam theory. However, the problem of convergence of 
such series is almost never undertaken. The only attempt has been 
made by Duva and Simmonds (1990), who showed that conver- 
gence of polynomial series may fail for strips weak in shear. 

Polynomial solutions typically refer to long strips, neglecting 
pointwise self-equilibrated stress distributions or displacement 
constraints at the end sections (interior problem). Nevertheless, it 

is well established that Saint-Venant's principle must be invoked 
with prudence when strongly orthotropic materials are concerned, 
because the decay length of end effects can be much greater than 
the strip height (Choi and Horgan, 1977; Horgan and Simmonds, 
1994; Miller and Horgan, 1995). The solution of elasticity prob- 
lems can be decomposed into the interior solution, satisfying 
average end conditions, and the boundary solution, which reestab- 
lishes the pointwise prescriptions at the beam ends. For the bound- 
ary problem several techniques have been proposed, e.g., see the 
papers referenced in Kim and Steele (1990), Lin and Wan (1990), 
Savoia and Tullini (1996). 

In the present paper, a polynomial expansion for the Airy stress 
function is derived for the interior problem of orthotropic strips 
subjected to any given continuous distribution of both normal and 
shear loads. The first term of the polynomial expansions satisfies 
the boundary conditions and coincides with classical beam theory, 
whereas the other terms are defined in order to satisfy the com- 
patibility equation with homogeneous boundary conditions. The 
polynomial functions defined in the transverse direction are deter- 
mined recursively by solving a Fredholm equation of second kind. 
Making use of Cauchy's criterion, a sufficient condition for the 
convergence of the series expansion is derived for both symmetric 
and antisymmetric loading conditions. It is shown that for a typical 
composite strip the slenderness required for the convergence of the 
solution may be more than three times larger than for isotropic 
strips. 

In the second part of the paper, the strip solution obtained is 
used as a benchmark to evaluate the accuracy of Timoshenko-like 
beam theories and higher-order theories (Hashin, 1967; Tsai and 
Soler, 1970; Rehfield and Murthy, 1982; Rychter, 1988). Higher- 
order theories can be obtained from the present solution by retain- 
ing the first terms only in the polynomial expansion. As H/l --~ O, 
the actual error (i.e., with respect to the exact solution) is found to 
be of O(H2/I 2) and O(H2N/12N) for first-order (Euler-Bernoulli) 
and Nth-order theories, l being a measure of the loading wave- 
length (Duva and Simmonds, 1990; Savoia, 1996). Finally, a new 
beam theory is proposed, whose error has the same asymptotic 
form as second-order theories but approaches zero for strips made 
of strongly orthotropic material. 
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2 Governing Equations 

Consider a rectangular strip of length L and height H = 2h 
and let 0x ~x2 be a Cartesian reference frame where x~ coincides 
with the centroidal axis and x2 is chosen in the transverse 
direction. The strip is made of homogeneous, orthotropic, lin- 
early elastic material, with orthotropy axes coinciding with the 
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reference axes; the strip is subject to smoothly varying tractions 
(for a unit width) q, ~ (q~,, q2,) and qb ~ (q,,, q2h) at the top and 
bottom faces and forces and couples ~0, ~.2 0,/f/0, p~, ~.~,/~,/L at the 
end sections x, = 0, L (interior problem). Accordingly, the 
boundary conditions are (a = 1, 2) 

0-a2(Xl, h) = q,b, 0-,2(xl, - h )  = -q~,  at X 2 = h, - h  (1) 

{N, Q, M} = {b'~, F2,/174} at x~ = 0, L (2) 

where o-~ are the components of the stress tensor and N, Q, M 
are, for a unit width, the axial resultant, shear resultant, and the 
bending moment written in term of stresses. The equilibrium 
equations with null body forces are satisfied by the classical Airy 
stress function F(&, x2): 

fill  = F,22, 0"22 = F , u ,  0"12 = - F , 1 2  (3) 

where subscripts a preceded by a comma denotes partial differ- 
entiation with respect to x,,. The compatibility equation yields the 
governing differential equation (Lekhnitskii, 1981) 

F,2222 + E F ,  ii22 + E2E2F, iii i  = 0 (4) 

where 

~7 -- R66 -4- 2R12 e2E 2 = --R22 (5) 

Ri 1 ' Rt I 

and constants R~j are the usual reduced elastic coefficients. For 
instance, Eqs. (5) reduce to 

E1 El 
LZ- Gi 2 2vt2, e2E2 - E2 (6) 

for plane stress and E~, G~2, v~2 denote Young's moduli, shear 
modulus, and Poisson's ratio. 

Introducing the dimensionless variables x = x JL, y = x Jh and 
making use of Eqs. (3), the field Eq. (4) and boundary conditions 
(1), (2) can be rewritten as 

F,yvyy + pF,xxyy + e2P 2F . . . . .  = 0 (7) 

F,~..(x, ±1) = ( ±q2 + p2)L 2/2, F,xy(X, ± 1 )  = ( ~ q l -  pOhL/2 

at y = _+1 (8) 

[{F,y, F x , yF,y  - F } ] ~ .  1 = {F'i h ,  - F 2  L, /~/} a tx  = 0, 1 (9) 

where p = bSh2/L 2, q. = q.b + q~,, P. = q.~, - q~,. Equations 
(7)-(9) can be conveniently solved by considering the antisym- 
metric and symmetric parts of boundary conditions (8), corre- 
sponding to loads q2 (case I), pj (II) and P2 (III), ql (IV), 
respectively (Fig. l). 

3 T w o - D i m e n s i o n a l  E las t i c i ty  Inter ior  S o l u t i o n  

For isotropic strips, Donnell (1952, 1976) solved cases I and III 
of Eqs. (7)-(9) by means of a series expansion involving deriva- 
tives of even order of the bending moment M(x) and polynomial 
functions of 3'; B oley and Tolins (1956) solved all the four isotro- 
pic cases. Dnva and Simmonds (1990) modified these series solu- 
tions for an orthotropic strip under transverse load q2 (case I). 

In the present section, the solution for an orthotropic strip 
subject to the four loading conditions is given. To this end, the 
stress functions is cast in the form 

Fc(x, y) -dPc(x)pC(y) ~, ,, (2,,) c = - p dpc (x)P,,(y) 
n=l 

C = I ,  II, III, IV (10) 

where (.)oo denotes the nth derivative with respect to the axial 
coordinate x and index C stands for the case considered. Function 

Case I 

2 

/~20 =.. . . . . . . . . . . . . .  //~ 

M ° k i l  ~ ~ f _ - - f ~  M L 
x2~ ~t-Jt-x~- q2/2 

Case II 

p J 2  
.,,d~_ . . , J t~  . . d l t ~  

x2 Pt/2 

Case III Case IV 

p2/2 q1/2 
. . . . . . . . . .  

~ ~ - ~ 1 ~  - ~ t  [ ~  L -  -21ffTq,/2 

x2 P2/2 x2 

Fig. 1 Nomenclature for the four loading conditions 

~ c  and polynomials pC are defined in such a way the first term in 
Eq. (10) satisfies boundary conditions (8), (9) and corresponds to 
the classical theory, whereas the summation at the R.H.S. fulfils 
the field Eq. (7) with homogeneous boundary conditions. These 
requirements are verified by the following sets of functions: 

{~b ~,t, (I~m, ~ v }  = M(x), hL pl(t)dt, 

1 
L 2 (x - t)p2(t)dt, hN(x) (11) 

f 3 y  - y3 y _ y3 1 1 - y2] 
{PL p~l, p i l l  p~V} 

4 ' 4 ' 2 '  ~ ~ (12) 

where 

f x  1 N(x) = pL + L qt(t)dt, 

f x  

M(x) = )~1 L - P~L(1 - x) + L 2 (x - t)q2(t)dt (13) 

are the axial resultant and the bending moment in terms of loading 
functions. Moreover, pC(y) are polynomials functions which can 
be obtained from the following recursive formulas: 

4 C 2 C d P .  d P,,-I d4pf  d2Pg (n = l ) ,  -- 
dy4 - dy2 ~ y 4  dy2 

2 C 
E Pn-2 

for n_> 2 (14) 

subjected to the following conditions: 

d P ~ ( ± l )  
P ~ ( ± I ) -  - 0  fo rn  >- 1. (15) ay 

Explicit expressions for the polynomials PC will be given in the 
following section. The solution (10)-(15) can be readily verified 
by direct substitution into Eqs. (7)-(9). 

According to Eq. (14), for isotropic strips (e = ½) the polyno- 
mials p,C are independeit of the elastic constants. Moreover, 
although four elastic constants characterise an orthotropic strip, the 
polynomials PC depend on the combined elastic parameter e only. 
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With reference to the boundary problem, an analogous conclusion 
was drawn by Horgan and Simmonds (1991) for the strip eigen- 
functions and corresponding eigenconditions. 

Finally, displacement components can be derived from the stress 
function, as usual, through the integration of stress-strain relations, 
so obtaining 

h R66 
<(x, y) = Up(X) - ~ ~;(x)y - Z -  ~ P"*~"+'~(x)U"C(Y) 

n = 0  

(16) 

u2(x, y) = Vo(X) + ~ ~ p"Cb ~"~(x)V~(y) 
n = 0  

(17) 

where 

N(x)L 
U'o(X) = Ru A ' 

RilL2 M(x) + hL p~(t)dt (18) v~(x) - I 

2R12 / d2p~+l(Y) + R12 
u.C(y) = 1 + ~ 6 6 /  dY - - - - - r - -  R66 pC(y) (19) 

dP~(y) dU~(y) 
V~(y) = d--~-- + dy (20) 

and A = 2h, I = 2/3h 3 are cross-sectional area and second area 
moment, respectively. Equations (18) coincide with the basic 
equation of classical beam theory, whereas u~(Y) and c V,, (y) 
represent axial and transverse warpings given by polynomial func- 
tions of higher order of y. 

Equations (18) must be integrated making use of an appropriate 
set of boundary conditions. The boundary conditions necessary to 
give a residual solution (both in terms of stresses and displace- 
ments) decaying exponentially to zero can be found in Lin and 
Wan (1990); this approach provides for the correct value of dis- 
placements far from the beam extremities, without requiring the 
solution of the boundary problem; nevertheless, it has been pro- 
posed for strips under tip loads, and higher-order moments of 
residual stresses than those tabulated in Lin and Wan (1990) 
should be calculated for more complex loadings, To avoid this 
problem, simpler boundary conditions in terms of average trans- 
verse deflection and mean rotation (see Section 6) can be pre- 
scribed; in this case, the associated boundary problem gives rise to 
decaying residual stresses together with an additional (small) term 
correcting the displacement field (Horgan and Simmonds, 1991; 
Savoia and Tullini, 1996). 

P,, (Y) 4 Polynomial Functions c 
Making use of boundary conditions (15), the following solutions 

of the differential Eqs. (14) are obtained (Smirnov, 1964, Vol. IV): 

{P[1, pal, p~H, pIV} 

( y ( 1 - y 2 ) Z  y ( 1 - y 2 ) 2  ( 1 - y 2 ) 2 ]  

t 80 ' 80 , 0 ,  ~ j  (21) 

Io P~(y) = [Ki(y, t)P~_l(t) - e2Kz(y, t)P~-z(t)]dt 

forn-->2.  (22) 

Equation (22) is a Fredholm equation of second kind whose 
kernels K~(y, t) for strips subjected to odd and even conditions 
(cases I, II and III, IV, respectively) are defined as 

- y t ( 3 - y 2 ) / 2 +  t, t<- y 
K~(y, t) = -y t (3  y2)/2 + y, t >- y' 

f t (1  - y ) Z ( 3 y - 2 t  2 - y t 2 ) / 1 2 ,  t<-y 
K~(y, t) = [y(1 : t ) z ( 3 t  2y 2 y2t)/12, t >- y 

(1 + y Z ) / 2 - y ,  t<-3, 
K~l (y , t) l (1 +yZ)/2  t, t >-- y' 

( 1 - y ) Z ( l + 2 y - 3 t 2 ) / 1 2 ,  t<--y 
K[(y, t)  = (1 t)2(1 + 2 t - 3 y 2 ) / 1 2 ,  t - ->y '  (23) 

These kernels are continuous in [0, 1] × [0, 1]; hence existence 
and continuity of functions 

Yo I0 A2(y) = [g~(y, t)lZdt, B2(y) = Ig2(y, t)12dt (24) 

is guaranteed. The corresponding L2-norm in [0, 1], denoted by 
I1" I10, gives 

I 13 
IIA°llg-  2 1 0 '  I IB°l lg-  72765------0' 

1 29 
IlA~llg = ~ '  IIBel[g - 28350 (25) 

for the four kernels in Eqs. (23). 
In order to obtain conditions for the convergence of polynomial 

representations of the interior problem solution (see the next 
section), an upper bound for the absolute value of polynomials pC 
must be given. Making use of the Cauchy-Schwarz inequality, Eq. 
(22) yields the following upper bounds for the absolute value and 
the norm of the polynomials P~: 

[e~(y)] _< A(y)lle,,c_lllo + ~2B(y)llP,~_do for n >-- 2 (26) 

IIPX[10 -< Ilall0[Ie.C-l[10 ÷ ~211BII011eL2110 for n -> 2. (27) 

Therefore, it can be proved that (see the Appendix) 

IIPKllo -< Ilallg(l ÷ ~2)"-'llPffllo for n --> 2. (28) 

FinaLly, making use of inequaIity (28), inequality (26) reduces to 

IP.C(y)] -< IIAII;- '(1 ÷ e2)"-=llPgl[o 

[ e 2 B(y)] 
x A(y) + 1 + e 2 IlAll0J " (29) 

The function in brackets at the R.H.S. is less than a constant c, for 
it is continuous for all e in [0, 1]; hence, the following upper hound 
for the absolute value of polynomials P~ is obtained: 

IP~(y)l  <- cllAllg-l(1 + d)"-~llegl l0 for n --> 2. (30) 

5 Sufficient Condition for Convergence of Polynomial 
Series 

A sufficient condition to establish the convergence of the poly- 
nomial series appearing in Eq. (10) can be obtained by analysing 
the absolute convergence; this can be done making use of Eq. (30) 
and Cauchy's criterion (Smirnov, 1964, Vol. I). The convergence 
condition strongly depends on the kind of loading applied and 
degree of orthotropy of the strip. For instance, consider the case of 
a stress function Fc where qbc is bounded together with all its even 
derivatives dP~ 2"). In this case, the following inequality is to be 
satisfied: 

p]lAIIo(1 + C) < 1. (31) 

Substituting Eqs. (25a, b) in (31), the polynomial representation 
turns out to be absolutely convergent when p < 14.49/(1 + E 2) 
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(cases I and II) or p < 5.48/(1 + e ~) (III and IV) for antisymmetric 
and symmetric loading conditions, respectively. 

It is worth noting that, for e = 0, making use of eigenfunction 
expansion of the corresponding kernels Savoia and Tullini (1996) 
established a wider range, i.e., p < 20.19 and p < 9.87, for odd and 
even polynomials, respectively. Unfortunately, due to nonorthogo- 
nality of eigenfunctions for orthotropic strips, the same procedure 
cannot be applied to the present case. 

With reference to a general loading condition, the series re- 
ported in Eq. (10) is absolutely convergent if, starting from a given 
value n, the following inequality holds: 

pllall0(1 + ~ 2 ) , , , / ~ <  1 Vx E [0, 13. (32) 

If the applied load varies along the beam according to a trigo- 
nometric or an exponential law [+c  = cos (ax), exp(ax), etc.], 
it can be verified that Io~+">1 = o~="1~+1; consequently, Eq. (32) 
gives 

l L 2 ,~2llzll0 
p < o~2l[A[10(1 + ,2) © ~ > ~ ~(1 + E2). (33) 

In the isotropic case (E = 2, e = ½), inequality (33b) shows 
that a sufficient condition for convergence is established if 
L/H > 0 .214 and L/H > 0 .344 for antisymmetric_and sym- 
metric loadings; for a typical composite materials (E = 25, e 

0), L/H > 0.66ot and L/H > 1.074. 
Finally, it is worth noting that the estimates presented in this 

section hold for the elasticity solution written in the form (10) as 
well as for every polynomial representation of the interior prob- 
lem. 

6 Accuracy of Beam Theories 

Timoshenko-Like Beam Theories. In Timoshenko-like 
beam theories, two kinematic measures for displacements are 
usually employed. Following Cowper (1966), the dimensionless 
averaged transverse deflection ~ and the mean rotation q~ of the 
cross section are introduced according to the following definition: 

if "O(x) = AL u2ax2, q~(x) = - ~ UlX2dx2. (34) 
- h  h 

Substituting Eqs. (16), (17) in (34), the following constitutive 
relations are obtained (C = I, II): 

q~' - Ri,L [ R12h2 ~ . . . .  cm/2,,+2/ 
I dPc -- RiiL-----~ t-" -,,~-c , 

n = 0  

_ = cb~/L ~ ~2"+I)/L (35) 
'0' qP ~ + k,CGl2A 

n = l  

where functions qbc are reported in Eq. (11), and dP'i/L = Q and 
dP'H/L = -p~h (see Eq. (35b)) represent the shear force and 
distributed moment; moreover, 

c - f  1 a.  - P,~(y)ydy, 
-1  

1 [ 3 R 1 2 c l  
k,,C: 2p" P~'(1) + U~:(I) - --a,,2R66 (36) 

are the first moment of polynomials p,C and the set of shear 
correction factors. For instance, the first correction factor ko, is 
equal to 

1 6 + Rl z /R66  1 l + Riz /R66  

k I -  5 ' k 1I-  5 (37) 

For isotropic and orthotropic strips, Eq. (37a) gives the shear 
coefficients obtained by Cowper (1966) and Dharmarajan and 
McCutchen (1973) for a constant or linear shear resultant, 
whereas, for strongly orthotropic beams in plane stress, the term 
Ri2]R66 = - vi2G12/E1 is negligible and k0 I = ~, ki t = 5. For case 
I, the first terms in Eqs. (35) represent the classical Timoshenko 
constitutive equations. The summations contain higher-order cor- 
rection terms, where the shear factors kn c defined in Eq. (36b) 
multiply the even derivatives of Q and P l and are required for 
nonuniform loads. Hence, Eqs. (35) are useful to establish the 
range of validity of Timoshenko classical theory. The dependence 
of the shear correction factor on the loading condition has been 
already pointed out by Berdichevsky and Kvashnina (1976) in 
their asymptotically exact beam theory and by Savoia et al. (1993) 
for multilayered beams. 

It is worth remembering that only for slender beanas the interior 
problem alone is meaningful and global parameter of deformabil- 
ity can be evaluated with Timoshenko's beam theory; on the 
contrary, for deep beams the end effects may become more im- 
portant than higher-order interior refinements. Thereforel even 
though Eqs. (35) suggest the possibility of obtaining a refinement 
of Timoshenko's beam theory, no cross-sectional warping can be 
described using two kinematic variables only and, consequently, 
no boundary problem can be taken into account in a second step of 
analysis. 

Higher-Order Beam Theories. A simple way to reobtain 
higher-order beam theories is to retain a finite numbers of terms in 
the series appearing in Eq. (10). For example, the stress field ~ ,d  
corresponding to a second-order beam theory for plane bending 
(cases I, l i d  (Hashin, 1967; Tsai and Soler, 1970; Rehfield and 
Murthy, 1982; Rychter, 1988) can be obtained directly from the 
first two terms in Eq. (10): 

Mhy 3y -- 5y 3 
~r~'~ d -- ~;q2 (38) 

I 20 

2nd_ 1 [ 3 M '  1 - 6y 2 + 5y41 
~r,2 -- ~ 1 ~ -  (1 - y 2 )  _ pq'2L 40 J (39) 

1 3 y - y 3  y _ 2 y 3 + y 5  
o~2 d = ~P2 + q2 4 ~- pq~ 80 (40) 

The error of the stress field o "N'h of the Nth-order beam theory 
with respect to the exact interior solution ~r 2° derived in Section 3 
can be evaluated as 

e , , , , -  II,~ N' ' -  ,~2~lt 
[[cr2Dl[ (41) 

where ][' [] is the norm for the stress tensor based on the comple- 
mentary elastic energy, 

f0J II,~ll 2 = hE (R,,~r~l + R22o~2 + 2R,2oh,~r22 
-1  

+ R66o'~2)dxdy. (42) 

With reference to case I, for sufficiently slender beams (i.e., for 
values of the slenderness which allow for the Maclaurin's expan- 
sion of Eq. (41) in terms of powers of H/L), the dominant term in 
the complementary elastic energy is the axial normal stress o-~. In 
fact, by direct inspection of stress field (38)-(40), stress compo- 
nents o-t~, o~2, o52 can be found to be of O(L2/H2), O(L/H), O( 1 ), 
respectively. Therefore, if the sufficient condition for the conver- 
gence of polynomial series representation is fulfilled, the error (41) 
can be given the following asymptotic form: 

eN,,, N IIM~2N~I[0 IId2P~/dy=ll° 
o I ~ o  I[d2eL/dyZllo as n i L  ~ 0 (43) 
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where, as before, II'llo stands for the L2-norm on [0, 11 or, equiv- 
alently, 

e Nth ~ 4N iidZPUdy=llo ~ as H / L  ~ 0 (44) 

where IN is the characteristic wavelength of the loading, defined as 
(IN/L) 2~ = IIMIIo/IIM(=N G 

Equation (44) shows that the error related to the Nth-order beam 
theory is of order (H/IN) 2N. A similar result was obtained by Duva 
and Simmonds (1990) for the computable error obtained through 
the Synge-Prager hypercircle method by using kinematically ad- 
missible and statically-admissible strain fields. In addition, Eq. 
(43) gives the actual error with respect to the interior two- 
dimensional solution, together with the explicit computation of the 
coefficient multiplying (H/ lu )  2N. For instance, for the first-order 
(Euler-Bernoulli) beam theory and the second-order beam theory 
(Eqs. (38)-(40)), the following error estimates can be obtained: 

e'~t--~ 20 2 ~  ~ ' e 2 n d ' ~  E2/20nd(• ) 12 

as H / L  --> 0 

where 

2nd 
f0 ( e ) =  

(45) 

(37 - 690e  2 + 3425e  4) 1/2 

8 4 0 0 3 ~  
(46) 

Strongly  O r t h o t r o p i c  B e a m  Theory .  For composite materi- 
als with fiber reinforcement in the beam axis direction, the coef- 
ficient • of Eq. (6b) approaches zero. Hence, a simple one- 
dimensional solution can be obtained setting e = 0 in Eq. (14b) 
defining the higher-order polynomials. This theory is particularly 
attractive, since both interior and boundary solutions turn out to be 
particularly simple. For instance, the boundary problem can be 
easily solved making use of the eigenfunction expansion proposed 
by Horgan and Simmonds (1991) and applied by Savoia and 
Tullini (1996) to beams with prescribed displacements and stresses 
at the beam ends. For case I, error estimate (41) assumes the 
following asymptotic form: 

e(,~0~ ~ 04 IIM%0 i ldZP~/dY2[~=o- d2P~ldy2]lo 

IIMII0 [Id~0~Y~0 
a s H / L ~ 0  (47) 

which can be rewritten in the same form of Eq. (45b), where Eq. 
(46) is replaced by 

• 2 , / 137  
f(°'~°~(e) = i - ~  ~ 33 " (48) 

By comparing Eqs. (46)-(48) it can be concluded that the 
orthotropy coefficient • strongly influences the accuracy of beam 
theories considered here. For isotropic beams (•  = 0.5), the 
second-order beam theory is more accurate than the strongly 
orthotropic beam theory, whereas for e < 0.23 (that is for typical 
orthotropic materials) the situation is completely reversed. For 
instance, for • -+  0 the error of strongly orthotropic beam theory 
approaches zero, whereas this is not the case for second-order 
beam theory. 

7 F i n a l  R e m a r k s  

Figure 2 shows the actual mean square error of stress field 
given by first-order beam theory, second-order beam theory and 
strongly orthotropic beam theory for a cant i lever  orthotropic 
strip under a transverse load varying with a parabolic law. In 
this case, the asymptotic formulas ((45a, (45b), (47)) hold for 
L / H  > 4.7,  that is for this range of slenderness a Maclaur in ' s  
expansion in terms of power of H / L  is possible for the denom- 

eNth = 

0.1 

10 -2 

10 -3_ 

10 -4 _ 

104 - 

10 -6 

0.1 

~Nth_ ~=o tl/11 ~2D II 

\ \ 
\ \ 

\ ' \  = 

\ \ 

\ \ \ \  2 

! _ _  

!-- . . . . . .  E=0 \ 

2 5 2 2 5 
1 10 100 L / H  

Fig. 2 Mean square error of stress fields given by the first-order (Euler- 
Bernoulli) theory, the second-order theory and the strongly orthotroplc 
beam theory, for a cantilever orthotropic strip (EilGI= = 50, EdE== 25, v~2 = 
0.25) under a transverse load varying with the parabolic law q2 = qLx z. 

inator of Eq. (41). First of all, the asymptotic behavior as L / H  ---> 
oo for the three theories is confirmed, and the error for the 
strongly orthotropic beam theory is 9.2 times lower than for 
second-order theory. For very short strips ( L / H  < 1), the 
dominant  term in the complementary elastic energy (42) is the 
transverse normal stress o~22 and the error approaches a constant  
value for all the theories. Nevertheless,  the strongly orthotropic 
beam theory is still sufficiently accurate (e ('~°) ~ 0.1) ,  whereas 
first-order and second-order theories are completely inadequate 
(e I s ' =  e 2"d ~- 1). 
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A P P E N D I X  

Equation (28) can be proved from Eq. (27) by using mathemat- 
ical induction. Since [tP,~[10 _< IIAII011Pgll0, gq (27) for n = 2 reads 
as 

IIe~llo -< IIAIl0~(1 ÷ ~211gllo/llello~)llPgll. (A1) 

Further, by direct computation from Eqs. (25), it can be verified 
that Ilgllo/llAIIo ~ < 1, then inequality (28) holds for n = 2. By 
assuming Eq. (28) to hold for n, Eq. (27) reduces to 

I ~211Biio ] 
IIPLilI0-< IIAII;~I(1 ÷ ~2)~-2 1 + ~2 + [IAIIg jllPgll° (A2) 

for n + 1. Since the term in brackets is less than (1 + e2) 2, then 
Eq. (28) holds also for n + 1; thus, by mathematical induction, it 
is valid for all n. 
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Plastic Buckling of Circular 
Cylindrical Shells Under 
Nonuniform Axial Loads 
Elastoplastic buckling of circular cylindrical shells subjected to piecewise-uniform 
circumferentially varying axial loads' is studied within the framework of linear stabil- 
ity analysis in conjunction with small strain plasticity. Both J2 flow and deformation 
theories with arbitrary hardening are used to model material behavior. Donnell-type 
equations are solved separately for each loaded segment with the interfacial continu- 
ity conditions providing the eigenvalue equation for the buckling parameter. Sample 
results are presented for pure bending and for uniform compression over a finite 
axial band. In all cases, deformation theory predicts buckling loads smaller than 
those obtained from flow theory. Loading nonuniformity becomes appreciable as the 
applied stresses concentrate over a narrow axial band. In that context we discuss 
the possibility of plastic buckling under the action of concentrated forces. The analysis 
is restricted to a membrane prebuckling state of  stress and hence applicable to 
relatively short shells. 

1 Introduction 
Elastic buckling of circular cylindrical shells under nonuni- 

form (circumferentially varying) axial loads is practically inde- 
pendent of the load profile (Libai and Durban, 1973). Unless 
highly oscillatory loads are applied (Libai and Durban, 1977), 
or the shell is very short (Durban and Libai, 1974) or relatively 
thick (Durban and Libai, 1976), buckling will occur when the 
highest axial stress along the circumference attains the corre- 
sponding critical stress value of a uniformly compressed circular 
cylindrical shell. These observations follow from a detailed 
analysis, using the eigenfunction expansion method, and are 
valid within the framework of linear elastic buckling theory 
with a membrane prebuckling state of stress. Earlier studies by 
Abir and Nardo (1958), Bijlaard and Gallagher (1959) and 
Seide and Weingarten (1961) arrived at essentially the same 
conclusions. 

A particularly interesting work by Hoff et al. (1964) exam- 
ines the problem of buckling under axial compression (due to 
heating) distributed uniformly over an axial band of finite width. 
No appreciable increase of the critical stress, as compared with 
uniform loading over the entire circumference, has been found 
unless the width of the compressed band becomes very small. 

Much less is known on plastic buckling of circular cylindrical 
shells under nonuniform axial loads. While plastic buckling 
under uniform compression has been studied in detail (Tver- 
gaard, 1983a; 1983b; Ore and Durban, 1992), most available 
studies on plastic buckling under nonuniform loads deal with 
the important problem of pure bending. Reddy (1979a) per- 
formed tests on plastic buckling in pure bending of steel and 
aluminum tubes. The experimental data for the maximum com- 
pressive stress at buckling correlated to within +5 percent with 
J2 deformation theory predictions for buckling of uniformly 
compressed shells. In a companion paper Reddy (1979b) pre- 
sented an approximate bifurcation analysis for pure bending, 
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using the ,/2 flow theory. An increase of up to about 35 percent 
in the buckling stress as compared to uniform compression was 
reported. The importance of considering nonlinear effects in the 
plastic bending behaviour and buckling of long cylindrical 
shells has been emphasized by Gellin (1980) and by Calladine 
(1983). The latter paper presents an original engineering-wise 
treatment of plastic buckling of tubes in pure bending. Fabian 
(1981) enhanced earlier studies on plastic buckling by examin- 
ing the collapse of long tubes under combined bending and 
pressure load. A comprehensive investigation on elastoplastic 
instabilities in bending of long circular cylindrical shells is 
given in (Kyriakides and Ju, 1992; Ju and Kyriadides, 1992). 
These studies emphasize the importance of nonlinear prebuck- 
ling deformation and examine the details of various bifurcation 
modes with the J2 deformation theory, though the primary path 
has been evaluated with the J2 flow theory. For long shells 
made of A1 6061 T6 the authors identify experimentally and 
numerically three distinct regimes of plastic structural instability 
which depend on the radius to thickness ratio. 

In this work we report the results of an investigation into the 
plastic analogue of the problem studied by Hoff et al. (1964) 
for elastic buckling. The basic setting is that of a circular cylin- 
drical shell subjected to nonuniform axial compression by 
stresses that admit a piecewise-uniform circumferential profile. 
Thus, the elastoplastic instantaneous moduli are load dependent 
but remain constant within each separate segment. Assuming a 
membrane prebuckling state of stress it becomes possible to 
solve the governing buckling equations within each segment 
by separation of variables representation of the eigenmodes. 
Appropriate continuity conditions along the interfaces between 
the loaded segments provide the eigenvalue equation for critical 
stresses. The analysis is with both J2 flow and deformation 
theories and accounts for arbitrary hardening. Sample calcula- 
tions are presented, for pure bending and for uniform compres- 
sion along a finite axial strip, for a number of metals. As ex- 
pected, deformation theory predicts buckling loads which are 
always smaller than flow theory results. As in the elastic case, 
loading nonuniformity becomes important when the applied 
stresses concentrate over a narrow zone. Also discussed is the 
possible limit, when the loaded band becomes extremely nar- 
row, of plastic buckling under concentrated axial forces. While 
neglecting the effect of prebuckling deformation the present 
paper highlights the influence of load nonuniformity, material 
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Fig. 1 Notation for circular cylindrical shells 

nonlinearity and plasticity theory model  The validity of the 
present analysis is limited to relatively short shells that buckle 
in the classical sense of bifurcation theory, but excludes the 
Euler type column buckling. 

2 F o r m u l a t i o n  o f  the  P r o b l e m  

A circular cylindrical shell is subjected to circumferentially 
varying edge loads given by the axial stress resultant 

Eh 
N,.o = ~r,,,h = - - - ~ p S ( O )  (2.1) 

where, with the notation of Fig. 1, ~rxo is the axial stress, h is the 
thickness, E is the elastic modulus, p is the loading parameter 
(eigenvalue),  S ( 0 ) - - t h e  piecewise-uniform circumferential 
profile of the load suitably normalized by Sm,~x = S(O = O) = 
1 and 

g2 = ~/3(1 - u 2) R (2.2) 
h 

with u standing for Poisson's ratio, and R being the shell radius. 
Notice that in (2.1) c~]'.~ff = per, where ~r,, = E h / g  2 is the 
classical elastic bifurcation load in uniform axial compression. 

Assuming a simple prebuckling membrane state of stress, 
where the only active component is (2.1),  we wish to find the 
smallest value of p tbr which buckling is possible. To this 
end we employ the elastoplastic version of the Donnell type 
equations (Ore and Durban, 1992) 

E~xuxx + G~ouoo + (Exo + G,o)V,.o - E~ow.~ = 0 (2.3a) 

(Exo + G,.o)u,o + G,,.ov.x~ + Eoov.oo - Eoowo = 0 (2.3b) 

E~xw,~x, + 2(E~o + 2Gxo)Wx.,OO + Eoow.oooo - 12 [Exou, 

+ Eoo(Vo - w)] + 4 E o g 2 p S ( O ) w x ,  = 0 (2.3c) 

Here (u,  v, w) are the mid-surface velocities (Fig. 1 ) at buckling 
(normalized with respect to R). The instantaneous moduli (E~x, 
E~o, Eoo, G~o) are determined by the in-surface constitutive rela- 
tions 

dr., = E ~ ,  + E~o~o (2.4a) 

dro = Ex&,. + Eoo~o (2.4b) 

~-~o = 2G~o~o (2.4c) 

where (drx, dr0, ¢.,o) and (~ ,  ~0, ~xo) are the usual in-surface 
stress rates and strain rates, respectively, x is the axial coordinate 
(Fig. 1 ) nondimensionalized with respect to R, and 

E 
Eo - - -  (2.5) 1 - ~2 

Note that all three velocity components depend on (x, 0). 

The boundary conditions that supplement Eqs. (2.3) are those 
of simply supported ends, namely 

u ~ = 0  v = 0  w = 0  w , ~ = 0  at x = 0  

L 
and x = - -  (2.6) 

R 

Material behavior is modelled by the two small strain J2 
theories of plasticity. For the flow theory we have, with the 
standard notation, 

dr~j = 2GLii + X.bo~k~ - 3(G - Gr) SoSk~L~ (2.7) 
2 

O- e 

where (G,  ~) are the Lam6 constants, G, is the tangent shear 
modulus defined by 

G, G - (2.8) 

with E, denoting the uniaxial tangent modulus, S~; is the stress 
deviator, and or,. is the effective stress 

2 3 
O'e = ~ Si iSi  j (2.9) 

Specializing (2.7) for the uniaxial prebuckling state (2.1) we 
get the instantaneous moduli 

Exx = H, ~7' + 3 Eoo = H, rl, 
4 

E~o = H, ~' + 2 u -  1 
2 

Gxo = G (2.10) 

where 

H, = 
4E 

(5 - 4 u ) r / , -  (1 - 2u) 2 
E ~, =~, (2.11) 

The rate form of the deformation theory reads 

6o = 2G~Lij + k,61j~kk -- 3(G,  - G,)  S~jSkt~kt (2.12) 

where ( G ,  XD are the secant Lam6-1ike moduli 

Es 1Is E~. 
G, h, = (2.13) 

2(1 + u~) (1 + us)(1 - 2u,) 

Es is the uniaxial secant modulus, and the plastic Poisson ratio 
is defined by 

u s = E -  - u E (2.14) 

The instantaneous moduli associated with (2.12) are 

~7, + 3~7.,. 
Exx = H ~ -  Eoo = H,.rlr 

4 

E~o = H,  rl' + 2u  - 1 Gxo = G~ (2.15) 
2 

where 

4E E 
(2.16) 

(3r/, + 2 - 4u)~Tr - (1 - 2 / / )  2 ~ •  

The instantaneous moduli depend on the level of the effective 
stress which for our problem is given, via (2.1), by 
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~ e  P 
E g2 I s(0)l  (2.17) 

Thus, the eigenvalue p enters the coefficients of the partial 
differential Eqs. (2.3).  For example, with the Ramberg-Osgood 
characteristic 

~ + K (2.18) c E 

where e is the total strain and (n, K) are material parameters, 
we find 

~, = 1 + n K  I S ( 0 ) I  ( 2 . 1 9 )  

/ n  1 

= K £-  ~ . ~  1 + IS(O)I (2.20) g2 

The problem lies in finding an eigensolution of Eqs. (2.3),  
along with the boundary data (2.6),  which is associated with 
the minimal eigenvalue p. The difficulty in arriving at that 
solution arises from the circumferential variation (0-depen- 
dence) of the instantaneous moduli in (2.3).  However, as we 
shall see in the next section, when the load profile S(O) is 
piecewise-uniform it becomes possible to obtain a piecewise 
separation of variables solution of the governing eigenvalue 
system. 

3 The  E i g e n m o d e s  
Consider the two segment loading 

1 -Oo -< 0 -< Oo 

S(O) = - ~  Oo < 0 <- 2 7 r -  Oo 
(3.1) 

With ( = 1 the distribution (3.1) describes pure bending, and 
when ( = 0 we have the case of a uniformly compressed axial 
strip of width b = 2ROt. 

Since S(O) is piecewise uniform, Eqs. (2.3) admit separation 
of variables solutions of the form 

u = a cos ( k~x )e  p° 

v = B sin (kt~x)e pO 

w = C sin (k/3x)e p° 

(3.2a) 

(3.2b) 

(3.2c) 

where (A, B, C) are constants, k is an integer, fl = 7rR/L, and 
p is to be determined separately for each segment. The field 
(3.2) satisfies the boundary conditions (2.6).  When substituted 
in (2.3) we arrive at the algebraic system 

[-(k/3)2E~x + p2G~o]a + (k/3)p(E~o + G~o)B 

- (k/3)E~oC = 0 (3.3a) 

- (k[3)p(Exo + Gxo)A + [-(kt3)2Gxo + p2Eoo]B 

- pEooC = 0 (3.3b) 

+ [(k~)4Ex~ - 2(k,6)2p2(E~o + 2G~o) + p4Eoo 
k 

+ 12 Eoo - 4(k/3)ZEog2pS(O) C = 0 (3.3c) 

For a nontrivial solution it is required that the determinant of 

the system (3.3) should vanish. This leads to the characteristic 
equation for the roots p 

[EooP 4 - 2(E~o + 2G~o)(kfl)2p 2 

+ E~x(kfl)4 _ 4(k/B)2Eog2pS(O) ] × [Eoop4 { EEo 2 
- ~-d-f~o P c, 

- 2 E ~ o )  (k13)2p2 + Exr(k~) 4] 

4 2 4 2 + 4(k/3) Eog Pd = 0 (3.4) 

where 

] _ i / 2  
- - -  - E ~ o )  (3.5) P~l E2 ( E~Eoo 2 

The classical buckling load for an axially compressed isotropic 
elastic shell, with S(O) = 1, is p = p~ = 1. Here, however, it 
is convenient to use (3.5) as a nominal reference which depends 
on the eigenvalue p itself through the instantaneous moduli. 

Equation (3.4) has 8 complex roots which will be labelled 
as +-Pi (i = 1 . . . . .  4) where P3 =/Yt and P4 =/Y2. The corre- 
sponding eigenmodes are either symmetric or antisymmetric 
with respect to 0 = 0. For symmetric buckling 

4 

u = cos (kl3x) ,Y__, Ciai cosh piO (3.6a) 
i 1 
4 

v = sin (k/3x) ~ Cibi sinh piO (3.6b) 
i--I 

4 

w = sin (k~x)  ~ Ci cosh piO (3.6c) 
i 1 

where 

(k~) 
ai - [EooP~ +E~o(kfl) 2] 

Pi 

b, - (k~)piai ( Pi ) E_EEs_Eo p~,( ~ o  

i = 1 . . . . .  4 (3.7a) 

i = 1 . . . . .  4 (3.7b) 

and 

ox0 ) P = EooP 4 _ ~  p ~ , -  2Exo (k/3)2p 2 + Exx(k/3) 4 (3.8) 

wi thP i  = P ( P  = Pi ) i = 1 . . . . .  4. 
It is important to note that the roots p~ depend on the shell 

geometric parameters R/h  and L/,~-R-£, on the material proper- 
ties, the eigenvalue p, the axial half waves number k, and the 
load parameter ~ defined in (3.1).  Thus, a different velocity 
field (3.6) will apply to each segment. For antisymmetric buck- 
ling we can use (3.6) with the transformations sinh p~O ~ cosh 
p~O and cosh p~O ~ sinh p~O. 

The equation for the eigenvalues p is provided by appropriate 
continuity conditions at the interfaces 0 = -+00. Obviously, the 
velocity w and its derivative w0. should remain continuous. Also, 
the resultants rates No and Nxo cannot suffer a jump at the 
interfaces. So both quantities 

]qo = Exou.x + Eoo( v o - w)  (3.9) 

and 

IVxo = Gxo(U.o + v.x) (3.10) 

should be the same on both sides of the generators 0 = -+00 
when evaluated for each segment. An interesting phenomenon 
here i s - - w i t h  the exception of Gxo = G in (2.10) and the case 
of the flow theory with linear hardening- - the  associated jump, 
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along the interfaces, in the instantaneous moduli (E~,, E~o, Eoo, 
G,0) as determined by the loading (3.1). It is also required that 
the effective shear resultant rate (Hoff, 1954) 

1 
1 (3/o,o - 3/xO,x) q- APlo,~ Oa , .  

= 1_ (/I)/o,o - 23/~o,x) (3.11) 
R 

remains continuous. Thus 

- (E~ow~o + Eoow.ooo) - 4G~ow.,xo (3.12) 

is continuous. (Recall that 3/0~ = --3/~0.) 
Finally, the moment rate 3/o and the velocities (u,  v) provide 

three additional continuity conditions. For 3/0 the relevant quan- 
tity which should remain continuous at 0 = -+0o is 

E**w.x, + Eoowoo (3.13) 

Since the eigenmodes (3.6) are not periodic in the circumfer- 
ential direction there is no guarantee that the appropriate 
smoothness conditions at 0 = +Tr will be met. For example, 
symmetric buckling modes (3.6) should give W o = 0 at 0 = 
+Tr, while antisymmetric patterns should give w = 0 at 0 = 
_+Tr. Solutions of the type (3.6), or its antisymmetric counter- 
part, clearly do not satisfy those conditions and in order to 
overcome that difficulty we introduce a new coordinate 0 de- 
fined as 

= 0 - ~ (3.14) 

so that at 0 = -+0o we have 0 = ¥(~r - 0o) = ¥0o. The 
symmetric solution in the segment 0o < 0 < 27r - 0o is now 
written as 

4 

u = cos (kl3x) ~ C,*a~ cosh p ~ 0  (3.15a) 
i=1 

4 

v = sin (kt3x) ~ C3b~ ~ sinh p r o  (3.15b) 
i=1 

4 

w = sin (k/3x) ~ C~ c o s h p 3 0  (3.15c) 
i=I  

where the symbol ( )* indicates quantities evaluated at that 
segment. Antisymmetric modes are obtained from (3.15) with 

the exchanges of sinh p,*0 to cosh p r o  and of cosh p*0  to 

sinh p~0.  
Compliance with the continuity conditions along the inter- 

faces at 0 = -+00 (or 0 = ¥0o) leads to an algebraic eigenvalue 
equation for_p. Thus, for symmetric buckling modes, we have 
at (0 "-- _+0~, 0 = ¥0o) the following eight continuity conditions: 
( i)  continuity of u, v, w and w o, from (3.6) and (3.15), 

4 4 

~, Ciai cosh piOo - ~ Ci*ai* cosh p~00 = 0 (3.16) 
i=1 i=1 

4 4 

~, C,b, sinhp;0o + Y~ C~*b~* s inhp~00 = 0 (3.17) 
i = l  i=1 

4 4 

C~ cosh pi0o - ~ C* cosh p~*0o = 0 (3.18) 
i 1 i=l  

4 4 

Y, C~p~ sinhp~00 + ~ C ' p *  sinhp,*00 = 0 (3.19) 
i--I i--I 

(ii) continuity of N0,/V~0, ~z0'4~ff and 3/o, from (3.9) - ( 3 . 1 0 )  and 
( 3 . 1 2 ) -  (3.13), 

4 

Y, Ci[-Exo(k/5)ai + Eoo(bfpl - 1)] coshpi00 
i=1 

4 

- Z C~*[-E~(k/5)ai* 
i=1 

+ E~'o(b~p~ - 1)] cosh p~*Oo = 0 (3.20) 
4 . . . . . . . .  

Y, CiG,o[aipi + (k/3)bi] sinh piOo 
i= l  

4 

+ Y. C~G~[a~*p~* + (k/3)b,*] s inhp~0o = 0 (3.21) 
i I 

4 

~, C~[(E~o + 4Gxo)(k/3)Zp~ - Eoop~] sinh pi0o 
i=1 

4 

+ Y. C*[(E*o + 4G*o)(kfl)2p~ * - E~fop~ .3] sinh p*00 = 0 
i 1 

(3.22) 
4 4 

Z C / [ - g x x ( k / ~ )  2 + mooP 2] c o s h  PiO0 -- Z C i * [ - E ~ ( k t ~ )  2 
i=1 i=l  

+ E~ep~ 2] coshp~*000 = 0 (3.23) 

Here, moduli ( E ~ ,  E~o, EYo, G~o) are evaluated in the segment 

< 17r - 0ol and p/* (i = 1 . . . . .  4) are the corresponding 
roots of (3.4) in that segment. 

For a nontrivial solution of ( 3 . 1 6 ) -  (3.23) we require that 
the 8 × 8 determinant of that system vanish. This generates a 
transcendental equation which can be solved numerically for the 
smallest eigenvalue p. Repeating the analysis for antisymmetric 
modes we arrive at a similar system but with the (cosh, sinh) 
functions replaced by (sinh, cosh) in all equations. 

4 Numerical Examples and Discussion 
Consider first the simple case of pure bending where the load 

profile in (3.1) is described with 0o = 7r/2 and ~- = 1. Thus, half 
of the circumference is under compressive loads (2.1) while the 
other half is in tension of the same magnitude. For given mate- 
rial properties, loading and geometric parameters the solution 
begins by assuming a value for the axial wave number k and 
guessing an initial value for the buckling eigenvalue p. Next, 
we calculate the instantaneous moduli from (2.10), or (2.15), 
and determine the corresponding roots of (3.4) in each of the 
loaded segments. Once the roots Pi and p,* have been found it 
is possible to evaluate (ai, b i ) and (a~ ,  b~)  from ( 3 . 7 ) -  (3.8) 
and finally calculate the determinant of the system ( 3 . 1 7 ) -  
(3.23) along with its antisymmetric counterpart. The procedure 

is then repeated iteratively with a new guess of the eigenvalue 
p until the governing 8 × 8 determinant vanishes. The method 
has to allow for all competing modes to be considered by em- 
ploying a search procedure among different values of k to trace 
the smallest possible eigenvalue p within the entire space of 
symmetric and antisymmetric eigenmodes. The essence of this 
procedure lies in tracing the smallest root of the 8 × 8 determi- 
nant and satisfactory convergence was achieved to three sig- 
nificant figures in the value of p. 

Calculations were performed with three materials character- 
ized by the following Ramberg-Osgood parameters: 

Commercial AL E = 6.87.104 MPa u = 0.3 
A L 2 0 1 4 T 6  E =  6 . 9 . 1 0 4 M P a  u = 0.33 

S T A I S I 4 3 4 0  E =  2 .01 .105MPa  u = 0.28 

K =  1.27"10 I° n = 3.72 
K = 6.08'  1031 n = 15.62 
K = 7 . 6 1 ' 1 0 5 4  n = 2 7 . 6  
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Table 1 Critical eigenvalues in bending and in uniform compression. In p 
all cases the axial wave number is k = 2. 

Material Flow Theory Deformation Theory 

Bending Uniform Bending Uniform 
i 
i 

Commercial AL 0,073 0,069 0.042 0,041 

AL 2014 T6 0.502 0.490 0.487 0.485 

ST AIS14340 0.664 0.642 0,660 0.641 

E L A S T I C  

Results for a representative shell with L / R  = I and R / h  = 50, 
shown in Table 1, reveal that deformation theory predictions 
are consistently below flow theory results and that critical values 
of p in bending are only slightly higher than in uniform com- 
pression. Recall, by comparison, that in elastic buckling p -- 1 
for both uniform compression and pure bending. These findings 
are similar to the results obtained by Reddy (1979a, 1979b). 

Our next example is the case of axial compression over a 
finite strip 0 < 1001 with the other zone remaining stress free 
(Fig. 2). Here we have in (3.1) that ~ = 0 but the solution 
procedure detailed earlier remains essentially unchanged. Figure 
3 displays the critical eigenvalues, over a range of loaded band 
widths, for shells with L / R  = 1 and R / h  = 50. Also shown in 
Fig. 3 are the buckling values of p for an elastic shell with u 
= 0.3. That curve is in complete agreement with the results 
obtained by Hoff et al. (1964). 

As expected, flow theory predictions in Fig. 3 are higher 
than deformation theory results for critical loads. The difference 
between the buckling loads obtained from the two plasticity 
models increases as the width of the loaded strip becomes 
smaller. For wide strips, however, the critical eigenvalue ap- 
proaches, with both theories, its corresponding uniform load 
value. The difference between the predictions of flow and defor- 
mation theories increases with decreasing 00 and with decreas- 
ing hardening exponent n. 

It is reasonable to expect that when 00 becomes very small 
the resultant compressive load should approach at buckling an 
asymptotic value. A convenient measure for elastic buckling of 
circular cylindrical shells under concentrated axial loads (Libai 
and Durban, 1977) is the parameter k defined by (not to be 
confused with the axial wave number in (3.2)) 

P = k E h R  (4.1) 
g3 

where P is the buckling force. Libai and Durban (1977) esti- 
mated a lower bound on the value of k, in elastic buckling, to 
be k = 1.337. Comparing (4.1) with the resultant axial force 
in our problem, namely 

EhR 
P = 20op g2 (4.2) 

we find the relation 

L "1 

Fig. 2 Uniform axial compression over a finite strip 0 < I OoJ 
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og 
Fig. 3 Critical eigenvalues for axial loading along a finite axial strip. R /  
L = l j  R / h  = 00. Elastic curve is for  ~ = 0.3. F - f l o w  theory, D-deforma- 
tion theory. 

k = 2gOop (4.3) 

The limit of (4.3) as 00 ~ 0 has been evaluated from previous 
calculations for the elastic shell, with L / R  = 1 R / h  = 50 and 
u = 0.3. Calculations with values of 00 up to 10 4 (degrees) 
have confirmed the limit of k = 1.99 which is about 49% higher 
than the estimate of Libai and Durban (1977). Values close to 
k = 1.99 have been obtained over a range of shell geometries 
by varying L / R  and R / h  and so we can put (4.1) in the form, 
with u = 0.3, 

E h  3 
P ~ 0.94 ~ (4.4) 

for the elastic buckling of the shell under concentrated forces. 
The dependence of k on 00 is traced in Fig. 4 for the same 

examples shown earlier in Fig. 3. Flow theory curves approach 
approximately the common limit of k ~ 1.9 for all three metals 
as 00 ~ 0. This behaviour can be explained by considering 
the asymptotic values of the flow theory instantaneous moduli 
(2 .10)-(2.11)  in the deep plastic range. Indeed, when r/, be- 
comes very large we find the asymptotic expressions 

E 2 E  
E ~ x ~ - -  E~o ~ -  

5 - 4u 5 - 4u 

4E 
Eoo 4 " - -  Gxo = G (4.5) 

5 - 4u 

which are in fact constants independent of plastic properties. 
By comparison, the initial elastic values of the instantaneous 
moduli are 
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Fig. 4 Concentrated load parameter k for various values of 0o. Solid 
lines (D) are for deformation theory, broken line (F) are for flow theory. 
Also shown in the elastic curve. Notice that all flow theory curves con- 
verge to approximately the same value of k, 

E uE  
E~ l _ u2 E~o= l _ u2 

E 
Eoo G~o = G (4.6) 

1 - u 2 

However, since the eigenvalue p depends only on (plastic/ 
elastic) moduli ratio (e.g. E x o / E ) - - a s  is apparent from the 
characteristic Eq. (3.4) and the buckling determinant (3. l 6 ) -  
(3.23) - - f low theory curves in Fig. 4 should approach approxi- 
mately a common limit, as 0o ~ 0, with only slight differences 
due to variations in Poisson's ratio. Moduli (4.5) represent a 
limiting state of an anisotropic elastic solid with constant mod- 
uli. By contrast, no definite limit for k has been detected with 

deformation theory analysis (Fig. 4) even for fairly small values 
of 00. The deformation theory instantaneous moduli (2 .15) -  
(2.16) decrease monotonously with advancing plasticity and 
accordingly parameter k in Fig. 4 does not appear to converge 
to a finite limit when 0o --' 0. However, Fig. 4 amplifies the 
constitutive sensitivity associated with predicting plastic buck- 
ling under concentrated loads, suggesting, in particular, that a 
nonlinear stability analysis is required to investigate problems 
of that nature. 
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A Method for Exact Series 
Solutions in Structural 
Mechanics 
A systematic analysis method for solving boundary value problems in structural mechan- 
ics is presented. Euler-Lagrange differential equations are transformed into integral form 
with respect to sinusoidal weighting functions. General solutions are represented by 
complete sets of functions without being concerned with boundary conditions in advance 
while all boundary conditions are satisfied in the process. The convergence of results is 
assured, and the procedure leads to pointwise exact solutions. A number of simple 
structural mechanics problems of stress, buckling, and vibration analyses are presented 
for illustrative purposes. All results have verified the exactness of  solutions, and indicate 
that this unified method is simple to use and effective. 

Introduction 
Structural mechanics problems of beams, plates, and shells are 

generally concerned with ordinary and two-dimensional differen- 
tial equations with associated boundary conditions for stress, buck- 
ling, and vibration analyses. These equations, derived from vari- 
ational principles, are Euler-Lagrange equations. Well-established 
theories for these structural components used satisfactorily in 
practical applications can be found in an uncountable number of 
books such as those in Timoshenko and Woinowsky-Kreiger 
(1959), Washizu (1968), Boresi and Sidebottom (1985), Ross 
(1996), and Hjelmstad (1997). Various numerical methods in 
structural mechanics may be found in Bittar and Sejnoha (1965). 
While finite element and boundary element methods are powerful 
tools for analyzing large structural systems, analytical methods are 
more desirable for investigating fundamental behaviors and char- 
acteristics of structural components. Although the Fourier series 
has probably been used the most in boundary value problems, its 
conventional applications in structural mechanics have often been 
restricted to specific classes of boundary conditions. The present 
method broadens the use of the Fourier series. While the Ritz- 
Galerkin and other energy-based methods provide effective pro- 
cedures for approximate solutions, functions reasonably represent- 
ing structural response or the trial functions must be selected for 
each case individually. Consequently, the selection or generation 
of trial functions may become difficult because of boundary con- 
ditions, especially for structures with moving or elastic end sup- 
ports. Another disadvantage of these approximate methods is that 
their procedures often involve inconvenient or cumbersome inte- 
grations and differentiations of functions in the process. Also, as 
solutions of these approximate methods converge at best in energy, 
they do not assure pointwise accuracy. Hence, they are generally 
used for buckling and free-vibration analyses but not for stress 
analysis. In this paper, a unified procedure leading to exact solu- 
tions of structural mechanics problems with all types of boundary 
conditions, and a number of simple structural mechanics problems 
involving ordinary differential equations in stress, buckling, and 
vibration analyses for illustrative purposes are presented. 
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General Concept and Basic Relations 
For the convenience of discussion, problems involving ordinary 

differential equations with all types of boundary conditions are 
considered. The general concept of the method of analysis is to 
require the governing Euler-Lagrange equations for structural me- 
chanics problems be satisfied with respect to a complete set of 
sinusoida[ weighting functions, and the general solution of the 
dependent variable is represented by a complete set of functions. 
While any type of complete set of functions can be used without 
being concerned with the boundary conditions in advance, only 
Fourier and power series are used in this study. The governing 
differential equations for boundary value problems in structural 
mechanics may be given in the following general form: 

H ( W ) -  Q = 0  (1) 

in which the linear differential operator H may have variable 
coefficients which are assumed to be in the form ofx j with x being 
the spatial coordinate and j being an integer in this study; the 
dependent variable W may represent displacement or stress in the 
structure, and Q may be the loading. Equation (1), representing 
Euler-Lagrange equations, along with boundary conditions, is de- 
rived from the variational principle in structural mechanics. The 
procedure of the analysis method is to multiply Eq. (1) by sin amX 
or cos a,,x for m = 0 to ~ first, and then integrate through the 
interval of the region from x = 0 to L for each m as follows: 

fo L [H(W) - Q](sin amx)dx = 0 (2) OL mX o r  c o s  

where a,, = mTr/L. Integrating Eq. (2) by parts successively, and 
defining 

fo r. (1~,,, or l~,'jc,~) = xJW(sin a,,,x or cos amx)dx 

L (fV,,, or W,~) = W(sin O~mX or cos ozmx)dx (3) 

in which the overhat denotes transformed quantities and x j is 
related to the coefficients of the differential operator H, one arrives 
at the following transformed equation in general form: 

f(W0, Wl, W•, Wtl, W;, W'; . . . .  Qtn, Q%) 

~ Wi,,,)=0 (4) + g(Wj .... ~c 
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where subscripts 0 and 1 of physical quantities denote the corre- 
sponding quantities at x = 0 and L, respectively, and primes 
denote differentiations with respect to x. Hence, the governing 
differential Eq. (1) is transformed to Eq. (4) in integral form of W. 
Some of the quantifies in the function f in Eq. (4) may be given 
values while others are not. For those which are not specified 
quantities, they are determined eventually when the boundary 
conditions associated with Eq. (1) are used. Since the linear 
differential operator H may involve a combination of derivatives 
of various orders, derivatives of W up to fourth degree transformed 
with respect to sin o~,,x for potential applications are listed as 
follows: 

dx sin a,,,xdx = -a,,,W*, 

fO z d2W - ~ -  sin a,,xdx = - a m [ ( - 1 ) " W ]  - W0] - ~,~V,,, 

f n z d3W 3 . 
~ -  sin a,,xdx = - a , , [ ( - 1 ) m w ' l  - W~] + amWm 

" f o L d*W ~ -  sin a.,,xdx = --C~m[(--1)"W~'-- W~'] 

+ , ~ , [ ( - 1 ) " w ,  - w0] + ,Cgv,,,. (5) 

On the other hand, when cos a,.x as weighting functions are used, 
the corresponding list becomes 

f o L Wdx = W* 

fo  L d~W d(,-~)W d(r-l)w 
dx--- 7- dx = dx(,._]--- 5- (L) dx(~_l) (0) (6) 

f o r m  = O, 

fo  L d W  -~-x cos a,,,xdx = [ ( - 1 ) " W I  - Wo] + amg¢,,, 

f o L d 2 W = a ,,, W ,,, 7 U c o s o ~ , , , x d x  [ ( - 1 ) " W ' , - W ~ ] -  2 , 

f o L d3W ),nW~, cos o~,.xdx = [ ( -  1 - W~'] 

- [ ( - 1 ) " w ,  W o ]  - 3 - 
- -  ~ m W/at 

f o L d 4 W  ~ -  cos o~,.xdx = [ ( - 1 ) r o W 7  - W'~] 

- ~ . [ ( - 1 ) " w ' ,  - w ~ ]  + ~ , w , * , ,  

for m > 0. For the function Q, 

(7) 

fo L f0 L Q(x) sin a.,xdx = 0.,,,, Q(x) cos amxdx = Q*, (8) 

for m --> 0 with Q0 = 0. The associated boundary conditions at 
x = 0 a n d L a r e  

B~(W) = 0 (9) 

and the range of k depends on the order of H. At this stage, it is 
seen from Eq. (4) that there is the unknown function W in the 
function g, and some known and unknown quantities involved in 
the function f.  Representing W by a complete set of functions 
having unknown coefficients A,  without concerning the boundary 
conditions, one arrives at a system of linear algebraic equations 
from Eq. (4) for the unknown coefficients A,, and quantities inf.  It 
may be noted here that when the governing differential equation 
has constant coefficients and Fourier series is used to represent the 
dependent variables, A,, for each n may be explicitly expressed in 
terms of the quantities in the function f because of orthogonal 
properties of sinusoidal functions, After satisfying all boundary 
conditions, one arrives at the final solution in Fourier series form. 
Otherwise, one needs to solve a sufficiently large system of equa- 
tions to arrive at solutions with desired accuracy. Since a complete 
set of functions is used to represent the general solution and all 
boundary conditions are enforced during the process, convergence 
of solutions is assured and the final solutions are exact implicitly. 
In this study, only Fourier and power series representations of the 
general solutions are considered. While Fourier series used for 
general solutions may take the advantage of orthogonality proper- 
ties, other types of functions may potentially give more direct 
solutions. When power series is used to represent the general 
solution, the following quantities may be involved in the proce- 
dure: 

f0 L f0 L S,,,,, = x" sin ot,,xdx, C,,., = x" cos a,.xdx (10) 

which can be readily generated. For n = 0 and 1 with m -> 1, 

1 L 
Smo = -  I 1 -  ( - 1 ) " q ,  S.,, = - ( - 1 )  . . . .  ( l l )  

am-  - OLtn 

Z 2 

C o o = L ,  Cmo=O, Col = ~ ,  

1 
C,,,1 = [ ( - 1 )  . . . .  1] ,.c-~-' (12) 

The remaining ones, for m -> 1 and n ~- 2, can be determined 
from the following recurrence relations: 

L" n(n - 1) 
2 S,,,(,,-2) (13) Sin. = - - ( - - l )m C% ' ~., 

L "+] n + 1 
Sm/,,+~) = - ( - 1 )  . . . .  + - -  C .... (14) 

a m Olm 

n n ( n -  1) 
c,°, ,= ( - 1 ) " ~ L " - '  - - 2  C,,,(,, 2> (15) 

O/m Ot m 

n + l  
Cm(n+ 1) - Stun. (16) 

OL m 

In what follows, several simple examples are presented solely 
for illustrating the procedure and verifying the exactness of solu- 
tions. In particular, more detailed discussions involving Fourier 
series and polynomial representations of general solutions as well 
as analysis procedures are given in the first example which is the 
simplest class of structural mechanics problems where explicit 
exact solutions are readily available. Other examples involve var- 
ious types of boundary conditions, including elastic support, and 
differential equations with constant and variable coefficients. 
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I l l u s t r a t i v e  E x a m p l e s  

E x a m p l e  1. A uniform bar, fixed at x = 0 and free at x = L, 
under an axial force P at x = L is considered. The differential 
equation governing the internal axial force N is 

d N  
dx 0 (17) 

with N = P at x = L as the boundary condition. Clearly, the exact 
solution is N = P throughout. For the present procedure, Eq. (17) 
is first multiplied by either sin a mX or COS a,,x, and then integrated 
by parts through the length of the bar. The general solution 
represented by Fourier cosine, Fourier sine and power series are 
presented as Schemes 1, 2, and 3 here for illustrating the proce- 
dure. 

Scheme 1: When sin a,,,x as weighting functions are used, Eq. 
(10) is multiplied by sin u,,x and then integrated from x = 0 to L, 
resulting in the following transformed equation: 

0 L N c o s a m x d x = 0  for m =  1 , 2 , 3  (18) 

Representing the general solution of N by a Fourier cosine series, 

N = A0 + ~ A,, cos ot,x (19) 
1l = I 

and substituting Eq. (19) into Eq. (18), one finds A,, = 0. Hence, 
N = A0. By using the boundary condition that N = P at x = L, 
one obtains the exact solution N = P throughout the bar. 

Scheme 2: When cos a,,x are used as weighting functions, Eq. 
(17) is multiplied by cos o~,,x and then integrated from 0 to L. As 
a result, No = Ni when m is taken to be 0. For m > 0, the 
transformed ~r becomes 

f0  L 1 = N sin c~.,xdx = - -  [No - (-1)raN1]. 
O~ m 

Using the Fourier sine series for N, 

(20) 

N = ~ A,, sin o~,x (21) 
n = l  

and substituting Eq. (21) into Eq. (20), one obtains for each m, 

L 1 
~-an~,,,,, = [ N 0 -  (-1)raN1]. (16) 

Using the result No = N~ for m = 0 and the boundary condition 
that N = N1 = P at x = L in Eq. (22), we obtain 

2 
a ,  = - -  [1 - ( - 1 ) " ] P .  (23) 

n ' n "  

Using Eq. (23), the solution given in Eq. (21) becomes 

o~ 

N = P  ~ _ _ 2  [1 - ( - 1 ) " ]  sinoe,,x. 
n T r  

Knowing the following series identity, 

(24) 

__2 [ 1 -  ( - 1 ) " ]  s i n a , x =  1, 
n ' n -  

n = l  

(25) 

the exact solution of N = P is recovered from Eq. (24) in 
conjunction with Eq. (25). While the series identity such as the one 
given in Eq. (25) is obvious for this simple problem, series in- 
volved in other complex problems may not be easily identified. 
However, it should be noted that the solution, though in series 
form, is implicitly exact. 

While either sine or cosine functions can be used as weighting 
functions to give the exact solution, the use of sine functions in 
Scheme 1 is obviously more direct than the use of cosine functions 
in Scheme 2 for this problem. Inasmuch as solutions of certain 
structural mechanics problems are or may be implicitly exact in 
polynomial forms, it may be more effective to represent the gen- 
eral solutions by power series. The subsequent Scheme 3 is pre- 
sented for illustrating the use of polynomials. 

Scheme 3: Representing N by the following power series with 
sin amX as weighting functions, 

N = ~ A,,x", (26) 
0 

and substituting Eq. (26) in Eq. (18) with sin c~,,x as weighting 
functions in conjunction with Eq. (10), one arrives at 

f o r m  = 1, 2, 3 . . . .  
algebraic equations. As a 
Hence 

C,,,~A, = 0 (27) 
n =  1 

which represents a set of homogeneous 
result, A,, = 0 for n = 1 to w except A 0. 

N = A0 = P (28) 

when the boundary condition at x = L is used. This is the exact 
solution of the problem. On the other hand, if cos a,,,x are used as 
weighting functions, Eq. (20) becomes the transformed equation to 
be solved for N. Substituting Eq. (26) into Eq. (20) for m = 1, 2, 
3 . . . .  0% one arrives at the following system of algebraic equa- 
tions: 

1 1 
- -  [1 - ( - 1 ) r e ] A 0  + ~ S,,,.A,, = - -  [1 - ( - 1 ) " ] P  
O/m OZ m 

which may be written as 

(29) 

1 
- -  [1 - ( - 1 ) ' ] A ~  + ~ S,,,,fln = 0 (30)  
O//n t l = [  

for m = l,  2, 3 . . . .  c% whereA* = A0 - P. Equation (30) 
represents a system of homogeneous algebraic equations. Hence 
A,, = 0 for n = 1 to ~ as well as A* = 0 from which one obtains 

A0 = P (31) 

and the exact solution N = A0 = P is recovered again according 
to Eq. (26). 

For this simplest example, all of the various schemes presented 
give the exact solution explicitly. This should be considered as an 
exception rather than a rule, and the solutions would generally be 
implicitly exact in series form. However, the detailed steps pre- 
sented in this example have provided an illustration for the concept 
of the present analysis method. Presentations of these various 
schemes show that either sine or cosine weighting functions in 
conjunction with Fourier or power series solutions may be used 
without being concerned with boundary conditions in advance 
while all boundary conditions are satisfied in the process. In 
principle, there is no restriction in representing general solutions in 
other potentially more convenient forms which would naturally 
depend on the nature of problems concerned. On the other hand, 
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one may use one type of series solution such as the Fourier series 
for all structural mechanics problems with any supporting condi- 
tions. Hence, the present procedure providing assured exact solu- 
tions is simpler and has broader applicability than other approxi- 
mate methods such as the Ritz-Galerkin procedure. 

To further illustrate the procedure and to demonstrate its effec- 
tiveness and exactness of solutions on higher-order differential 
equations, Fourier series representations of general solutions are 
used in the remaining examples 2-5 which involve second to 
fourth-order differential equations of constant coefficients. Power 
series solutions are used in Example 6 for differential equations 
with variable coefficients. 

Example 2. Same problem as Example I, except the objective 
is to determine the longitudinal deformation of the bar from a 
displacement formulation. The differential equation governing the 
longitudinal displacement U of the bar is 

d2U 

dx  2 -- O. 

The boundary conditions are 

U = 0  at x = 0  

d U  
E A - ~ -  = P at x =  L 

where EA is the extensional stiffness of the bar. The exact solution 
of this problem is 

P x  u=~-~. 

If sin a, ,x  are used as the weighting functions in the present 
procedure, Eq. (32) is transformed into the following equation for 
each m: 

oz.,[ ( - 1)mU, Uo] 2 - - - -  o l , , , U . ,  = 0 

where subscripts 0 and 1 correspond to x = 0 and L, respectively, 
and an overbar denotes the transformed U with respect to sin a,,,x 
as weighting functions. Knowing that U0 = 0, and representing U 
by the following Fourier sine series, 

U = ~ A,, sin a,,x (37) 
n = l  

one obtains from Eq. (36) 

2 
A,, = - ( - 1 ) "  - -  U,. (38) 

/ ' / '77" 

The derivative of U given in Eq. (37) accounting for the end 
quantities is 

d U  Ui - Uo 
- + ~ D,* cos a,,x (39) 

dx  L 
n = l  

2 
D* = ~ [ ( -1)"U,  - U0] + a,,A,,. (40) 

Discussions on the differentiation of Fourier series for a function 
defined on end points can be found in Bromwich (1965) and 
Tolstov (1965). By satisfying the boundary condition (34) using 
Eq. (39) in conjunction with Eqs. (38)-(40), and U0 = 0 given in 
Eq. (33), one arrives at D* -- 0, and 

P L  
U, = ~ - .  (41) 

Using Eq. (38) in conjunction with Eq. (41), the general solution 
given in Eq. (37) becomes 

P 2 
U - E A  ~ ( - 1 )" - -  s i n  a . x .  ( 4 2 )  

n = l  

Knowing the following series identity, 

co 

2 
- ~ ( - 1 ) "  ~ sin a.x = x, (43) 

n = l  

the exact solution U = P x / E A  is recovered from Eq. (42) when 
Eq. (43) is used. 

Example 3. Elastic Buckling of Bars: The governing differ- 
ential equation is 

(32) d 4 W  d 2 W  
E l ~ x  4 + P ~ x  2 = 0  (44) 

where W is the transverse deflection, E1 is the flexural rigidity, and 
(33) P is the axial load. The critical load parameter 

p L  2 

(34) h - ~ 2 E i  (45) 

depends on supporting conditions. For this example, sin a, ,x  are 
used as weighting functions for demonstration, though one may 
use cos amX as weighting functions as well. Equation (44) is 
transformed in the following equation for each m after it is mul- 

(35) tiplied by sin a, ,x  and then integrated by parts from x = 0 to L, 
successively: 

2 (m 2 )t)ITVm am[(-1)mw~ ' -  W/~] Od m - -  

A bar having fixed-hinge supports as a representative case is 
considered for illustrating the procedure. For such a case, W0 = 

W1 = W"i = 0 ,  one obtains from Eq. ( 4 6 )  

f0 L L3 fVm = W sin a,,~xdx = qr3m(m 2 - )t) W~'. (47) 

Representing 

W = ~ A, sin c~,x (48) 
n = I  

one obtains A,, by substituting Eq. (48) into Eq. (47) as follows: 

2L 2 
A ,  - rr3n(n 2 - )t) W'~. (49) 

By requiring zero slope boundary condition at x = 0 using Eq. 
(48) in conjunction with Eq. (49) and zero displacement at both 
ends, one arrives at 

2L 2 
o3 W~'B* = 0 (50) 

in which 

1 

B* = ~ n(n2_ x) 
n = 1 

- 0 ( 5 1 )  
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becomes the buckling equation of the problem. The critical load 
parameter is found to be 

X~,. = 2.0499 (52) 

which should be considered as the exact solution as the standard 
value of ; t ,  -+- 2.05 is given in almost all text books on mechanics 
of solids. 

For bars having other types of boundary conditions, the buckling 
load can be determined following the same procedure through Eqs. 
(46) and (48) using the same series representation of W. It may be 
noted that for Ritz-Galerkin procedure, different types of trial 
functions must be individually generated or selected for the bar 
with different boundary conditions. 

Example 4. Flexural Vibration of Beams: The amplitude W 
of the harmonic motion of a beam is governed by 

d4W 
dx 4 )34W = 0 (53) 

where/34 = poo2/EI, t9 is the mass density, and o~ is the circular 
frequency. If cos C~mX for m = 0, 1, 2 . . . .  oo are used as weighting 
functions, Eq. (53) is multiplied by the weighting functions and 
then integrated successively from x = 0 to L, one arrives at 

[ ( -1)roW7 - W';q - o 4 , [ ( - 1 ) " W ' ~ -  W;] 

.q_ 4 * 
( a m  - -  / 3 4 ) W  m -~ 0 ( 5 4 )  

for m = 0, 1, 2 . . . .  ~. Representing 

A0 
W = -~- + ~ A, cos ot,x (55) 

and substituting Eq. (55) into Eq. (54), one obtains A,, using the 
definition of the transformed quantity W~, given in Eq. (3). The 
general solution of W is found to be 

i [ w ' ; ' -  w'g]  - 2 w'g]  W = ~ ~ ~ { [ ( - 1 ) " W ' ; ' -  
n = l  

1 
- -  O d n [ ( - - 1  ) W 1 - -  W 0 _ c o s  c~,x. ( 5 6 )  

The detailed expression for A0 and A, can be readily identified by 
comparing Eqs. (55) and (56). 

Case 1. Free-Free Beams: According to the boundary con- 
ditions for this case, W'~' = W'~ = 0, and W~ = - W'~ and W'~ for 
symmetric and antisymmetric modes of deformation, respectively. 
From Eq. (56), one arrives at 

2 2 )" a ,  
W = - £ W ]  ~ [ ( - 1  + e ] ~ c o s ~ , x  (57) 

OZ n - -  

where c = 1 and - 1 correspond to symmetric and antisymmetric 
modes of deformation, respectively. While the general solution 
given in Eq. (57) satisfies zero shear force at both ends, zero 
moment corresponding to the second derivative of W with respect 
to x must be satisfied at x = 0 and L. Second derivative of W with 
respect to x accounting for the quantities at end points results in 

dx 2 - L " . (58) 

The frequency equations corresponding to symmetric and antisym- 
metric modes of deformation by setting Eq. (58) to zero for a = 1 
and 0, respectively, are as follows: 

oz 
1 

1 -- 2p 4 2 ( 2 n ) 4 _ p 4 - 0  
n ~ l  

(59) 

1 
2p4 £ (2n - 1) 4 - p 4  = 0 

n = l  

(60) 

in which 

/3L 
p = - - .  (61) 

qT 

The first four frequencies for p are found from Eqs. (59) and (60). 
They are 1.5057, 2.4998, 3.5001, and 4.5000, respectively. These 
results, which agree with solutions given in textbooks such as Tse 
et al. (1978) should be considered as exact solutions. 

Case 2. Cantilever Beams: The beam is considered to be 
fixed at x = 0 and free at x = L. Since W~ = W"i' = 0 for the 
cantilevered beam, Eq. (56) reduces to 

1 
w =  - ~  w'~ 

2 1 
( - 1 )  c~,,W~] - 7 ~ - - - ~ c o s  c~,,,x. (62) + z ~ f w , ; + _ _  . 2 , 

O Z m - -  ~ 
n = l  

While W given in Eq. (62) satisfies the zero slope boundary 
condition at x = 0 and zero shear condition at x = L, it must 
further satisfy the following boundary conditions: 

d2W 
W = 0  at x = 0 ,  ~ x  2 = 0  at x = L .  (63) 

Substituting Eq. (62) into the conditions given in Eq. (63), one 
obtains the following two homogeneous algebraic equations: 

Rl lY  + Ri2W'i = 0 (64) 

R21Y + R22W'i = 0 (65) 

in which 

Y =  W'~, R i l -  p 4 +  ~'~ n 4 _ p 4  
n= 1 

2n 2 ~ 2p4 
Ri2=R21 = £ ( - 1 ) " n 4 p  4, R22 = - 1  + Z ~ 4 _ p 4 .  

n = l  n=I  

For nontrivial solutions, one requires 

RliR22 - Ri2R21 = 0 (66) 

which is the frequency equation for cantilever beams. The first four 
values of the frequency parameter, p, are found to be 0.5969, 
1.4942, 2.5003, and 3.5000, They should be considered as exact 
solutions as they agree with solutions given in textbooks on 
vibration such as Tse et al. (1978). 

Case 3. Fixed-Hinged With Rotational Restraint Beams: The 
fixed end at x = 0 is considered for this case. If one continues to 
follow Eq. (56) on the basis of using cos c~,,x as weighting 
functions and Fourier cosine series for W for which W~ = 0, one 
needs to satisfy three additional conditions that W = 0 at x = 0 
and L, and 

d2w dw 
EI ~s2 = - K  ~x  at x = L 
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to solve the problem, where K is the coefficient of the end restraint. 
On the other hand, if sin c~,,,x are used as weighting functions and 
Fourier sine series is used for W, the general solution, with W0 = 
W~ = 0 for this case becomes 

2n 4 
W = 2 p4 _ m 4 [ W ~ -  ( -  l)"q,V~q sin CemX 

n = l  

(67) 

and one only needs to satisfy two additional conditions. They are 

d W  
dx  0 at x = 0  (68) 

d W  
K dx = - E 1 W ( '  at x = L  (69) 

which lead to 

. t t  , t !  _ _  

C l l W  0 --~ C l 2 W  I - 0 (70) 

t t  , I t  _ _  • catWo + czzW= - 0 (71) 

in which 

Cll = -- E On, C12 "-~ E ( - - l ) n O n  
n = 1 n = I 

7/.4 
c21 =~i'c,2, c 2 2 = - 2 ~ - ~ 2  ~ Dn 

n = l  

2 n 
E l w 2 K  = KL,  D , , -  p4 _ n4 (72) 

and the frequency equation becomes 

C 1 1 C 2 2  - -  C 1 2 C 2 1  = 0 .  (73) 

The first four values of the frequency parameter p = /3L/~r for 
fixed-hinged beams according to results given in Tse et al. 
(1978) are 1.25, 2.25, 3.25, 4.25. The present results, corre- 
sponding to a very small coefficient of end restraint K = 1, 
are found to be 1.255, 2.255, 3.255, 4.255. For a large value 
of K = 2000, the first four values of p are found to be 
1.501, 2.493, 3.491, 4.488 which approach 1.506, 2.50, 
3.50, 4.50 for fixed-fixed beams based on the results given 
in Tse et al. (1978). For ~2 = 50, the first eight values of p 
are found to be 1.369, 2.333, 3.315, 4.304, 5.297, 6.293, 
7.289, 8.287 which should be considered as exact solutions. 
They may be used as benchmark solutions for future refer- 
ence. It may also be noted that because of the elastic end 
constraining condition involved in this case, it is not convenient 
to use some of the approximate methods such as the Ritz- 
Galerkin procedure. 

Example 5. Beams on Elastic Foundation Under Transverse 
Load: This example demonstrates the exactness of the solution 
of the present method for problems requiring pointwise accurate 
results whereas most of approximate methods such as Ritz- 
Galerkin are generally not adequate. The differential equation 
governing the transverse displacement W of a finite beam of length 
L on an elastic foundation of stiffness k is 

d4W 
dx 4 t- 4/34W = q (74) 

where q is the loading function, and 4/34 = k/E1 and E1 is the 
flexural rigidity of the beam. For the beam, which is free at both 
ends, and is subjected to a concentrated load P at the midsection 
of beam, i.e., q = P 3 ( x  , L / 2 )  where 6 ( x  - L / 2 )  is the Dirac 

delta function, the exact expression for the end deflection given 
in Ugural and Fenster (1975) is 

2P/3 cos (/3L/2) cosh (/3L/2) 

vL. - k sin/3L + sinh 13L 

2P/3 1 P L  3 

k - 2/33L 3 E1 " (75) 

If sin c~,,,x are used as the weighting functions, Eq. (74) is trans- 
formed into the following equation: 

,~,,,[W0'- ( - l ) " W ~  + , G [ ( - l ) " W ,  - W0] 

fo  t" P + (Ct 4, + 4/34) W sin ee,,,xdx = ~ / s i n  a,,,a (76) 

in which a = L/2  for the problem under consideration, Wi' = 
W'; = 0 because of zero moments at the free ends, and Wl = WeD 
because of symmetry in deformation. Representing 

W = ' ~  A,, sin cGx (77) 
n -  I 

and substituting Eq. (77) in Eq. (76), one obtains 

2{ ~ 
A , , = L  [1 - ( - 1 ) " ]  c ~ + 4 / 3 4 W °  

, , } 
+ E1 c~,~ + 4/3 4 sin % a  . (78) 

With the conditions of zero moment at both ends and symmetrical 
deformation about the midsection already satisfied, we further 
require the following zero shear force condition at x = 0 be 
satisfied: 

L d3W 
2 dx 3 - w,, ~ [ ( - 1 )  '~ 

i~ = I 

4 l] 
3 c~ ;,, sin c~ma 

El o~, ¥ ~ ~- (79) 
m = 1 

from which one obtains the end deflection at x = 0 as follows: 

E1 ~ D 
We = ~ 5  W0 - 4/34L 4 D (80) 

in which 

= ~ /113 sin c~,,,a m 2 
m4 + 4p 4 , D = [1 - ( -  l ) " ]  m4 + 4 p 4 ,  

n =  [ 

/3L 
p -  

7r 

Once W0 is found from Eq. (80), A,, can be determined from Eq. 
(78), the displacement W for 0 --< x -< L is determined from Eq. 
(77), and the displacement at the end points of x = 0 and L is 
equal to W0. In Ugural and Fenster (1975), beams are classified as 
short for /3L < 1, intermediate for 1 < /3L < 3, and long for 
/3L > 3. The deflection atthe end point becomes very small when 
/3L is near 3, and changes from positive to negative between/3L = 
3.1 and 3.2. The end deflection W,. for a (short, intermediate, long) 
beam with corresponding/3L = (0.1, 2, 5) are found to be (2499, 
0.01148, -0.00027), respectively. The ratio of the present results 
to the exact expression given in Eq. (75) on the end deflection for 
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these three cases are (0.9997, 0.9991, 1.0069), respectively. These 
results show that although the present solutions are in series form, 
they give pointwise exact solutions implicitly. 

Example 6. When structural components with nonuniform 
cross sections or thicknesses, and other situations, their governing 
differential equations contain variable coefficients. Such differen- 
tial equations are generally considered to be exceedingly difficult 
to solve for their exact solutions explicitly. We consider the 
following Legendre's equation, which is involved in many me- 
chanics problems such as the axisymmetric stress and deformation 
in a solid of revolution discussed in Timoshenko and Goodier 
(1970), to illustrate the present procedure and to verify the exact- 
ness of the method: 

d2W d W  
(1 - x  2 ) - ~ - -  2 x - ~ - + B W = 0  (81) 

for the interval from x = 0 to 1, and consider W = W0 at x = 0 
and W = 1 at x = 1 as boundary conditions. Clearly, Eq. (81) is 
the Legendre's equation when B = r(r + 1) for any integer of r. 
For these values of B, exact solutions of Legendre polynomials P~ 
can be found in textbooks such as Churchill (1963). For r = 0 to 
5, they are given in Churchill (1963) as follows: 

Po(x) = 1, P,(x)  = x ,  P2(x) = ½ ( 3 x  2 -  1) 

P3(x) = ½ (5x 3 - 3x), P4(X) = } (35X 4 -- 30x 2 + 3) 

Ps(x) = ~ (63x 5 - 70x 3 + 15x) (82) 

which are used for verifying results of the present method later. If  
sin a mX are used as the weighting functions in the present proce- 
dure, Eq. (81) is transformed into the following integral equation: 

I0 I0 l amWo + (B - a~) W sin amxdx-2am x W  cos amxdx 

Io + o~,2~ x2W sin amxdx = 0. (83) 

Representing 

W =  Ao + ~ A,x"  
n=l 

(84) 

and substituting Eq. (84) in Eq. (83), we arrive at the following 
equation for each m: 

amWo + E [B - n(n + 1)]Sm,,A. 
n=0 

- ~ [aZSm. + (-1)ma,, ,]A. = 0 
n=0 

(85) 

w h e r e  Stun is defined in Eq. (10). Also, from the boundary condi- 
tions, we have 

A 0 =  W0, E A n =  1. (86) 
n=0 

For a general value of B, the result of W converges to the exact 
solution implicitly when a sufficiently large number of A,  are 
solved from the system of equations given in Eq. (85) in conjunc- 
tion with Eqs. (86). If B = r(r + 1), Eq. (85) becomes 

E = 0 
n=0 

(87) 

for each m, where 

1 
= c~.,]Smo ( - -  l ) "  - -  (88 )  arm0 ol  m + [r(r + 1) - 2 _ 

Odm 

a . . . .  : [r(r + 1) - n(n + 1) - a,2,]Sm, - (--l)m~m 

f o r n > 0 .  (89) 

When r = 0, we find that ao,,o = 0 for all values of m while all 
others are not. Hence, from Eqs. (89), A,, = 0 for all integers of 
n except A0. Using the boundary condition at x = 0 that W = 
Wo = 1, we obtain A0 = 1, and the solution is W(x)  = 1 = Po, 
which is the exact solution given in Eq. (82). 

When r = 1, only alm~ is zero for all values ofm.  By the same 
reasoning as the last case, we conclude that W(x) = A~x. Using 
the boundary condition W = 1 at x = 1, we obtain the solution 
W(x)  = x = Pt(x) ,  which is the exact solution. 

When r = 2, a2mo = 6Smo and a2,,2 = 2S=o. Hence, from Eq. 
(87), A, = 0 except for n = 0 and 3 because Smo(6Ao + 2A2) = 
0 for all values of m. As a result, 6A0 + 2A2 = 0 together with 
the boundary condition W(1) = A 0 + A 2 = 1 give A 0 = - ½ and 
A2 = }. We obtain the solution of W(x)  = P2(x), which is the 
exact solution. 

When r = 3, a3m~ = 10Sm~ and a3m3 = 6Sin,. As in the last 
case, we obtain A~ = - 3  and A 3 = ~, and W(x)  = P3(x), which 
is the exact solution. 

When r = 4, we find aam0 = 20Sin0, a4m2 = 2 S m o  + 14S,,2, and 
a4m 4 = 12S,,a. Hence A,, = 0 for all n except for n = 0, 2, 4; 
20A0 + 2A2 = 0 and 14A2 + 12A4 = 0 for all values ofm.  The 
last two equations together with the second boundary condition in 
Eq. (86) give the results of A0, A2, and A4, and the solution of 
W(x)  is the exact solution of Pn(X). 

When r = 5, we find as,,  = 28Sm~, asm3 = 6Sin1 + 18Sm3, and 
asms = 20Sm3. They lead to 28A~ + 6A3 = 0 and 18A3 + 
20A 5 = 0. Solving the last two equations along with the boundary 
condition at x = 1, one obtains A~ = 15/8, A3 = --70/8 and 
A5 = 63/8. Hence, the solution of W(x)  matches the exact 
solution of Ps given in Eq. (82). 

In a similar manner, one can verify that the solutions of the problem 
using the present method are all exact for higher values of r. 

Concluding  R e m a r k s  
The method presented in this study is simple in concept and 

systematic in operation. The procedure can be used routinely by 
representing general solutions in any complete set of functions 
without being concerned with the boundary conditions in advance, 
but all boundary conditions are satisfied in the process. This 
method greatly broadens the applicability of various series solu- 
tions for structural mechanics problems and simplifies analysis 
procedures. The method is more convenient to use than other 
approximate methods such as the Ritz-Galerkin procedure because 
the same series representation of general solution may be used in 
the present method for a class of structures with any boundary 
conditions. For the Ritz-Galerkin procedure, however, different 
types of trial functions must be generated individually according to 
different boundary conditions. Since complete sets of functions are 
used, and all boundary conditions are enforced in the process, the 
present method gives implicitly exact solutions in general. This has 
been verified by all example problems considered in the study. 
Although the presented examples belong to a simple class of 
one-dimensional structural mechanics problems solely for the pur- 
pose of illustrating the procedure of the method and verifying the 
exactness of solutions, the method can be used for investigating 
more complex problems in structural mechanics. 
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Optimal Buckling Loads of 
Nonuniform Composite Plates 
With Thermal Residual Stresses 
Optimal elastic buckling loads of  spatially heterogeneous plates formed from a series of 
composite patches is considered. Reissner-Mindlin laminated composite plate theory 
including thermal effects is adopted for the analysis and the problem is solved using the 
finite element method based on a bi-cubic Lagrange C O element formulation. The thermal 
residual stresses considered are those that result during elevated temperature processing 
because of  the different laminates forming the patches of  the plate. In the optimization, the 
fiber angles in each patch ate the design variables and three symmetric laminated plate 
configurations are investigated. The results illustrate that thermal residual effects can 
lead to optimal buckling loads which are as much as two times greater than the 
corresponding optimal buckling loads in which these manufacturing effects are ignored. 
The work demonstrates the importance of spatial heterogeneity as well as the significance 
of manufacturing-induced residual stresses in optimal design studies of  composite struc- 
tures. 

1 Introduction 

Due to their attractive properties, composite laminates have 
been used extensively in aerospace applications. It has been shown 
that moisture and thermal residual stresses impair the behavior of 
composite structures by reducing stiffness and strength and by 
bringing the buckling loads to undesirably low levels. 

Models for the accurate description of hygrothermal effects on 
the static instability of symmetric and antisymmetric laminated 
composite plates were implemented and revealed, quantitatively, 
the degree of damage caused by elevated moisture concentrations 
and thermal residual stresses (Ram and Sinha, 1992). 

Attempts to avoid or even take advantage of the thermal residual 
effects have been made. Almeida and Hansen (1997) showed that 
it is possible to increase buckling loads of composite plates when 
they are favorably tailored in order to take advantage of the 
inherent thermal residual stresses resulting f r o m  the high- 
temperature processing. Stiffeners are placed on the plate's edges 
and, due to the nonuniform design, residual stresses develop 
throughout the structure. Results indicate that this procedure in- 
creased the buckling load significantly. In their work, the stiffener 
location and stacking sequence were chosen on a logic basis. This 
means that the plate configurations adopted did not followed 
well-defined criteria; rather, the design was a choice based on 
common sense and previous experience. Further investigations 
suggest that some optimality criteria would be recommended in 
order to achieve even higher buckling loads. 

The objective of the present work is to optimize nonuniform 
laminated plates composed of subregions. In these subregions or 
subdomains, the total thickness and number of layers is kept 
constant and the lamina orientations are allowed to vary. Therefore 
the structure under consideration consists of subdomains with 
piecewise continuous material properties. One of the most impor- 
tant assumptions made is the requirement of continuity of the 
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displacement field; ultimately it means that the subdomains will 
not separate. 

A finite element formulation is chosen to analyze the problem 
numerically. Reissner-Mindlin plate theory is applied along with 
bi-cubic 16-node Lagrangian elements. A general prebuckling 
state is adopted. Three symmetrically laminated plate configura- 
tions are investigated: one ply, three ply, and five ply. 

2 Problem Formulation 
The objective function of the problem is the critical buckling 

load, that is, the numerical procedure is committed to maximize 
the buckling load of plates where the fiber orientations are taken as 
the design variables. The evaluation of the objective function for a 
particular design involves three main steps: the thermal problem, 
the prebuckling problem, and the buckling problem. Figure I 
presents a sketch of the plate showing the prescribed displace- 
ments and boundary conditions. 

The problem is analyzed using the Reissner-Mindlin plate the- 
ory. The thermal and prebuckling problems are considered to be 
linear and in-plane while in the buckling problem nonlinear strain- 
displacement relations are assumed. The assumptions made are 
reasonable for symmetric laminates because in this case there is no 
laminate induced membrane-bending coupling. Thus, no out-of- 
plane displacements result from the thermal processing and the 
plate produced is perfectly fiat. 

2.1 Thermal Problem. In this section the thermal problem 
is solved and afterward the displacement field and thermal loads 
are used to calculate the residual stresses. 

The cure or consolidation process of composite laminates is 
usually carried out at elevated temperatures; 120°C to 180°C are 
typical for epoxy-based composites while 380°C is used for 
PEEK-based systems. It is assumed that the laminate is stress free 
at the processing temperature and thermal residual stresses develop 
during the cool down to room temperature due to the nonunifor- 
mity of the plate. Residual stresses develop and the stress result- 
ants are nonzero because of the plate heterogeneity. 

It is known that the thermal expansion coefficients depend on 
the temperature (Adams, Bowles, and Herakovich, 1988). This 
dependence is not taken into account in the present work. More- 
over, the plate is assumed to be subjected to a uniform temperature 
distribution. Additional assumptions are: the constitutive and 
strain-displacement relations are linear and the plate is totally 
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Fig. 1 Plate subjected to prescribed displacements and boundary con- 
ditions 

unconstrained. The stress-strain relation, including thermal effects, 
is given in structural coordinates by (Jones, 1975) 

O'y : [(~] - AT a , 
TAW L OLxyJ 

( TxzI~'yz J "~ [OS] { "Yxz~3,yz J (i) 

where ~r,, o-y, %, are the in-plane stress components; [Q] is the 
in-plane constitutive matrix; ex, ey, 3,~y are the strain components; 
AT is the temperature increment; ~ ,  a~, a,y are the thermal 
expansion coefficients in structural coordinates; r,~, ry~ are the 
shear stress components; [Qs] is the shear constitutive matrix; and 
3,xz, 3,yz are shear strain components. The total potential energy for 
the thermal problem can be written as 

v k °txyJ 3,xy 

- A T  ay d V  + ½ I O s J l  3,,,? . (2) 
t, axy) v 7yzJ 

It is to be noted that the thermal problem involves no application 
of mechanical loads and therefore there is no work term. Also, as 
noted above, the strain-displacement relation is taken to be linear. 
Thus, it is useful to define the vectors {e0}, {K}, {%}, and {&} as 

{1~0} = {U,x ~),y bl,y + ~,x} T {K} = (@a,x I~ly,y IPx,y -I- IVy,x} T 

{3,0} = {W,x -~ []lx W,y ~- ~.ly} T {~} = {OL x O/), OLyy} T. (3) 

After Substitution of Eq. (3) into Eq. (2), the first variation of the 
total potential energy is obtained as 

f { . <  T 

where [A], [B], [D], and [A*] are the usual laminate stiffness 
matrices and {N,} and {M,} are thermal load vectors defined as 

= I - , , .  (1. z l [ Q l { a l d z .  ({Nt}, {M,}) ,n 

Taking 8HR = 0 in Eq. (4) yields the equilibrium equations 
which are solved for displacements and, subsequently, the thermal 
residual strains are evaluated using the strain-displacement rela- 
tions. The residual strains obtained are used to recover the thermal 
residual stresses as follows: 

- f }  = [ 0 ]  t 4 - A r  , .  ' l, J = [0 '1  3, .J (5) 
r,~.J t 3,f~J t ax,,j 

where the superscript R signifies residual. 

2.2 Prebuckling Problem. In the prebuckling problem and 
the buckling problem the plate is assumed to be constrained by 
simple support boundary conditions on all four edges. No loads are 
induced when the boundary conditions are imposed. Also, the load, 
which causes the plate to buckle, is applied by imposing a uniform 
displacement on the loaded edge. A uniform displacement is 
applied rather than a uniform load because of the plate heteroge- 
neity; for such a plate a uniform load is not physically realistic. It 
is assumed that during the load application the temperature is 
fixed. The first variation of the total potential energy is zero in the 
equilibrium state. Thus, 

81He = 8K [ B ]  [ D ]  [ 0 ]  K dS = 0. (6) 
a3,o {0] [o] [ ] 3,oj 

Along with the prescribed displacements and boundary condi- 
tions of Fig. 1, the solution for the mechanical prebuckling strains 
is obtained and used to generate the mechanical prebuckling 
stresses, 

{o;1 f . . 

0"; I : [ 0 ] i  ";  I { ~'xzITyPzJ - I ~ 3,SJ 3,xzl . = [Q,]j (7) 
'r .<ej, • t. %<yJ 

where the superscript P refers to prebuckling state. 

2.3 Buckling Problem. The third step is the buckling state 
calculation. Here the full nonlinear strains are used. The constitu- 
tive equations must include the mechanical prebuckling and ther- 
mal residual effects. Thus, 

{} {<} O" x E x O" x 
R O'y = [Q]  ICy "J- O'/~ -J- O'J, 

T<y k "Yxy) Txy TX~, 

~'yzJ = [Qs] t 3,yzJ + "~ZJ -~ Tf. (8) 

where e~, Ey, 3,xy, 7xz, and 3,yz contain both the linear and nonlinear 
parts of the strains as given by Almeida and Hansen (1997). The 
total potential energy of the plate is now written as 

HB = ½ "Y [O] "3' dV -~- "Y I ~ O'f~ 
V Yxy VxyJ V 7xy \ L Try] 

TyzJ I. 'rxyJ / V 

x~ d r .  (9) 
3,,a + C 

Before proceeding, it is worthwhile considering the laminate 
symmetry and the in-plane characteristics of both the thermal and 
prebuckling problems. Since the laminate is symmetric, no 
membrane-bending coupling occurs and, because all the loads are 
applied in-plane, { ~r e } and { o "R } have a symmetric distribution 
about z = 0 and {r e} = {r R} = {0}. This means that simpli- 
fications can be introduced to Eq. (9) when integrating through the 
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thickness. For this purpose define stress moments {N}, {M}, 
{L}, {Q}, and {T} as 

IgxxNrf'yl ' MMx~I ' LL!yf) : ,/2 (1' z' zZ)k 'rxy,,~r/ dz 

( e ; l , f  (1 z) (10) 
\ [ QyJ [ T~J -t/2 ' c sz ~ z 

where S = R, P. Hence, dropping higher-order terms, recalling 
that the thermal residual stresses and prebuckling mechanical 
stresses represent linear states of equilibrium and recognizing that 
{M}, {Q}, and {T} are identically zero yields, after integrating 
through the thickness, 

6II~= f {6eo}r[a]{eo}dS + fs{SK}r[D]{K}dS 
S 

+ {~3/°}r[A*]{Y°}dS+ 8UyJ [Nff N~y~J u} 
S 

+ I~v'~ IN;" Nxy] vx  
y~ ~ ~ N f f  J v }  + ~W,yj [ Nx~; N~ Pj 14"5, 

k -rx,yJ k xy Ly ] q/x,y,  

+ 8qty,yJ LL,~ p L~ PJ dS = 0 (11) 

where (N f  p, L~ p) = (N~ + N~, L, R + L f ) ,  i = x, y, xy. 
A buckling parameter, A, is introduced to provide a measure of 

fs [BI]3X32 [013x48 [K]e= / [013x48 [B113×32 
e L [012x32 [B212×48 

where 

T- [A] [B] 
[B] [D] 

_ [o] [o] 

-[Bj]3x32 
[013X48 
[0]2×32 

E01] 
[o] 

[A*] 

[013×48 1 
[Bd3×321dS 
[B212×48J 

(13) 

[B,]= [03 [~y]/ [B23: LED,,] [o3 
[ (I),Y ] [ (I),x] J 3x32 ' 2×48 

In addition to [K] ~, the load vector must be obtained for the 
thermal problem. Thus, the element thermal load vector { f r }  ~ is 

f s  r[BI]3x32 [013×48- T 
{fr}~ = | [013x48 [B113×32 (fz~/~,,,odS. (14) 

. L [O]~x~ [O]~x. 

At this point it is possible to write the matrix equations for the 
thermal and prebuckling problems. After assembling the element 
matrices and vectors, the linear systems describing, respectively, 
the thermal and prebuckling steps are 

[K]{qr} = {fr}, [K]{qe} = {fp} (15) 

where the load vector {fe } comes from the application of the 
prescribed displacements. 

The calculation of the geometric stiffness matrices for the buck- 
ling problem is more elaborate since the stress moments { N } and 
{ L } are present. These moments come from the previous problem 
steps. In general both { N } and { L } will vary within each element 
so numerical integration must be used to build up the geometric 
stiffness matrices taking into account this spatial variation. Defin- 
ing matrix [B3] as 

[B3] r = 

-[q~,~]T [~,,]~ [o] [0] 
[0] [0] [ ~ ] ~  [~;]~ 
[0] [0] [0] [0] 
[o] [o] [o] [o] 
[o] [o] [o] [o] 

[o3 [o] [o] [o3 [o3 [o] ] 
[o] [o] [o] [o] [o] [o] ] 

[~A T [~y]~ [o] [o] [o3 [o! / 
[o] [o] [,~]T [~,y]7, [o] [oj ~/ 
[o] [o] [o] [o] [cv,A ~ [%] j 

the prebuckling load. Without loss of generality, unit displace- 
ments are prescribed and, since the prebuckling problem is linear, 
multiplication of the moments N, .e and L~ by A gives the actual 
load level. 

3 Finite Element Formulation 

The finite element method was chosen to solve the thermal, 
prebuckling, and buckling problems described by Eqs. (4), (6), and 
(11), respectively. Isoparametric bi-cubic Lagrangian elements 
with 16 nodes are used (Heppler and Hansen, 1986). These ele- 
ments are known to eliminate shear locking effects. The displace- 
ments and rotations can be written in terms of nodal variables and 
interpolation functions as 

a = [ ~ ] { a l  a2 . . .  a16} r (12) 

where a stands for u, v, w, ~ ,  or ~y. It is observed that, in all 
three problems, the same stiffness matrix is present. Thus, with the 
aid of Eq. (12), it is possible to write the expression for the element 
stiffness matrix [K] ~: 

allows the element geometric stiffness matrix, [Ko] ~, to be written 
as 

[K~;]~ = fs ,  [Bslr 

Ni~' N~  0 0 0 0 0 0 0 0 
NS~, uS 0 0 0 0 0 0 0 0 
0 0 Ni~ NSy 0 0 0 0 0 0 
0 0 u S  N~ 0 0 0 0 0 0 
0 0 0 0 U s NS> 0 0 0 0 
0 0 0 0 uSv X~ 0 0 0 0 
o o o o o o L~ L~, o o 
o o o o o o Lf, L s o o 
o o o o o o o o L:~ L~; 
o o o o o o o o £:~, L~. 

[Bs]dS 

(16) 

where S indicates either the thermal residual state R or the pre- 
buckling state P. The global matrices for the eigenvalue problem 
related to the buckling calculation are then written as 

([K] + [X~] - A[KP]){q~} = {0} (17) 

where matrix [Kce,] is obtained from the application of unit dis- 
placements and )t is the buckling parameter. 
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Fig. 2 Plate configuration for the validation tests 

4 Preliminary Results 
Before going on to the optimization procedures, a few tests are 

conducted in order to assess the accuracy of the implemented 
program. The model developed should furnish precise results 
while maintaining simplicity so as to minimize the numerical 
optimization effort. 

The plate chosen for validation is square with 360 mm sides and 
0.6 mm total thickness. The plate has four subregions oriented as 
shown in Fig. 2. The laminate has only one layer, hence it is 
symmetric. The material chosen for the simulations is graphite/ 
epoxy T300-5208; its properties are given in Table 1. 

Two models based on Eqs. (15) and (17) were implemented: one 
considering that the displacements u and v make a negligible 
contribution to the eigenvalue problem and the other considering 
the complete model, i.e., u, v, w, qtx, and ~by may be nonzero. This 
means that the eigenvector associated with the simplified model 
contains components related to w, @~, and ~by only. The results for 
a temperature difference of AT = - 15°C are in Table 2. Observe 
that the temperature difference is negative since processing is 
carried out at elevated temperatures while the operating tempera- 
ture is lower. 

The solution of the eigenproblem as in Eq. (17) provides an 
eigenvalue which is the prescribed displacement. In order to clarify 
the presentation, an equivalent force, P, is introduced. This equiv- 
alent force is the summation of the point forces required to impose 
the prescribed displacement on one edge of the plate. Notice the 
small percentage difference existing (<0.5 percent) between the 
A's. This fact led to the adoption of the simplified model for the 
optimization procedures. 

This preliminary example illustrates the potential enhancement 
of the critical buckling load of plates when thermal residual 
stresses are considered. Results are presented in Table 2 where A, 
is the least eigenvalue, A2 the second least eigenvalue, P, the 
equivalent force associated with A, and P2 the equivalent force 
associated with A,. Notice that P J A ~  = P2/A2 because the pre- 

Table 1 Material properties of T300/5208 graphite/epoxy 

property value 

Principal modulus of elasticity, E1 154.5 GPa 

Principal modulus of elasticity, E~ 11.13 GPa 

In-plane poisson's ratio, u12 0.304 

In-plane shear modulus, G12 6.98 GPa 

Transverse shear modulus, Ga3 6.98 GPa 

Transverse shear modulus, G2a 3.36 GPa 

Principal thermal expansion coefficient, a l  -0 .17 10 -s °C-1 

Principal thermal expansion coefficient, t~2 23.1 10 -° °C -1 

FE complete model simplified model 
= 

Mesh A~ A2 P~ P2 Aa A2 Px [ 

2 x 2 8.540 12.09 258.1 365.3 8.562 12.12 257.9 

4 × 4 7.744 9.324 215.6 259.6 7.755 9.335 251.5 

6 x 6 7.679 9.248 210.0 252.4 7.704i 9.255 210.0 

diff. (%) 

P2 1 2 

365.0 0.26 0.25 

259.4 0.14 0.12 

252.3 0.09 0.07 

a. Ai in ,urn and Pi in N 

buckling problem is considered to be linear. Second eigenvalues 
are presented in Table 2 in order to illustrate the fact that the 
accuracy of the simplified model is extended to eigenvalues other 
than the first. 

The simulations in Table 2 were made for AT = - 15°C but, if 
AT = 0°C, the 6 × 6 mesh gives, for the same configuration, h~ = 
4.592/,zm and P1 = 125.3 N. So, it can be noticed that, by simply 
considering the thermal effects, an increase of 66 percent is 
achieved. 

5 Optimization Procedure 
The eigenproblem described by Eq. (17) is solved by subspace 

iteration along with the Jacobi method to solve the projected 
problem (Bathe and Wilson, 1976). The least of the eigenvalues is 
referred to as the critical buckling load. The objective of this work 
is to maximize AMeN in Eq. (17). Previous studies have demon- 
strated that optimization disregarding the thermal stress (AT = 
0°C) of the simplified eigenproblem I[K] - A[K~]I = 0, where 
the geometric stiffness matrix is constant for the pure membrane 
prebuckling state, is possible and successfully increased the buck- 
ling loads of plates. A more general approach, intended to exploit 
the thermal stresses, allowing the matrix [K~] to vary is imple- 
mented in this work. 

It is known that optimization procedures, where the fiber orien- 
tation is taken as the design variable, have multiple optima and 
near-optimal designs (Le Riche and Haftka, 1993). This peculiar 
feature suggests that care must be taken when selecting the opti- 
mization technique. Continuous optimization methods are often 
victims of convergence to local optima since they "climb the hill" 
where the search begins, irrespective of whether it contains the 
global optimum. To overcome these difficulties, structural design- 
ers have been using probabilistic methods where, during the opti- 
mization search, decisions are taken by drawing pseudo-random 
numbers and applying some acceptance rule to them. The strategy 
adopted here is a combination of deterministic and probabilistic 
approaches. First, a genetic algorithm (GA) (Holland, 1975) is 
used to obtain a design reasonably close to the global optimum. In 
the second-stage Powell's method (Vanderplaats, 1984), is used to 
improve the solution accuracy bringing it to the actual optimum. 

6 Numerical Results 
In order to assess the effectiveness of the proposed strategy, 

plates with one, three, and five plies and with four subregions (see 
Fig. 3) were investigated. Table 3 shows the fiber orientations in 
each case, where 0i is the fiber orientation of the central ply of 
subregion i. 

All plates analyzed are square with 360 mm sides, total thick- 
ness of 0.6 mm,  free of initial imperfections, and laminate sym- 
metry is maintained. For the thermal problem the plates are totally 
unconstrained; for the prebuckling and buckling problems the 
boundary conditions are shown in Fig. 1. Prescribed displace- 
ments, u, are applied to one side of the plate. 

The thermal coefficients of expansion were chosen according to 
Adams, Bowles, and Herakovich (1988). As mentioned, these 
coefficients vary with temperature; however, for the present cap 
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culations, the values shown in Table 1 were adopted and they 
correspond to a service temperature of 21 °C. 

6.1 Case 1--Single-Ply Plate. In this case, the plate has 
four subregions in which independent fiber orientation is allowed. 
Since there is only one layer per region, the number of design 
variables is four. Simulations for five different temperature decre- 
ments, A T, were conducted. 

The first approximation to the optimal design was obtained with 
the genetic algorithm. The search parameters were chosen exper- 
imentally and are presented in Table 4. 

Each design is encoded as a string (chromosome) of four genes, 
each of them representing the fiber orientation of a subregion. The 
alleles are the values that a gene can be assigned; in this case it 
ranges from - 9 0  deg to +90 deg. The reproduction process, or 
crossover, can be implemented in several ways. The strategy 
chosen here is one of the most commonly adopted and consists in 
breaking the chromosomia[ string of two parents into substrings 
and, later, exchanging the substrings to generate the offspring. 

A stochastic mutation operator is also introduced. This operator 
is required to avoid premature convergence. In fact, as the gener- 
ations evolve, the individuals tend to become uniform implying a 
loss of genetic diversity. Mutation maintains the genetic diversity 
by introducing new information into the newly formed genera- 
tions; it randomly modifies genes of the newborn child. In this 
work the probability of mutation is 50 percent per chromosome. 
This means that a child has a 50 percent chance of being modified 
by mutation. The mutation is carried out by choosing one of the 
four genes and assigning it a random orientation between - 9 0  deg 
and +90 deg. 

The elitist strategy is also used. It consists in actually cloning the 
best design of a given generation into the next generation. The 
elitist strategy provides a useful convergence criteria for the ge- 
netic algorithm. In the simulations made, the search is assumed to 
have converged when the best individual of a population remains 
unchanged for seven generations. In this work, 2 x 2, and some- 
times 4 x 4, finite element meshes are implemented in all opti- 
mization calculations using the genetic algorithm method. A typ- 
ical run of the GA takes from 10 to 15 generations to converge. 
Thus, about 500 function evaluations (buckling load calculations) 
are required. 

After having found the first approximation by the GA, a more 

Table 3 Plate configurations 

plate class i-th subregion orientation 

1 [04 
2 [0°/0,/0 °] 
3 [0°190°/01/90°/0 "] 

parameter value 

popula t ion size 50 

probabi l i ty  of cross-over 0.97 

probabi l i ty  of mu ta t i on  0.50 

accurate optimization is conducted using Powell's method. The 
finite element mesh is refined and a continuous search is per- 
formed. In all cases, a convergence check is made by refining the 
mesh for the optimal design found. It was determined that a 6 × 
6 mesh is required to ensure three percent precision of the first 
eigenvalue. Typically 150 objective function evaluations are 
needed for convergence. Notice, however, that Powell's method is 
often used with finer finite element meshes and, thus, more com- 
putational effort is required. At the end, the GA and Powell's 
method require approximately the same processing time. 

In Table 5 the results for the optimized single-ply plates are 
presented. The angles 0~, 02, 03, and 04 are those of subdomains 1, 
2, 3, and 4, respectively, according to Fig. 3. P'~ and P2 are the 
equivalent forces obtained using a finer finite element mesh. The 
optimization procedure is assumed to have converged when the 
difference between Pl and P'~ is no more than three percent. 

The optimal design obtained for AT = - 7 5 ° C  can be better 
understood if the symmetries of the problem are considered. Ob- 
serve that, under the assumptions adopted, boundary conditions 
considered and load imposed, the laminate whose subdomains are 
oriented as 0'L = -03, 0~ = -04, 0~ = -0~ and 0~ = -02  
possesses the same buckling loads as that with 0~, 02, 03, and 04 
orientations. 

An interesting question that arises is how the thermal residual 
stresses actually increase the critical buckling load of flat plates. It 
is readily observed in Table 5 that the buckling load roughly 
doubled when AT changed from 0°C to -25°C.  A plot of the 
thermal residual stress levels is shown in Figs. 4(a), 4(b), and 4(c) 
for the optimal design at -25°C.  Also, it is important to mention 
that the eigenvector of the optimal designs for AT = ,  - 2 5 ° C ,  
- 5 0 ° C ,  - 7 5 ° C  and -100°C present symmetry about the plate 
diagonals, as opposed to the usual symmetry about the plate center 
lines. 

Figures 4(a), 4(b), and 4(c) suggest that the optimal plate is 
tailored in such a way that the thermal residual stresses tend to 
concentrate around the interfaces of the different subregions, spe- 
cially near the plate edge. These stresses would try to imitate the 

Table 5 Optimization for plate 1 

~ T  method FE mesh 01 02 03 04 

0 GA 2 x 2 -41.1 23.2 32.1 -38.1 

°C Powell 2 x 2 -32.0 32.1 31.6 -31.6 

Powell 4 × 4 -27.0 25,0 25.5 -26.4 

-25 GA 2 × 2 -30.8 48.1 45.7 -31.4 

°C Powell 2 x 2 -28.9 45.7 48.4 -25.9 

Powell 4 x 4 -14.3 53.7 54.6 -13.3 

-50 GA* 4 × 4 4.8 30.8 32.9 3.7 

°C Powell 6 x 6 4.4 36.0 36.6 4.3 

-75 GA* 4 x 4 -37.2 -6.7 -6,3 -28.5 

°C Powell 6 x 6 -34.5 -10.8 -10.3 -34.8 

-100 GA* 4 x 4 12.3 36.8 34.7 19.4 

°C Powell 6 x 6 20.3 33.9 33.3 19.8 

P1 P2 : 
139.8 249.8 i 

143.6 266,7 

127.6 234.6 

300,4 323.7 

303,3 342.7 

257,7 292,0 

254.6 314.0 

250.2 295.7 

207.8 231.1 

222.6 225.2 i 

197,5 210.0 

207,5 232.0 

P~ P~ 
121.5 195,1 

125.3 203.4 

126.2 229.0 

193.1 217.4 

204.9 232.6 

251.3 281.1 

243.6 298.5 

247.6 288.6 

165.7 209.1 

217.6 221.1 

143,7 158,9 

202,0 219,5 

a. (*) GA performed more than once 

b, P[  are the equivalent forces for a finer mesh 

c, 01 in degrees and Pi in N 
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Fig. 4(a) Thermal residual stress distribution (Nxx) 

Level 
F 
E 
D 
C 
B 
A 
9 
8 
7 
6 
5 
4 
3 
2 
t 

0.42 

Nx 
2422. 
1951. 
1461. 
1011. 
540.8 
70.48 
-399. 
-870. 
-1340 
-1810 
-2281 
-2751 
-3221 
-3692 
-4162 

0.30  

0.24 

0.18 

0.12 

0.06 

Jy 
~582. 
~202. 
823. 
443. 
063. 
;83.5 
~03,7 
76.1 
455. 
836. 
1215 
1595 
1975 
2355 
2734 

0.06 0.12 0.18 0 .24 0.30 0.36 0.42 

Fig. 4(b) Thermal residual stress distribution (Nyy) 

effects of stringers placed in the x and y-directions along the plate 
center lines. 

The thermal residual stresses vary linearly with the temperature 
decrement but the way they affect the buckling behavior of each 
plate is different. Therefore, a small temperature decrement can 
enhance the buckling load more than a large temperature differ- 
ence. This is why the AT = - 2 5 ° C  case is, among the results 
shown, of better performance. Moreover, notice that there is a 
decrease in P~ as AT varies from - 2 5 ° C  to -100°C.  This means 
that the thermal residual stresses have an adverse effect on the 
single-ply laminate which cannot be reversed, even by carefully 
choosing the subdomain orientations for larger AT. 

6.2 Case 2 - -Three-P ly  Plate. One concern regarding case 
1 is the continuity of the plate. In actual applications, single-ply 

plates such as the one simulated would exhibit a material failure 
either as a result of the thermal stresses or from a combination of 
thermal and prebuckling mechanical stresses at the interface be- 
tween the subregions. The fragile liaison between the subregions is 
not capable of resisting large stresses. 

The solution proposed here is to simply keep the subregions 
together by placing external uniform layers of composite material 
on the plate of case 1. This procedure produces a structure similar 
to a sandwich plate where the core is composed of subregions and 
the facings have uniform orientation. 

In case two, the total thickness of 0.6 mm is kept but one 0-deg 
facing layer is attached on the top and bottom of the "core." Thus, 
each layer is 0.2 mm thick. 

Differently from the optimal designs for plate 1, the optimal 
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Fig. 4(c) Thermal residual stress distribution (Nxy) 

Table 6 Optimization for plate 2 

designs for plate 2 possess eigenvectors associated with A~ which 
are symmetric about the center lines of the plate. Moreover, it can 
be noticed from Table 6 that all the angles have close absolute 
values. This suggests that the mechanism by which the thermal 
residual stresses acted to improve the buckling load has changed 
from plate 1 to 2 in the sense that the optimal eigenvector shape 
was modified. Furthermore, a comparison between the optimal 
eigenvalues presented in Tables 5 and 6 shows that higher levels 
are reached in the latter. 

It is noticed that the optimal designs in Table 6 are of the form 01 = 
04 = - 0, 02 = 03 = 0. Based on this fact, a test to check the validity 
of the results found for plate 1 was conducted. For the single-ply plate 
at AT = -50°C and subdomains oriented as 0t = 04 = - 0 and 02 = 
03 = 0, the angle 0 = 16 deg produces the highest buckling load of 

P~ = 224.2 N which is lower than the value found (247.6 N) in Table 
5. In addition, if Powell's method is started using the optimal design 
orientations of plate 2 at -50°C to optimize plate 1 at the same 
temperature difference the resulting configuration is 0~ = -69.3 deg, 
02 = 68.1 deg, 03 = 69.3 deg, and 04 = -68.5 deg with P~ = 103.7 
N which is certainly a local optimum. 

6.3 Case 3--Five-Ply  Plate. In this case, the total thickness 
is maintained at 0.6 mm but two facing layers are added above and 
below the "core." Results are shown in Table 7. 

A comparison between Tables 6 and 7 shows that the five-ply 
plate is superior to the three-ply plate; the choice of cross-ply 
facings yielded a better performance. It suggests that an even more 
sophisticated optimization, which encompasses the facings orien- 

01 02 03 04 el 

-6.1 27.9 13.4 -7.8 98.06 

-7.0 7.9 9.3 -9.4 98.26 

-8.4 8.6 8.1 -8.4 97.57 

-77.1 59.1 69.1 -73.6 244.7 

-78.3 72.0 71,5 -73.3 254.1 

-75.5 73.0 73.8 -75.4 228.7 

-85.2 61.6 64.5 -87.6 253.1 

-79.8 80.4 78.3 -79.5 285.6 

-81.0 82.4 82.4 -80.9 250.0 

-77.8 79.8 83.8 -83.8 292.8 

-82.9 80.6 83.1 -83.2 297.1 

-86.1 83.9 83.1 -83,4 257.2 

AT method FE mesh 

0 GA 2 x 2  

°C Powell 2 x 2 

Powell 4 x 4 

-25 GA 2 x 2 

°C Powell 2 x 2 

Powell 4 x 4 

-50 GA 2 x 2 

°C Powell 2 x 2 

Powell 4 x 4 

-75 GA 2 x 2 

°C Powell 2 x 2 

Powell 4 x 4 

-100 GA 2 x 2 

°C Powell 2 x 2 

Powell 4 x 4 

-87.5 84.0 76.9 -85.6 

-88.5 82.6 81.9 -83.5 

-88.5 87.5 82.6 -83.5 

289.4 

302.0 

259:9 

-8.0 16.9 44.8 

-17.9 21.5 11.8 

-11.2 15.0 14.9 

e~ ff  P; 

226.9 97.33 208.6 

231,I 97.56 212,3 

212.3 97.53 211,7 

333.4 214.2 262.1 

357.9 227.1 288.7 

297.9 225.0 294.3 

364.0 201.2 232,5 

337.4 241.3 265.5 

305,1 245.5 300.6 

300.1 207.8 220.4 

334.9 245,4 260.8 

304.0 252.2 299.1 

256.9 215.4 238.0 

335.5 247.4 257.1 

301.0 254.8 295.5 

a. P( are the equivalent forces for a finer mesh 

b. 01 in degrees and Pi in N 

Table 7 Optimization for plate 3 

AT method FEmesh 

0 GA 2 x 2  

°C Powell 2 x 2 

Powell 4 x 4 

-25 GA 2 x 2 

°C Powell 2 x 2 

Powell 4 x 4 

-50 GA 2 × 2 

°C Powell 2 × 2 

Powell 4 x 4 

-75 GA 2 × 2 

°C Powell 2 × 2 

Powell 4 × 4 

-1O0 GA 2 × 2 

°C Powell 2 x 2 

Powell 4 x 4 

O~ 02 03 04 P~ P2 P~ P~ 

3.9 0.5 -8,5 1.6 96.39 320.2 95.88 269.3 

-1.9 2.1 2.1 -2.2 96.71 320.4 96.11 269.4 

-1.1 0.9 0.8 -1.2 96.12 269.4 96,09 268.0 

-59.2 50.3 53.5 -77.0 222.5 377.3 206.5 319.3 

-48.1 46.0 46.4 -46.0 238.1 385.1 217.5 321.8 

-47.6 47.4 47.3 -47.7 217.6 322.0 216.0 320.3 

-38.4 62.6 60.0 -69.9 309.7 359.4 265.0 293.0 

-51.6 51.3 51.2 -52.0 319.3 345.5 261.0 277.9 

-63.4 63.5 63.3 -63.4 267.8 300.8 264.7 297.7 

-67.8 43.3 61.2 -82.0 342.0 347.6 274.8 277.9 

-66.5 60.8 54.4 -82.0 344.1 351.4 276.5 284.6 

-73.6 71,8 73,1 -72,0 285.4 304.0 281.6 300.4 

-7.9 347.3 352.7 

-11.5 357.2 357.7 

-10.8 289.9 310.4 

283.2 285.0 

285.7 288.9 

285.6 307.8 

a. P[ are the equivalent forces for a finer mesh 

b. 0~ in degrees and P~ in N 
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Fig. 5 Comparison between optimized plates 

tations, could be implemented. The facings would still be uniform 
but their orientation would be allowed to vary from ply to ply. 

7 Comments 
The results achieved undoubtedly indicate that the thermal 

residual stresses can be effectively tailored in order to enhance 
the buckling strength of composite plates. In some cases the 
critical buckling load is up to three times that of the best plate 
where thermal residual stresses are disregarded (AT = 0°C). 
Figure 5 shows the comparison between the plates optimized in 
this work. The buckling loads are normalized by the buckling 
load of a plate of the same thickness composed of a [0 deg] 
laminate, P, = 97.30 N. 

Bi-cubic Lagrangian elements were used in the finite element 
analysis although it is often recommended that elements as simple 
as possible are implemented in optimization procedures. As a 
matter of fact, bi-quadratic Lagrangian elements were tried but did 
not revealed themselves of any advantage; the bi-cubics have 
superior performance. 

Convergence analyses were made for both thermal and buckling 
problems. As a general rule, finer meshes are required for the 
buckling problem. It suggests that different meshes, coarse and 
fine for the thermal and buckling problems, respectively, could be 
used. Nevertheless, since the thermal and prebuckling problems 
consume only a fraction of time compared to the buckling prob- 
lem, there is little point in accelerating the numerically inexpensive 
steps 1 and 2. 

In the single-ply plate, the thermal residual stresses, either alone 
or combined with prebuckling mechanical stresses, could eventu- 
ally induce failure at the subregion interface or delamination. The 
proposed remedy to this problem was the placement of uniform 
facings onto the "core." Nevertheless, large stress levels could still 
develop leading to plate failure even before the instability is 
reached. A constrained optimization search would be necessary to 
avoid this undesirable side effect. The most straightforward tech- 
nique to take constraints into account is the incorporation of 
penalty functions to the objective function. This technique has 
proven successful in optimization usingGA (Le Riche and Haftka, 
1993) and, along with the choice of a suitable failure criteria, could 
be implemented here. 

A more realistic optimization of plates with thermal residual 

stresses would consider a continuous range of operating tempera- 
ture rather than a discrete one. Optimal designs should then be 
tested within a relatively broad range of temperature before be- 
coming operational. For instance, the single-ply optimal design at 
0°C was investigated and, surprisingly, it buckles under the resid- 
ual thermal effects alone for temperature differences greater than 
AT -- -73°C.  Similarly, optimal designs may fail at temperatures 
other than that at which they were conceived to operate. Studies 
towards optimality criteria that assess the design response at a 
continuous temperature domain would be of great use. 
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Nonlinear Vibration of 
Parametrically Excited Moving 
Belts, Part I: Dynamic Response 
The dynamic response and stability of parametrically excited viscoelastic belts are 
investigated in these two consecutive papers. In the first paper, the generalized equation 
of motion is obtained for a viscoelastic moving belt with geometric nonlinearity. The 
linear viscoelastic differential constitutive law is employed to characterize the material 
property of belts. The method of multiple scales is applied directly to the governing 
equation which is in the form of continuous gyroscopic systems. No assumptions regard- 
ing the spatial dependence of the motion are made. Closed-form solutions for the 
amplitude and the existence conditions of nontrivial limit cycles of  the summation 
resonance are obtained. It is shown that there exists' an upper boundary for the existence 
condition of the summation parametric resonance due to the existence of viscoelasticity. 
The effects of  viscoelastic parameters, excitation frequencies, excitation amplitudes, and 
axial moving speeds on dynamic responses and existence boundaries are investigated. 

1 Introduction 

Moving belts used in power transmissions are an example of a 
class of mechanical systems commonly referred to as axially 
moving materials. One major problem in this system is the occur- 
rence of large transverse belt vibrations which result from the 
time-dependent crankshaft-driven belt tension. Such vibrations are 
termed as p/lrametric vibrations. Dynamic response and stability 
associated with parametric vibrations are of primary concern in 
engineering. 

The vibration analysis of a parametrically excited, axially mov- 
ing system has been studied extensively. Mahalingam (1957) was 
the first one to notice the possibility of parametric resonance due 
to the tension fluctuation in a translating string. Huang et al. (1995) 
studied the dynamic response and stability of a moving string 
undergoing three-dimensional vibration. Mockensturm et al. 
(1996) obtained analytical expressions for the amplitudes and 
stability boundaries of nontrivial limit cycles. 

In the aforementioned investigations for moving belt systems, 
the belt material is assumed to be linear elastic and damping is 
either ignored or introduced simply as linear viscous without 
reference to any damping mechanism, However, since belts are 
usually composed of some viscoelastic metallic or ceramic rein- 
forcement materials like glass-cord and viscoelastic polymeric 
materials such as rubber, viscoelastic constitutive relation should 
be employed to accurately describe the material property of mov- 
ing belts. 

The literature that is specially related to viscoelastic moving 
continuum is very limited. However, various methods have been 
presented for the vibration analysis of viscoelastic material sys= 
terns. Stevens (1966) considered the stability of a simple viscoelas- 
tic column subjected to a harmonically varying axial load. Fung et 
al. (1996) extended the concept of Stevens to the dynamic stability 
of a simply supported viscoelastic beam subjected to harmonic and 
parametric excitations simultaneously. There is only one paper by 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS. 

Discussion on the paper should be addressed to the Technical Editor, Professor 
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, 
Houston, TX 77204-4792, and will be accepted until four months after final publi- 
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS. 

Manuscript received by the ASME Applied Mechanics Division, Apr. 7, 1998; final 
revision, Dec. 14, 1998. Associate Technical Editor: R. C. Benson. 

Fung et al. (1997) so far discussing the numerical method for 
dynamic response of a viscoelastic moving string. 

In this paper, based on the linear viscoelastic differential con- 
stitutive law, the equation of motion in the form of gyroscopic 
system is obtained for a parametrically excited viscoelastic moving 
belt with geometric nonlinearity. The method of multiple scales is 
applied directly to the governing equation. Closed-form solutions 
for the amplitude of nontrivial limit cycles of the summation 
resonance and the corresponding existence conditions are ob- 
tained. Numerical examples show effects of viscoelastic parame- 
ter, excitation frequencies, excitation amplitudes and axial moving 
speeds on dynamic responses, and existence boundaries. 

2 Equation of Motion 
A prototypical model of a viscoelastic moving belt is shown in 

Fig. 1, where c is the transport speed of the belt, L is the length of 
the belt span, and V is the displacement in the transverse direction. 

Consider that the viscoelastic string is in a state of uniform 
initial stress, and only the transverse vibration in the y-direction is 
taken into consideration. The Lagrangian strain component in the 
x-direction related to the transverse displacement is e(x, t) = 
V~(x, t)/2. Thus, the equation of motion in the y-direction can be 
obtained by Newton's second law as 

32V O2V ( T) 32V 
p ~ + 2pc ~ + pc 2 - -  O X  2 

= + E*(½V~)Vxx+ Vx{E*(½V~)}~ (1) 

where the subscript notation x denotes partial differentiation with 
respect to the spatial Cartesian coordinate x, A is the area of cross 
section of the string, O is the mass per unit volume, T is the tension 
in the belt, and E* is  the linear differential operator determined by 
the viscoelastic property of belt materials. 

It is assumed that the tension T is characterized as a small 
periodic perturbation T~ cos Ot on the steady-state tension To, i.e., 

T = To + Ti cos ~ t  (2) 

where ~ is the frequency of the crankshaft. 
The Kelvin viscoelastic model is chosen to describe the vis- 

coelastic property of the belt material. The linear differential 
operator E* for the Kelvin viscoelastic model is given below, 

396 / Vol. 66, JUNE 1999 Copyright © 1999 by ASME Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 1 

y! 

c 

L v{x,r) x 
IP 

A prototypical model of a viscoelastic moving belt 

0 
E* = E0 + ~ 0-t' (3) 

where E0 is the stiffness constant of the spring and r/ is the 
dynamic viscosity of the dashpot. 

Introducing the following nondimensional parameters 

v = z  ~=~ r = t  V=c 

T, Eoa , [ .  
a = ~  oo=~2 E ~ -  E,,='O ~pToL ' '  (4) ~/ To To 

the corresponding nondimensional equation of the transverse mo- 
tion can be obtained as 

32V 02V 02V 
Or ~ + 2y 3 ~  + (72 - l - a cos ~ol-) ~ = N(v) (5) 

where the nonlinear operator N(v) is defined as 

3 3 
N ( u )  = 3 2 1 ~zE¢v~v¢~ + E v ~  (Tv~)v~, + v ~ E ~  (vev~,) (6) 

in which the first term on the right side of Eq. (6) is a term related 
to elasticity and the last two terms are terms related to viscoelas- 
ticity. 

Introduce the mass, gyroscopic, and linear stiffness operators as 
follows: 

O 2 
M = I, G = 23' ~ ,  K = ( ,~2  _ 1) O ~  2 (7) 

where operators M and K are symmetric and positive definite and 
G is skew-symmetric for subcritical transport speeds. Employing a 
small dimensionless parameter e as a bookkeeping device, Eq. (5) 
can be rewritten in a standard symbolic form 

OZv 
Mv,,  + Gv, + Kv = EN(v) + ea cos o), 0~ 2 . (8) 

Equation (8) is in the form of a continuous gyroscopic system 
with weakly nonlinearity and parameter excitation term. The 
method of multiple scales will be employed to solve Eq. (8) 
directly. 

3 Method of Multiple Scales 
For nonlinear vibration analysis of an axially moving elastic 

material, Wickert and Mote (1990) proposed a complex form of 
the discretization process which used the travelling eigenfunctions 
instead of the stationary eigenfunctions. Based on this discretiza- 
tion process and KBM method, Wickert (1992) analyzed the free 
vibration of a gyroscopic system with weakly nonlinear stiffness. 
Moon and Wickert (1997) obtained near and exact-resonant re- 
sponse amplitudes of nonlinear vibrations of power transmission 
belts. In their study, the tension is assumed as a time-independent 
constant, and internal resonance and multimode responses are not 
considered. 

There exists an alternative direct perturbation method which 
treats the continuous nonlinear governing partial differential equa- 
tions directly. Pakdemirli et al. (1995) showed that there are 
discrepancies between the two approaches for principal, subhar- 
monte, and superharmonic resonance of some nonlinear systems. 

In this section, the method of multiple scales is applied directly 
to the governing partial differential equation, which is in the form 
of a continuous gyroscopic system. No assumptions regarding the 
spatial dependence of the motion are made. A first-order uniform 
approximation is sought in the form 

v(~, 'r, E) = v0(~, To, Ti) + ev.(~, To, Tj) + . . .  (9) 

where To = r is a fast scale characterizing motions occurring at 
one of the natural frequencies ~o~ of the system or ~0; T~ = ez is 
a slow scale characterizing the modulation of the amplitudes and 
phases due to the nonlinearity, viscoelasticity, and possible reso- 
nance. 

Substituting Eq. (9) into (8), using the  chain rule of time 
derivatives and equating coefficients of like powers of e lead to 

027)0 + 0V0 
M O~o G ~ o  + Kv° = O (10) 

02Vl O Vl -I- 
M - ~ o  + G ~ o  Kv, 

OZVo OVo + 02Vo 
= - 2 M  OroOT----- ~ - G i ~  N(vo) + a cos ooTo ~ f v .  (11) 

When the perturbation frequency w approaches the sum of any 
two natural frequencies of the system, summation parametric res- 
onance can occur. As a special case of the summation parametric 
resonance, the principal parametric resonance will also be pre- 
sented when w approaches 2o~. A detuning parameter tx is intro- 
duced to quantify the deviation of w from w,, + wt, and is 
described by 

w = o~, + oat + E/.z (12) 

in which ~o,, and oo~ are the nth and/ th  natural frequencies of the 
corresponding linear system. 

To investigate the summation parametric response and stability, 
solution of Eq. (10) can be expressed as 

Vo = qJ,,(~)A,,(T,)e ~'°'m' + qJt(~)A,(T~)e ~'°'T̀ ' + cc (13) 

where t),,(~) and qJ~(~) are the nth and/ th  complex eigenfunction 
of the displacement field, and cc denotes the complex conjugate of 
all preceding terms on the right side of Eq. (13). Functions A,, and 
At will be determined by eliminating the secular terms from Vl. 

Substituting Eqs. (12) and (13) into (11) and expressing the 
trigonometric functions in exponential form result in 

02vl  0v] 
M ~ + G 0~o + Kvj = NST + [-2iw,,A;,Mtp,, - A;,Gqt,, 

aAI  (~2~jI e i'~T' + m2,,(3Ee + 2i~o,,E~,)A 2- i,o,,r,, - -  . A , , ] e  
+ 2 O~ 2 

a A .  o %,, e i~T , 
+ [-2iwtAiMqh - A'tGqh + ~ -  3~---~- 

+ M2/(3E~ + 2io31Ev)A~Ale] i~a° + cc (14) 

where 

M 2 k = 2  0~ 2 + 2  0~ 0~ 0 ~ J  

f o r k = n ,  1. (15) 
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NST in Eq. (14) represents all the nonsecular terms and the overbar 
denotes complex conjugate. 

Due to the nonlinearity and viscoelasticity, NST involves some 
complicated spatial distribution functions. Thus, the spatial varia- 
tions of the first order solution v~ is different from that of linear 
solution v0. The validity of the assumption that the spatial variation 
can be represented in terms of linear eigenfunctions is therefore, 
questionable. However, this assumption is commonly used in the 
nonlinear vibration analysis. 

Equation (14) has a solution only if a solvability condition is 
satisfied. This solvability condition demands that the right side of 
Eq. (14) be orthogonal to every solution of the homogeneous 
problem. For general case where internal resonance does not exist, 
the solvability condition can be determined as 

-2io~,,A',,m,, - A~,g,,i + (3Ee + 2iw,,E,,)A ZA,,m2,, 

aJ*t 
+ ~ -  mt,,e i"r' = 0 (16) 

-2 i~ tA;mt  - A;gti + (3Ee + 2iogtE~)A~Atm~t 

+ - 2 -  m,aeitSTl = 0 (17) 

in which 

where Re(m,,) and Im(m,a) indicate the real and imaginary com- 
ponents of m,, and 

0 = ~ T , -  ~,  - ~,. (26) 

4 Dynamic Response and Existence Conditions 
For nonlinear systems, limit cycles may exist in the vicinity of 

a parametric instability region. In this section, the interest is 
focused on the behavior of limit cycles around the parametric 
instability regions for elastic and viscoelastic nonlinear systems. 

Steady-State Response of Elastic Moving Belts. For the 
steady-state response of elastic moving belts, the amplitudes O/,, 
O/t, and the phase angle 0 in Eqs. (23) to (25) should be constant. 
Thus, for elastic systems, setting o~', = 0, O/'t = 0, 0' = 0 and 
E~ = 0 in Eqs. (23) to (25) and eliminating the term cos 0 Im(m,,~) 
+ sin 0 Re(re,3 from Eqs. (23) and (24) yield 

n 2 (27) 

For steady-state analysis, eliminating 0 from Eqs. (23) and (25) 
with cal, = 0, 0' = 0 and substituting Eq. (27) into the resulting 
equation, the amplitudes of steady-state response of summation 
parametric resonance for elastic systems are obtained: 

rnk = (Mtok, tok) gk = -i(Gto~, tok) 

m2k = (M2k, qtk) for k = n, l (18) 

m,a = \ 0~2 , ~ - .  tO. (19) 

and the notation ( . ,  • ) represents the standard inner product of two 
complex functions over ¢ E (0, 1). 

Referring to Wickert and Mote (1990), the kth natural frequency 
and eigenfunction normalized for mk = 1 of linear moving belts 
are oo, = k~r(1 - 7 5) and tO, = V 2  sin (k'rr~)e ~k~'/~, respec- 
tively. Substituting these eigenvalues and eigenfunctions into Eqs. 
(18) and (19) leads to 

gk = 2kTry 2 m2k = - -  ¼ ~ 4 k 4 ( 3  + 2T 2 + 3 2 / 4 )  (20) 

mnt = mtn 

4"n'n212v[-sin (n + l)'n'v + 1(1 - cos (n + /)Trv)] 

(n  + t ) [ ( n  + l ) ~ v  ~ - (n  - t) ~] 

(21) 

Note that both gk and mzk are real and m,. = mr,,. To solve the 
nonlinear Eqs. (16) and (17), express A. and At in polar form 

An = ½0/,,e itJ" At = ½0/le il31. (22) 

Note that O/k and/3, (k = n, l) represent the amplitude and the 
phase angle of the response, respectively. Substituting Eq. (22) 
into (16) and (17) and separating the resulting equation into real 
and imaginary parts yield 

Ev~onm2n dot I 
a ' . -  4n~r O/3 + ~ [cos 0 Im(m.t) + sin 0 Re(m.t)] (23) 

Evo)tm21 ao/n 
o ~ -  41'n" a~ + 4 ~  [cos 0 Im(m,t) + sin 0 Re(mnl)] (24) 

3Eem2,o/] 3Eem2to/~ 
O' = /x + 8nw + 817r 

[ ao/t ao/n t 
+ (cos 0 Re(re,a) " sin 0 I m ( m n , ) ) ~ 4 ~ ,  ' + 4 ~ a t ]  (25) 

2 
O/n0 = 

a 

/z ± 2 . ~ w  x/Re(m"')2 + Im(m"t) 2 

_(3Eem2,  3Eem21n] 
\ 8/'/77" + 8127r ) 
a 

/z + - -  i/Re(m,,,) 2 + Im(m,a) 2 
n - 2 @ ~ "  

°t~° = 1 _(3Eem2,, 3Eem21n) (28) 

\ 8n~" + 812~ " ] 

From the amplitude expression (28) of elastic problems,' it can 
be seen that the first limit cycle exists if /x -> 
-(( 'k/Im(m,~) 2 + Re(m,l)2)/2X/M,rr)a and the second limit cy- 
cle exists i f /x -> ((N/Im(m,,~) 2 + Re(m, t )2) /2~nlw)a.  

It should be mentioned that existence conditions of limit cycles 
are the same as the stability conditions of the trivial solution for 
elastic systems (Zhang and Zu, 1998). Thus, it is concluded that for 
elastic summation parametric resonance the nontrivial limit cycles 
bifurcate from the trivial limit cycle at the stability boundary of the 
trivial limit cycle. 

Steady-State Response of Viscoelastic Moving Belts. For 
the steady-state response of viscoelastic moving belts, setting 
O/', = 0, O/'~ = 0, 0' = 0 and eliminating the term cos 0 Im(m,3 
+ sin 0 Re(re,a) from Eqs. (23) and (24) lead to the following 
relationship between o~,, and a~: 

O/~ = 7 c~ ]. (29) 

It is seen that the relation between c~,, and c~ of viscoelastic 
systems is different from that of elastic systems. Eliminating 0 
from Eqs. (23) and (25) with c~', = 0, 0' = 0 and substituting Eq. 
(29) into the resulting equation, the following amplitude modula- 
tion equation for steady-state response is obtained: 

2 clo/, 6, + c20/~ + c30/,, = 0 (30) 

where c~, c~, and c 3 are time-independent constants determined by 
the system property. 

It is obvious that Eq. (30) possesses a singular point at the origin 
(trivial periodic solution). In addition, two nontrivial singular 
points may exist describing limit cycles with amplitudes 
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-c2 +- x/c~- 4c,c3 
2 

°G'° = 2Cl 

n z ~_~ --c2 --+ ~/c~ -- 4CLC3 
c~0 = -~" - -  2c, (31) 

Equation (31) represents the amplitudes of the steady-state re- 
sponse of the summation parametric resonance for viscoelastic sys- 
tems. As a special case, the response amplitude of principal paramet- 
ric resonance (n = l) for viscoelastic belts is given in the following: 

(14; 
~ 7  + n - x/Im(m"t)2 + Re(m"')2 

a 

4'n" 

(n 
~ + x/(Im(m,,,) a + Re(m,,t)2)c~ 

<_/,_< 
- 4 wEvw,,m2,, 

and the second limit cycle exists if 

a (34) 

2 _ _  
O t  n O  - -  

__3Eencrt* +_ \l/n2~&a2 sin2 n'rr'Y ( ~ ) 2  - n27r2~2 - n2~r2a2 sin2nTr'Y) ( - - ~ )  

(32) 
+ ( -m2.) .  

From the amplitude Eq. (31) of viscoelastic systems, it can be 
seen that the two nontrivial steady-state solutions exist only when 
the following conditions are satisfied: 

c~ - 4clc 3 --> 0 -c2 -+ @22 - 4cjc3 -> O. (33) 

Substituting the expressions of c~, c2, and c3 into Eq. (33) leads 
to the following conclusions that the first limit cycle of viscoelastic 
systems exists if 

+ ~ ~/Im(m,,I) 2 + Re(m,,t) 2 
a 

4¢r 

+ X/(Im(m,,,) 2 + Re(m,,i)2)c~ 

--< /.*--< a. (35) -4  7rEv~,,m2n 

It can be seen from Eqs. (34) and (35) that the existence 
conditions of nontrivial limit cycles have an upper boundary for 

A 

~ o  

B 

Fig. 2 The response amplitudes of nontrlvlal limit cycles for the summation parametric resonance of an elastic moving belt (n = 1, I = 2, Ee 
= 400, Ev = 0, y = 0.2); (A) the first limit cycle, (B) the second limit cycle 
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Fig. 3 The response amplitude of nontrivial limit cycles for the summation parametric resonance of a viscoelastic moving belt (n = 1, I = 2, 
Ee = 400, Ev = 10, y = 0.2); (A) the first limit cycle, (B) the second limit cycle 

viscoelastic models, which is different from the conclusion of the 
corresponding elastic systems. The upper boundaries of existence 
conditions for the first limit cycle and the second limit cycle are 
identical and are determined by the viscoelastic parameter E,,. The 
lower boundaries of existence conditions have no relation with the 
viscoelastic property of the system and are different from those of 
the corresponding elastic systems. In addition, the boundaries of 
existence of nontrivial limit cycles have no relation with the 
nonlinear parameter E~. 

5 Numerical  Results and Discussions 
In this section, numerical results of steady-state responses and 

existence boundaries for the summation parametric resonance of 
moving belts are presented. Effects of the viscoelastic parameter, 
the amplitude of excitation, the frequency of excitation, and the 
transport speed on the response of nontrivial limit cycles are 
investigated. 

The response amplitudes of limit cycles of summation paramet- 
ric resonance (n = 1, l = 2) for an elastic system and a 
viscoelastic nonlinear system are shown in Fig. 2 and Fig. 3, 
respectively. The nondimensional transport speed 7 is 0.2 and the 
nonlinear parameter E~ is 400. In Fig. 3, the viscoelastic parameter 
is 10. From Fig. 2, it can be seen that the amplitude increases 
without bound as /~ increases. When the excitation amplitude 
grows, the response amplitude increases. Only the trivial solution 
exists if the existence conditions of nontrivial solutions are not 
satisfied. It is evident from Fig. 3 that though the amplitude 
increases with the growth of the excitation amplitude a and fre- 
quency/~, there exists an upper bound. The nontrivial limit cycle 
will vanish when a and/~ approach this bound. This phenomenon 
for viscoelastic moving belts is quite different from the corre- 
sponding elastic systems. 

The effects of viscoelastic parameter E o on the amplitude and 
the existence boundary of nontrivial limit cycles are illustrated in 
Fig. 4. The system parameters are Ee = 400, a = 0.5, and 7 = 

0.25. Three different values of Ev are chosen as 0, 25, and 50. It is 
clear that the amplitude decreases with the increase of E v for the 
first limit cycle while the amplitude increases with the growth of 
E,, for the second limit cycle. The most important phenomenon is 
that the existence condition has an upper boundary for viscoelastic 
system. 

Translation speeds not only influence the amplitude of the 

o 

A O03O 
0.025 

0,020 

0,015 
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0.000 = "= "'=.'" - o 
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Fig. 4 Effects of Ev on the amplitude of limit cycles of the first mode for 
summation parametric resonance (n = 1, I = 2, Ee = 400, 1' = 0.25, a = 
0.5); (A) the first limit cycle, (B) the second limit cycle, O Ev = O, AEv = 
25, x Ev = 50 
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Fig. 5 Effects of the transport speed on the first mode amplitude of nontrivial limit cycles of the parametric resonance (Eo = 400, Ev = 10, 
a = 0.5); (A) the first limit cycle (n = 1, / = 1), (B) the second limit cycle (n = 1, I = 1), (C) the first limit cycle (n = 1, I = 2), (D) the second limit 
cycle (n = 1, / = 2) 

nontrivial limit cycles, but also influence the existence region of 
limit cycles significantly. Figure 5 illustrates the effect of the 
translating speed on non-trivial limit cycles of the principal (n = 

l = l)  and the summation (n = 1, l = 2) parametric resonance. 
The excitation amplitude a is chosen as 0.5 and the nonlinear 
parameter E,, is 400. From Fig. 5, for principal parametric reso- 
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nance, it is seen that the amplitude of limit cycles decreases with 
the increase of transport speeds. The nontrivial amplitude grows 
more slowly with/x when translation speeds is larger. Moreover, 
for the translation speed unsatisfying Eq. (34) and (35), the non- 
trivial limit cycles no longer exist. These results indicate that by 
increasing the transport speed while keeping other parameters 
constant, an unstable belt can be stabilized. For the summation 
parametric resonance, the relation between the response and the 
transport speed is much more complicated. There exists a maxi- 
mum value of response for the first limit cycle and a minimum 
value of response for the second limit cycle when 3, is around 0.2. 

The excitation frequency (detuning)/x on the upper boundary of 
existence is plotted against viscoelastic property Ev in Fig. 6. In 
this example, 3/= 0.25, Ee = 400, and a = 0.5. It is much clearer 
that when E~ increases,/x decreases. Since the lower boundary has 
no relation with E~, the region of existence will narrow with the 
increase of E o. Especially when E v approach zero, the upper 
boundary of/x will approach infinite. This agrees with the conclu- 
sion obtained by Mockensturm et al. (1996) that there is no upper 
boundary of existence for elastic problems. 

The relation between the excitation frequency/z and the trans- 
port speed on the boundaries of existence condition for the first 
limit cycles is plotted in Fig. 7. The system parameters are Ev = 
10, Ee = 400, and a = 0.5. It is clear that the transport speed has 
a significant effect on the boundary of existence. 

6 Conclusions 
In this paper, the dynamic response of parametrically excited 

viscoelastic moving belts is investigated. The Kelvin viscoelastic 
model is employed to characterize the property of belt materials. 
The method of multiple scales is applied directly to the governing 
equation of motion which is in the form of continuous gyroscopic 
systems. No assumptions about the spatial dependence of the 
motion are made in this approach. Closed-form expressions are 
found for the response and existence conditions of the summation 
parametric resonance. 

The following conclusions can be drawn from the above study: 

1 The amplitude of the first limit cycle decreases with the 
increase of the viscoelastic parameter E, while the amplitude of 
the second limit cycle increases with Ev. 

2 The amplitude of the limit cycles decreases with increasing 
transport speeds for principal parametric resonance. There is no 
such a simple relation for the summation parametric resonance. 

3 There exists an upper existence boundary for the viscoelastic 
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Fig. 6 Relations of p, and Ev on the upper existence boundary of non- 
trivial limit cycles for summation parametric resonance (n = 1, I = 2, Eo 
= 400, 3' = 0.25, a = 0.5) 
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Fig. 7 Effects of the transport speed on the existence boundary of 
non-trivial limit cycle for summation parametric resonance (n = 1, I = 2, 
Eo = 400, a = 0.5, Ev = 10); (A) upper boundary, (B) lower boundary 

model and this upper boundary of existence for limit cycles is 
determined by the viscoelastic property E v. 

4 The lower boundary of existence for limit cycles of elastic 
systems is identical to the stability boundary of the trivial solution. 
This suggests that nontrivial limit cycles of the summation para- 
metric resonance bifurcate from the trivial limit cycle at the 
boundary of the trivial limit cycle. 

5 The boundaries of existence have no relation with the non- 
linear parameter Ee. 
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Nonlinear Vibration of 
Parametrically Excited 
Viscoelastic Moving Belts, 
Part I1: Stability Analysis 
The amplitude and existence conditions of nontrivial limfl cycles are derived in the companion 
paper by the use of the method of multiple scales. In this paper, the stability for parametrically 
excited viscoelastic moving belts is studied. Stability boundaries of the trivial limit cycle for 
general summation parametric resonance are obtained. The Routh-Hurwitz criterion is used 
to investigate the stability of nontrivial limit cycles. Closed-form expressions are found for the 
stability of nontrivial limit cycles of general summation parametric resonance. It is shown that 
the first limit cycle is always stable while the second limit cycle is always unstable for the 
viscoelastic moving belts'. The effects of viscoelastic parameters, excitation frequencies, 
excitation amplitudes, and axial moving speeds on stability boundaries are discussed. 

1 Introduction 
The dynamic stability problem of the parametric vibration of 

elastic moving materials has been investigated by many research- 
ers (Mahalingam, 1957; Mote, 1968; Ulsoy et al., 1978). More 
recently, Huang et al. (1995) studied the dynamic stability of a 
moving string undergoing three-dimensional vibration. Mocken- 
sturm et al. (1996) obtained closed-form expressions for stability 
boundaries of the nth-mode principal and the first summation 
parametric resonance of linear systems using KBM method. An 
analytical expression was also given for the stability of nontrivial 
limit cycles of nonlinear elastic systems. Pakdemirli and Ulsoy 
(1997) determined the stability boundaries of an axially acceler- 
ating linear moving string analytically. 

For viscoelastic systems, Stevens (1966) showed that in some 
cases the stability regions may be broadened significantly as the 
material becomes more viscoelastic in nature. Fung et al. (1996) 
extended the concept of Stevens to the dynamic stability of a 
simply supported viscoelastic beam subjected to harmonic and 
parametric excitations simultaneously. 

In the first paper by Zhang and Zu (1998), a closed-form 
solution of limit cycles of summation parametric resonance is 
obtained. It is shown that there exists an upper boundary of 
existence due to the existence of viscoelasticity. In this paper, the 
Routh-Hurwitz (Chen, 1971) criterion is employed to investigate 
the stability of nontrivial limit cycles. It is shown the first limit 
cycle is always stable while the second limit cycle is always 
unstable for viscoelastic moving belts. Examples highlight the 
important effects of viscoelastic parameters, excitation frequen- 
cies, excitation amplitudes, and axial moving speeds on stability 
boundaries. 

2 Stability of the Trivial Limit Cycle 
It has been shown (Wanda, 1990) that the stability of the trivial 

limit cycle of nonlinear systems coincides with the stability of the 
equilibrium point of the corresponding linear systems. Thus, it is 
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convenient to perform the stability analysis of linear systems to 
obtain the stability boundary of the trivial limit cycle of nonlinear 
systems. In this section, the stability boundaries of general sum- 
mation parametric resonance are obtained based on the amplitude 
modulation equations for linear systems derived by the use of 
direct multiple scales method (Zhang and Zu, 1998). The ampli- 
tude modulation equations are given as 

aAt 
-2ioo,,m,A',, - g,,A~,i + T m'ae'~r~ = 0 

a A ,, 
--2i~o~mtA'l - gtA~i + ~ -  mnle i~Tl = O. (1) 

Note that the nonlinear terms have been taken out from the 
original equations. In order to transform Eq. (1) into equations 
with constant coefficients, introduce the following transformation: 

A,~ = (aD. + ia,i)e (i~'/2)+t3r' At = (a2r  'q- iazi)e (i~rt/2)+~r~. (2) 

Substituting Eq. (2) into (1) and separating the real and imagi- 
nary parts from the resulting equations lead to 

a a 
nTrtzaw + 2nTr/3ali + ~ azr Re(m.t) + ~ a2i Im(m.z) = 0 (3) 

a a 

-2nTr/3al~ + n'n'ali + ~ a2r Im(m,,t) - ~ a2i Re(m,,i) = 0 (4) 

a a 
lwlxa2,. + 21'rr/3a2i + ~ air Re(m,,t) + ~ ati Im(m,t) = 0 (5) 

a a 

-217r/3a2r + l'rr~a2i + ~ al,. Im(mnt) - ~ ale Re(m,,t) = 0. (6) 

Expressing az, and a2~ in terms of a lr and a ~ from Eqs. (3) and 
(4) and substituting the resulting equations into Eqs. (5) and (6) 
yield 

a Re(.mnl) n/'tr Z Re(m,, t)(~ + 4/32)] 
a 

2 l r 

Z (Re(m"') 2 + Im(m,a) 2) /, 

a Im(m,u) nITr 2 Im(m,l)(/z 2 + 4/32) 1 
+ 2 a . . . . . .  a l i =  0 (7) 

~- (Re(re.i)2 + Im(m.t)2) 
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a Im(m,,) n i t  2 Im(mnt)(Ix 2 + 4/32)] 
. . . . . . . .  l a i r  2 a 

(Re(m~,) 2 + Im(m,t) 2) 

a Re(m,a) nl'rr 2 Re(mnt)(Ix 2 + 4~2)]  
+ - 2 F--~ . . . . . .  al~ = 0. (8) 

(Re(m,a) 2 + Im(m,a)2) 

For a nontrivial solution, the determinant of the coefficient 
matrix in Eqs. (7) and (8) nmst vanish, i.e.. 

a Re(m.,) n_/Tr___2_ Re(_m_~j)_(Ix 2 +_ 4/32__)] 2 

2 ; (Re(m,a) 2 + Im(m.,)2)J 

a Im(m,a) nl,rr 2 im(m,l)(/.,2 + 4/32)] 2 

+ 2 ~- . . . . . . . .  0. (9) 
(Re(m,a) 2 + Im(m,a)2) 

Since the system is stable only when /3 has a negative real 
component, the transition at which /3 = 0 is where the stability 
boundaries are located. Therefore, the stability condition for the 
general summation resonance of linear moving belts is obtained as 

8n313"y2(1 -- COS ((n + l )wy))a 2 
IX2> (n + l )2 [ (n+  l)3' + n -  l ] [ ( n +  l ) y - n + l ] "  (10) 

It is seen that Eq. (10) is the same as the existence condition of 
nontrivial limit cycles of nonlinear elastic systems in part 1 of the 
paper. This suggests that the nontrivial limit cycle of summation 
parametric resonance of elastic systems bifurcates from the insta- 
bility boundary of trivial solution. 

3 S tab i l i ty  o f  the  N o n t r i v i a l  L i m i t  Cyc le s  

As shown by Zhang and Zu (1998), the equations of amplitudes 
a,, and a~ for nontrivial limit cycles and the corresponding phase 
angle 0 are derived using the method of multiple scales as 

Ev~nm2n a°~l r 
a,', - 4nrr a~ + 4 n ~  kCOS 0 Im(m,t) + sin 0 Re(m,,,)] (1 1) 

Ev(.olm21 ao~ n 
a j -  41w c~ + ~ [cos 0 Im(m.l) + sin 0 Re(m.,)] (12) 

3Eem2,,o~2. 3Eem2,cx~ 
O ' = IX + 8 n ,rr + 81-----~ 

I 
+ (cos 0 Re(re,l) - sin 0 Im(m~,))\4nrra" + 4 ~ a l ]  ' (13) 

In order to analyze the stability of steady-state solutions of a,o, 
a,o, and 0o, introduce small variations %,,,e~,, and eo as 

c%= a , 0 +  c .... a l =  a l0+ c~, 0 =  0 0 +  c0. (14) 

t I ! Note that a,,o = 0, a,0 = 0, 00 = 0 for steady-state solutions. 
Substituting expression (14) into Eqs. (11) to (13) and linearizing 
the resulting equations, the following relations are obtained: 

3 Evo)nm2nO~ ,2~o 
E ! - -  

"" 4 n rr c . .  

a[cos 0o Im(m.t) + sin 0o Re(m.,)] 
+ 4nrr c,, 

a am[ - s in  0o Im(m~t) + cos 00 Re(m,,,)] 
+ 4nvr co (15) 

a[cos 0o Im(m~,) + sin 0o Re(m,,,)] 3E~tolm21a~o 
t _ _  n 

c . , -  4lrr c.  + 41w c~, 

a a . o [ - s i n  0o Im(m./) + cos 0o Re(m.t)] 
+ 41w e0 (16) 

[ 3 Eem2nOenO 
c~ = 4nw ~- (cos 0o Re(m,a) 

a a°~'° I - sin 00 Ira(m,,3) 4/~'a,0 4nrra,]o ] e~,, 

3 Eem2,otm 
+ [ 41w + (cos 0o Re(mn,) 

( a aa.o ~ 
- sin 0o Im(m,,t)) 4nwa,,o 41Wa~o] c~ 

- (sin 00 Re(mnl) + cos 00 Ira(re,a)) 

( au,o aano I 
× \4nrran0 + 4/~ralo] co. (17) 

To avoid the complexity of evaluating 0o, it is necessary to 
express those terms relating to 0o in terms of a,,o and ato. This can 
be accomplished by setting a',,o = 0, a'~o = 0 and 0~ = 0 in Eqs. 
(11) to (13) and rearranging the resulting equations as 

a[cos 0o Im(m,a) + sin 0o Re(m,a)] E,,~,,mz,,a~o 
- ( 1 8 )  

4nw 4nrtato 

a[cos 0o Im(m,,t) + sin 0o Re(m.t)] E,,(.otmzN~o 
(19) 

4lw 4lwano 

g = cos 0o Re(m,,/) - sin 0o Im(m,a) 

2 3Eem2lott2ol 3Eem2na"° + 
4nlvratoano I x + 8n----~- 8 ~  ] 

= alamo + ana]o (20) 

Substitution of Eqs. (18), (19), and (20) into (15), (16), and (17) 
results in equations for perturbed motions with coefficients matrix 
expressed in terms of a,,o and ato as 

an C a n  

c'~l = H e~, (21) 

c;J c o j  

where 

H = 

3 E~,o)nm 2n°t ,]0 
4nw 

EvOJ'lm21oz ~o 
41wa.o 

3Eem2.a,,o ( a aam I 3Eem2lato 
4 n ~  + g 4/~razo 4n'n'a2o] 4l.rr 

Evo)nm2n Oe ~o 
4nrrato 

3Evcolm2tOe~o 
4 l'rr 

( a aa,,o 1 
- -  + g 4n~ra,,o 4/~a-~12o] 

aoztog 
4nrr 

a o~ nog 
41'rr 

E..oo,,m2,,a]o E.,abm2ta~o 
t- 

4nw 4l'n" 

(22) 
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Stability of the nontrivial limit cycles is now decided by the 
nature of the eigenvalues of the matrix H. If all the eigenvalues 
have negative real parts, the steady-state solutions are stable. On 
the other hand, if the real part of at least one of the eigenvalues is 
positive, the corresponding steady-state solution is unstable. By 
the use of Routh-Hurwitz criterion the stability conditions can be 
determined as 

where 

H(1, 1) 
h2 = H(2, 1) 

h i < 0  h 2 > 0  h 3 < 0  h 4 < 0  

h, = H(1, 1) + H(2, 2) + H(3, 3) 

H(1, 2) H(1, l)  H(1, 3) 
H(2, 2) + H(3, 1) H(3, 3) 

H(2, 2) H(2, 3) 
+ H(3, 2) n(3 ,  3) 

h 3 = IHI h4 = hlh2 - h3 

and I I denotes the determinant of a matrix. 
It should be noted that if hi < 0, h 3 < 0 and h a < 0, h2 is 

greater than zero. Thus, h~ < 0, h3 < 0, and h 4 < 0 are the 
sufficient conditions that the system is stable. However, if h ~ = 0, 
h2 > 0 must be considered for the stability analysis. 

Substituting the expression of matrix H in Eq. (22) into Eqs. 
(24) to (26), and performing complicate manipulations (the Ap- 
pendix) result in 

Evtonm2nOt,2,o E,,totm2ta~o 
h= - + (27) 

n~" lTr 

2 2 2 ( 2 E.~tm2tat2o]2 E vfDn(Dlm2nt'n210l hOOt IO EvoJ,,m2na ,,0 
h2 = 2nl.rr 2 + 3 4n'rr ~ 41"rr ] 

2 2( OdnO OQ 0 )2  3Eem2totnoatoag 
+ a g \41~roqo 4n-~, ,o /  1612~r 2 

3 E em 2n Ot no ohoa g 
- 16n2.rr2 (28) 

E~rn2"m2'~ 4 ~ a , , o  + 4l~a,o] \ l a t~  + noL.o) °z'°a'° 
h3 = +_ 

4 m2,,l + m21 i~  7r 2 

× ,/c~ - 4c~c3 

where plus sign in h3 and h 4 is selected for the first limit cycle and 
minus sign in h3 and ha is selected for the second limit cycle. 

Based on Eqs. (27) to (30) and the Routh-Hurwitz criterion, 
viscoelastic moving belts and elastic moving belts are examined, 
respectively, in the following. 

Parametric Resonance of Viscoelastic Moving Belts: Ev -~ O. 
Since m2,, < 0 and m2t < 0 (see Zhang and Zu, 1998), it can be 

(23) seen from Eqs. (27), (29), and (30) that h~, h3, and h 4 are always 
less than zero for the first limit cycle. Thus, the first limit cycle is 
always stable. It is also evident that h 3 is always greater than zero 
for the second limit cycle. Thus, the second amplitude limit cycle 

(24) is always unstable. 
Considering the existence condition of limit cycles given in the 

first paper (Zhang and Zu, 1998), the following conclusions can be 
drawn for parametric resonance of viscoelastic moving belts: 

1 If 
(25) 

(26) + n - ~/Im(m,,t) 2 + Re(m,t) 2 

4~" 

+ X/(Im(m.t) 2 + Re(m.,)2)c, 

<- Ix < 4"rrE.to,,m2. a, 

the first limit cycle exists and it is always stable. 

2 If 

+ - fIm(m,a) 2 + Re(m,n) 2 n 
47r 

~ + f ( Im(m. l )2+ Re(m,,32)cl 

< tx < 47rEvto.m2,, a, 

the second limit cycle exists and it is always unstable. 
It is noted that the lower boundaries of limit cycles do not 

coincide with the stability boundary of linear systems, which is 
quite different from the corresponding elastic systems. The reason 
is that the viscoelastic model introduces material damping which 
will lead to the vanish of limit cycles in some region, Therefore, 
for viscoelastic model, there exists an upper boundary and a lower 
boundary. In other words, viscoelasticity narrows the stable region 
for the first limit cycle and also narrows the unstable region for the 
second limit cycle. Since the second limit cycle is always unstable, 
this corresponds to a saddle point or a motion which is unrealizable 

(29) in either numerical or laboratory experiments, 

h 4 = 

3 3 3 4 4 2 (  ~ 12 f~ 13 13 ~ 15 ~ )  l E,,w,,m2,,a,mam n l 3/4 
64n77r 4 3 + + 15 -n + 13 r~ + 13 ~ + 15 ~-~ + - - n 4  + ~-5 

m2n m21 n 2 ~ )  
4 n qr + 4 ~  

( EvOJnm2''Oz20 Evoklm2loll2°~ 2 2[ O/n0 O/10 / 2 
+ \ ~ -  + ~ -) a g ~ 4 / ~ 0  4n~--~,,o/ 

2 2 2 ( o~tm~ot~o I (  Oqo a,,o 1 @ ~  4c~c3 evo£ nO OL lO m 2nOOn (£nO • + 2 - - . -~ -  -- 
- ( ~ n ~ 1 6 ~ 3  +4~-~m2z n 2 ~ ) n 3 a t o l 3 m n m 2 z , , ° t , , o ] \ 4 n T r a , , o + 4 1 ' r r a t o ]  

(3oi 
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Fig. 1 Stability boundaries of the trivial limit cycle for the second principal parametric 
resonance (n = 2, I = 2, Eo = 400, y = 0.2); the upper boundary, - - - -  the lower 
boundary 

Elastic Summation Parametric Resonance: Ev = 0. Since 
Eo = 0, ht, h3, and h4 are equal to zero. In this case, the limit 
cycles are stable if and only if h2 > 0. Setting Eo = 0, h2 can be 
rewritten as 

2 2/ OgnO Og'O / 2 
h2 = a g ~ 4 / ~ o  4nrro~,o/ 

3 Eem2lO~noO~ loa g 

ot~=Tc~.n 2 g=_+~/Re(m. l )  2+Im(m,, t )  2, (32) 

For elastic parametric resonance, there exist the following rela- 
tions, 

16/27r 2 

3 E em 2notnoO~ /oa g 
- 16n 2.n. 2 (31) { -3Eem2tot,,oOeloa 

h2 = -+~ 16/2rr2 

where the plus sign is selected for the first limit cycle and the 
minus sign is selected for the second limit cycle. Substituting Eq. 
(32) into (31) yields 

_ 3Eem2n°~no°l/oa~ 
16n2~ 2 / 

× ~/Re(m,,t) 2 + Im(m,a) 2. (33) 

u~ 

Fig. 2 Stability boundaries of the trivial limit cycle for the first summation parametric 
resonance (n = 1, I = 2, Ee = 400, y = 0.2); the  upper  boundary ,  . . . .  the lower 
boundary 
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! 

Fig. 3 Stability boundaries of the trivial limit cycle for the summation parametric 
resonance (n = 1, I = 3, Eo = 400, y = 0.2); the upper boundary, - - - -  the lower 
boundary 

It can be seen that h2 > 0 for the first limit cycle while h2 < 0 
for the second limit cycle. This leads to the conclusion that the first 
limit cycle is always stable and the second limit cycle is always 
unstable for the parametric resonance of elastic moving belts. 

Considering the existence condition of limit cycles, the follow- 
ing conclusions can be drawn for parametric resonance of elastic 
moving belts: 

1 If /x -> _ ( ~ / ~ ( ~ - ~ ) 2  + R~(~,~j/2.X/~/~ 7r)a, the first 
limit cycle exists and it is always stable. 

2 If /z --> ( I ~ i )  -2 + Re(m,~j/2V~nni 7r)a, the second 
limit cycle exists and it is always unstable. 

Comparing with Eq. (10), it is suggested that the nontrivial limit 
cycle of summation parametric resonance of elastic systems bifur- 
cates from the instability boundary of the trivial solution. 

4 Numerical Results and Discussion 
In this section, numerical results for stability analysis of sum- 

mation parametric resonance of moving belts are presented. Ef- 
fects of the viscoelastic parameter, the amplitude of excitation, the 
frequency of excitation and the transport speed on stability bound- 
aries of nontrivial limit cycles are discussed. 

The stability boundary of the trivial solution for the second- 
mode principal parametric resonance (n = 2, l = 2) and the 
summation parametric resonance (n = 1, 1 = 2 and n = 1, l = 
3) are plotted in Fig. 1 to Fig. 3 as a function of the transport 
speed, excitation amplitude, and frequency (detuning). From 
Fig. l ,  it is seen that for the second-mode principal parametric 
resonance, there are two translating speeds where the slopes are 
unbounded and the instability region closes altogether. The 
instability region reaches maximum when the transport speed 3' 
approaches zero. As the translating speed grows, the instability 
region begins to close. The instability region widens with the 
increase of the excitation amplitude. From Fig. 2 (n = 1, l = 
2) and Fig. 3 (n = 1, l = 3), it is evident that the instability 
region almost closes when the transport speed is very small. As 
the transport speed 'y increases, the instability becomes wider, 
reaches a maximum and closes as the translation speed in- 
creases to the critical speed. 

The stability regions of the first nontrivial limit cycle and the 
second limit cycle are illustrated in Fig. 4 and Fig. 5 for 
summation parametric resonance (n = 1, l = 2) of a viscoelas- 
tic moving belt. Four different values of E,,, i.e., 1, 10, 25, 50 
are chosen to show the effect of the viscoelastic property on the 
stability and instability regions. Since the first limit cycle is 
always stable while the second limit cycle is always unstable for 
viscoelastic materials, the stable (unstable) region of the first 
(second) limit cycle should be the same as the corresponding 
region of existence. It can be seen that the lower boundaries for 
different E, are identical, while the upper boundaries are dif- 
ferent for different E~,. The lower boundaries for the first and 
the second limit cycle have the same absolute value but oppo- 
site sign. The upper boundaries for the first and the second limit 
cycle with the same E~, are identical. 

16 

T 

=L 

4 ................................ 
. .......... ' " g "  _ -  . . . .  

i 
0 

0.0 0,1 0.2 0.3 0.4 0.5 
a 

Fig. 4 Effects of Ev on the stability boundary of the first limit cycle of the 
first mode for the summation parametric resonance (n = 1, I = 2, Ee = 
400, 3,. = 0.25); upper boundary, Ev = 10; . . . .  upper boundary, Ev 
= 25; . . . . .  upper boundary, E ,  = 50; - -  - - - -  the lower boundary; S = 
stable region; T = trivial solution region 
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F i g .  5 Effects of E~ on the instability boundary of the second limit cycle 
of the first mode for the summation parametric resonance ( n  = 1, I = 2, 

Eo = 4 0 0 ,  y = 0 .25 ) ;  upper boundary, E~ = 10 ;  . . . .  upper boundary, 
Ev = 25; . . . . .  upper boundary, Ev = 5 0 ;  - -  - -  - -  the lower boundary; 
U = unstable region; T = trivial solution region 

5 Conclusions 
In this paper, the dynamic stability of parametrically excited 

viscoelastic belts is investigated. The Routh-Hurwitz criterion is 
employed to investigate the stability of limit cycles. Closed-form 
expressions are found for the stability of limit cycles of the general 
summation parametric resonance of viscoelastic moving belts. The 
following conclusions are drawn in this study: 

1 The first limit cycle is always stable for both viscoelastic and 
elastic parametric resonance. 

2 The second limit cycle is unstable for both viscoelastic 
parametric resonance and for elastic parametric resonance. 

3 The existence boundary of nontrivial limit cycles of elastic 
systems coincides with that of the stability boundary of the trivial 
limit cycle. For viscoelastic systems, however, the existence 
boundary of nontrivial limit cycles is different from the stability 
boundary of the trivial limit cycle. 

4 Viscoelasticity leads to the upper boundary of existence for 
nontrivial limit cycles. This suggests that viscoelasticity narrows 
the stable region of the first limit cycle and the unstable region of 
the second limit cycle. 

5 The translating speed, excitation frequency, and excitation 
amplitude have significant influence on the stable and unstable 
region of limit cycles. 
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A P P E N D I X  
The main difficulty in the stability analysis of noutrivial limit 

cycles lies in how to evaluate h3 and h4. In the Appendix, the main 
procedure in deriving the expressions of h3 and h4 is shown. 

Substituting Eq. (22) into (26), the determinant h3 of matrix H 
can be obtained as follows: 

h 3 = 

2 E vo)nc.olm2nm2/o! ~oOt 10 Evw,,m2,,o~,,o EvOJlnt2lO!~o) 2 2 2  

4nrr + 47~ ] 2nlrr 2 

41~r 4nrr ] ~ + g 4n ~rc~,,0 

4/~-~0] J + 4n~'oel0 4nrr + g 4lrra,0 

a.  ll } 

+ g 4n~c%0 41~ree2o] 4lrr 4nrr 

+ g (4 l a@0 ao!,o t 4n,n.oe~o] 1 } . (A1) 

Using the relation between a,,o and a~o, i.e., (o3,,m2,,o~,]a/ 

oo~m2toe~o) = (ato/c~,,o), and performing algebraic manipulations, 
h3 can be rewritten as 

( Eow,,m2,ee,Z,o Evto,m2,ee~o I E2,w,,w,m2,m2,ce2~oee,2 
h3 = \ ~ n ~  + 41rr J 2nler 2 

3 3 3agEeE~,w,m2,m2tee,,oeeto 3agE~E~wtm2,,mztc~ toce,,o 
16nlZ~r 3 16haler 3 

(A2) 

It is difficult to determine if h3 is greater than zero from Eq. 
(A2) directly. The expression of g in terms of the specific steady 
solution (the first limit cycle or the second limit cycle) must be 
obtained first. However, it would be too complicated to evaluate h 3 
if substituting the expressions of c~,,0 and ~0 directly into the 
expression of g in Eq. (20) as well as Eq. (A2). This difficulty can 
be overcome by using the following relation derived from the 
amplitude expressions of steady-state response, 

3aE~g 

k / c 7  4 c l c  3 2 2 2 2 °Qo °Ln° ± - - 2E~oo,,mz,,~,,o n2 + 

4n~r 
(A3) 

Note that plus sign is selected for the first limit cycle and the 
minus sign is selected for the second limit cycle. Substituting Eq. 
(A3) into Eq. (A2) results in 
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where 

h3= -+ (n3 ) 
4 m2,,l + m2l ~ 'iT2 

2 2 Evm2nm21o~ nO Ot I0 
- ( a l  + a2) ( A 4 )  

4 m2,,l + 11121 ~ 7r 

[ E~,oo,,m2,,oG2to E~,~lm2lot ,~ I 
a, = E,,oo,,o),~- 4 n w  + ~-l-lw / 

X + ~ (AS) 

I a 2 2 2 a2 = -2Eumnm2,,Otno - -  1l 2 

X 4n~oe,,~o + 4lrroqo/ \  loe,~ + noe,~o/ " (A6) 

Substituting the relation between cx,,0 and c¢~0 into Eq. (A5) and 
(A6) and performing complicated algebraic manipulation yields 
at + a2 = 0. Therefore, the expression of h3 can be simplified as 
shown in Eq. (29). 

Substituting the expressions of h,, h2, and h3 into Eq. (26), h, 
can be obtained as follows: 

2 E vOO,, folm2nm21oL hoot to ( E,,w,,m2,,oe,, ° Evoolm~o~o] 2 2 2 
h4 = 3 \  4nqr F- 41~r J 2111w 2 

3agE~E~,o&m 2,,ee ,,oeqo Ev~,,m2,,oz] ° Evoo,m2to¢~ot 3 2 3  

+ 12 4nvr + 417r ] + 16rt3w 3 

3agE~E~°°'m-~'°ei~°!"° ( E~°°"m2"°e'2'° Ev~olm2,oe~ I 
+ 1613rr 3 + \ nw + lrr ] 

2 21 / a aee,,o I 2 
× a g ~4nrTc~,,o 4 / r r ~ 0 J  ' (A7) 

Substituting Eq. (A3) into (A7) results in 

= a3 (E~o~nm2.c~,2,o lE~w!m.2,rX~o I 
n 2 ~ + + h4 ( man m2t \ n w  Iw J 

k 411~r + ~ lV 

t + I°m 2nOJn × a2g 2 o~,,o o0o 2 Ev~]0ot2 2 

4/wO~to 4n wc~,,0/ - m2l 
16~r ~ + 4 / ~  I~ 

O,,o 

X kn3~x, ° + 13oa,,m~,,ee,£ j 4nrcoe-- ° + 41waa, J 

X xfC~- 4t ic  3 (A8) 

where 

a3 = 3 \ 4 n w  + 

2 2 2 2 ( Ev°3nnz2n°e"° EvCOlm2,o¢~o] Evognoklm2nm2to~noOelo 
X \ ~ ° + 4lrr / 2nl~r 2 

(Dl2n m21 n 2 @)(guoJnm2nol,2zo EvfOlm2loLt2)l 3 
+ 12 4 n , r r + 4 / ~ T  \ 4n~r + 4lrr / 

3 3 4 4 2 (  160elO~ l 2 E v09 tim 2not nO0~ tO OLnO 
+ 32W 4 t '~ to  + nga,,oJ n 2 

X \ noe,,o loe;oJ " (A9) 

Using the relation between a,,o and Oeto, and performing complicate 
algebraic manipulation, a3 can be rewritten as 

3 3 3 4 4 2 t ~/~ 12 ~/~l 1 E,xo,,m2,,oe,,oeelo n l 
a3 = 64nT,trn 3 + + 15 - +  13 

13 13 /~ 3/4 15 /~) 
q- 13 U + 15 ~-~ -'1- --114 --l- ~ . (A10) 

Substituting Eq. (A10) into (A8), the final form of h 4 can be 
obtained as shown in Eq. (30). 
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Comparison of the In-Plane 
Natural Frequencies of 
Symmetric Cross-Ply Laminated 
Beams Based on the Bernoulli- 
Euler and Timoshenko 
Beam Theories 
The in-plane free vibration problem of symmetric cross-ply laminated beams is 
studied based on the transfer matrix method. Distributed parameter model is used in 
the mathematical formulation. The rotary inertia, the shear and extensional deJor- 
mation effects, are considered for the Timoshenko's beam analysis. These effects are 
neglected in the Bernoulli-Euler analysis. The exact overall dynamic transfer matrix 
of  the beam is obtained by making use of  the numerical algorithm available in the 
literature. In order to obtain detailed knowledge about the effects of  the rotary inertia, 
shear and axial deformations on the first six non-dimensional frequencies, the results 
of  Timoshenko and Bernoulli-Euler theories are compared with each other for 
length-to-thickness ratios from ranging 3 to 20. Fixed-fixed, fixed-simple, and fixed- 
free boundary conditions are considered for three values of  the thickness-to-width 
ratios of  a rectangular section (2, 1, 0.5). 

1 Introduct ion 

The dynamic problems of laminated composite beams have 
not been studied as extensively as plates and shells. Vinson and 
Sierakowski (1986) obtained the exact solution of a simply 
supported composite beam based on the classical theory, which 
neglects the effects of the rotary inertia and shearing deforma- 
tion. Kapania and Raciti (1989a) presented a survey in the 
vibration analysis of laminated composite beams. It is evident 
from the literature survey that the free vibration problem of 
beams is generally studied considering the out-of-plane uniaxial 
bending and axial oscillations. Kapania and Raciti (1989b) 
studied nonlinear vibrations of unsymmetrical laminated 
beams. Chandrasekhara et al. (1990) derived the equation of 
motion of composite beams based on the first-order shear de- 
formation theory. Hodges et al. (1991) solved the equations of 
motion using a mixed finite element and an exact integration 
method. Abramovich (1992) presented exact solutions based on 
the Timoshenko-type equations for symmetrically laminated 
composite beams with ten different boundary conditions. The 
rotary inertia and shear deformation effects were investigated 
for simply supported straight beams (Abramovich, 1992). Singh 
and Abdelnassar (1992) examined the forced vibration response 
of composite beams considering a third-order shear deformation 
theory. Chandrasekhara and Bangera (1992) studied the free 
vibration characteristics of laminated composite beams using a 
higher-order shear deformation theory. Krishnaswamy et al. 
(1992) obtained the governing equations of laminated compos- 
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ite beams using the Hamilton's principle and presented analyt- 
ical solutions. Abramovich and Livshits (1994) studied the 
in-plane free vibrations of nonsymmetrically laminated cross- 
ply composite beams based on Timoshenko-type equations. 
Khedeir and Reddy (1994) investigated the free vibration of 
cross-ply laminated beams with arbitrary boundary conditions 
by the state space approach (transfer matrix method) and 
higher-order shear deformation theory. Nabi and Ganesan 
(1994) developed a general finite element code based on the 
first-order shear deformation theory. Eisenberger et al. (1995) 
used the dynamic stiffness analysis of laminated beams using a 
first-order shear deformation theory. Abramovich et al. (1995) 
treated vibration of multispan nonsymmetric composite beams. 
Rao and Ganesan (1997) worked out the dynamical behavior of 
tapered composite beams by the third-order shear deformation 
theory. Zappe and Lesiutre (1997) presented a smeared laminate 
model based on the first-order shear deformation theory for the 
dynamic analysis of laminated beams. 

As it is well known, the Bernoulli-Euler beam theory omits the 
rotary, the shear, and the extensional deformation effects. Since the 
ratio of extensional stiffness to the transverse shear stiffness (E~/ 
E2) is high, the effect of shear in laminated beams is more 
significant than in homogeneous beams. These effects can be 
considered in the analysis by the Timoshenko beam theory. Khe- 
deir and Reddy's (1994) study showed that the effects of the rotary 
inertia and shear deformation can be significant even for the 
fundamental frequencies of laminated beams with boundary con- 
ditions such as fixed-free, fixed-simple, and fixed-fixed. 

The objective of the present study is to formulate the purely 
in-plane free vibration problem of symmetric cross-ply laminated 
beams in an accurate manner and to present a detailed knowledge 
about the effects of rotary inertia, axial, and shear deformations. 
These effects are studied considering the length-to-thickness (L/h) 
ratios, the boundary conditions, E t/E2 ratios, and the thickness- 
to-width (h/b) ratios of a cross section for the first six natural 
in-plane frequencies. 
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Fig. 1 (a) A laminated composite beam, (b) the beam and material symmetry axes, (c) 
stress and displacement resultants in Frenet coordinates 

2 F o r m u l a t i o n  o f  t h e  P r o b l e m  

2.1 E l e m e n t s  o f  the  R e d u c e d  and  T r a n s f o r m e d  St i f fness  
Matr ix .  The generalized Hooke's law for a linearly elastic ma- 
terial can be written in the conventional contracted notation for 
engineering stresses (0-1 = 011, 0"2 = 0"22, 03 = 0"33, 0"4 = 023, 0-5 = 

~r~3, 0-6 = 0"~2), and engineering strains (el = eta, e2 = e22, e3 = 
e33, e4 = 2e23, e5 = 2e13, e6 = 2e~2) as follows: 

0"i= Cijej or ei=Sij0-j, ( i , j =  1 , 2  . . . . .  6) (1) 

where Ctj and S~j represent the elements of the stiffness and 
compliance matrices, respectively. Employing the classical rod 
theory with o'2 = 0-3 = 0"4 = 0 (Fig. 1 (a)), the strain components 
subscripted by 2, 3, and 4 are determined in terms of the other 
strain components in Eq. (1) as below: 

e ~ = S o j a j k ,  ( j , k =  1 , 5 , 6 ; / 3 = 2 , 3 , 4 )  

where 

ajk  = OLkj 

855866 - 326 811866 - S~ 6 

al l  -- d , ass - d 

SllSss - Sis 
OL66 -- d ' 

and 

(2) 

a15 = 
Si6856 - 815S66 815816 - Si iS56 

d ' as6 - d 

8 1 5 8 5 6 -  S16S55 

a16 -- d 

811 $15 816 
d = Sis $55 $56 

816 856 866 

Substitution of Eq. (2) into Eq. (1) gives the following: 

(3) 

where 

0-,= Qijej ( i , j =  1 , 5 , 6 )  (4) 

Qo= Cij+ Cit3S~kakj, ( i , j , k =  1 ,5 ,  6; / 3=  2, 3 , 4 ) .  (5) 

Representing the reduced stiffness matrix of a lamina by 0 and 
using the following contractions, 

6-~ = 01, 6-2 = 0-6, 63 = 0-5, ~ = el, ~2 = e6, e3 = es, 

QI1 = QI1 ,  012  = Qt6, 013  = Q,s, 02, = Q6,, 023 = Q65, 

022 = Q66, 031 = Qs,, 033 = Q55, 032 = Q56 (6) 

the generalized Hooke's law for beams may be written as follows: 

6-;= 00~j, ( i , j =  1 ,2 ,  3). (7) 

Figure l(b) shows the relations between the material axes of 
elastic symmetry (1', 2',  3') and the beam principal axes (1, 2, 3) 
for a rotation about the 3-axis. The angle between the fiber direc- 
tion and the beam axis is denoted by/3. Equation (7) is written in 
the following transformed form (Yddmm, 199%): 

6-~ Qq i, ( i , j =  1 ,2 ,  3) (8) 

Using Equations (5) and (6) with the transformed stiffness and 
compliance matrices, C'  and S' ,  the nonzero terms of Q'  for 
cross-ply laminates are obtained as follows (in Eq. (3) a~5 = a j6 = 
as~ = 0 and d = SILSssS66 for /3 = 0 deg and /3 = 90 deg): 

- t Q'Jl = C'lt + (C'i2S'21 + C,3S3t)/Sii; ' ' Q22-' = C66, 

- t  ! 
Q33 = C55 (9) 

where 

m = cos/3 
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C ' l l  = m 4 C l t  + 2(m 2 - m 4 ) C 1 2  q- C22(1 - 2 m  2 + m 4) w h e r e  

+ 4(m 2 - m4)C66 

C'12 = ( m  2 - m 4 ) C l l  ...1.- ( m  2 - m 4 ) C 2 2  .q-- C12(1  - 2m 2 + 2 m  4) 

- 4(m 2 - m 4 ) C 6 6  

C'13 = m 2 C 1 2  + (1 - m 2 ) C 2 3  

C~5 = (1 - m2)C44.4. -  m2C55 

C~6 = ( m  2 - m 4 ) C l l  - 2 ( m  2 - m4)C12.4. -  ( m  2 - m 4 ) C 2 2  

+ (1 - 4m z + 4m4)C66 

S ' l l  = m 4 S l l  -k 2 ( m  2 - m 4 ) S i 2  -4- $22(1 - 2m 2 + m 4) 

-l- ( m  2 - -  m 4 ) 8 6 6  

Stl2 = (rrt 2 - m 4 ) S l l  + ( m  2 - m 4 ) $ 1 2  q.- $12(1  - 2 m  2 --]- 2 m  4) 

+ ( m  4 --  m 2 ) S 6 6  

S~3 = m2S12  q- (1 - m 2 ) $ 2 3  . ( 1 0 )  

In the derivation of Eqs. (10), three-dimensional transformation 
matrices given by Jones (1975) and Reuter (1971) are used 
(Ylldlnm, 1999a). The elements of C'  and S' coincide with the 
elements of elasticity and compliance matrices in the off-axis 
coordinate system given by Graft and Springer (1991). The Pois- 
son effect can be considered in this way although this effect 
vanishes for the cross-ply laminates. 

2.2 The Governing Equations. Denoting the time by t, the 
position coordinate by s (Fig. l(a)), the displacement vector of any 
point on the beam axis by U°(s, t), the rotation vector about an 
axis passing through G by l~°(s,  t), and the relative extension and 
the relative rotation of the unit length on the beam axis by e°(s, t) 
and ¢a°(s, t) respectively, the geometric compatibility equations 
are given by the assumption that the relationship between the 
forces and deformations are small and linear as follows (Ylldmm, 
1999a): 

0U o 01~ ° 
e o = ~ o =  Os +txl~°'  m ° = - - ' O s  (11) with 

The equation of motion may be written referring to the unde- 
formed configuration as 

0T o 0M o 
_ _  + peX = p in  - -  + txT ° + m ~x = m in (12) 

Os ' Os 

where t is the tangential unit vector (Fig. 1). The external distrib- 
uted load and moment vectors per unit length are denoted by p°X(s, 
t) and m°~(s, t), respectively. These vectors are tO be zero for the 
free vibration analysis. The internal force and moment vectors are 
represented by T°(s ,  t) and M°(s ,  t). For constant and double 
symmetric sections, the Frenet (t, n, b) components of the inertia 
force and moment vectors are given by 

02~'~ ° 02U~ ill i 
pii" = oA ~ g - ,  m ,  = O i l - ~ -  (i = t, n, b) (13) 

where p is the mass density, A is the cross-sectional area, I, is the 
torsional moment of inertia, and I ,  and I~ are the inertia moments 
about the normal, n, and binormal, b, axes. 

For a laminated rod with N homogeneous anisotropic layers, the 
resultant constitutive equations can be obtained as follows 
(Ylldlnm, 1999a): 

T~' = Aije  ~ -t- Bijoo~, M~  = Fije ~ + Di jw  ~ 

( i , j =  1 ,2 ,  3) (14) 

N 

Aij = E Ql~ (k)ACk), 
k=l 

N 

B 0 = Fji = e,~jp ~ ~-~<~) xpdA, 
k = 1 Ik) 

N 

Dis = EihnEmjp ~ Q'.,----7/k) xpxhdA (15) 
k = 1 (~) 

and all the indices range from 1 to 3. In Eqs. (15), x~ = 0 for any 
point of the cross section and 

f x 2 d A = l o ,  f a x ~ d A = l , .  (16) 

Equations (11), (12), and (14) govern the dynamic behavior of 
composite space beams. These vectoral equations correspond to 
18 scalar equations. However, inverting Eqs. (14) and eliminat- 
ing e ° and ~o ° from Eq. (11), the total number of vectoral 
equations can be reduced to 4. Assuming the harmonic motion, 
the free vibration equations can be obtained as follows: 

dU/ds  = A ' T  + B ' M  + l-lxt, 

d I l / d s  = F ' T  + D ' M ,  

d T / d s  = - pA oo 2U, 

d M / d s  + txT = -p l ioo21l  (i = t, n, b) 

where oo (rad/s) is the circular frequency, and 

A' = A * - B * D * - I F * ,  B' = B ' D * - 1 ,  

(17) 

F' = -D*-IF*,  D' = D * - I  (18) 

A* = A  -l, B* = - A - I B ,  

F * = F A  -1, D* = D - F A - 1 B .  (19) 

If the laminates are symmetric then B' = F '  = 0. Referring to 
Eqs. (17), the following can be obtained in Frenet coordinates for 
the in-plane free vibration of symmetric laminated composite 
straight beams (Fig. 1(¢)). 

dU, / 
ds - A l l T ,  = A D E ,  

d Un 
d ~  = D.o + A'22k'T, = ~Qb + SDE,  

dl2t, 
ds - D'~3Mb' 

dT t  
- 7~o~2U,, 

ds 

d T n 
- 7~o2U,, 

ds 

dMb 
d---s- = -73~°2~b - T, = R I E  - T,, (20) 
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Table 1 Comparison of out-of-plane bending and axial natural frequencies [=toL2(p/E2h2) ~a] of [0°/90°/0 °] beams (h/b = 1) 
(CLT = classical lamination theory,  FSDT = first-order shear deformation theory)  

Modes 
Boundary 
conditions L/h l 2 3 4 

Khedeir and Reddy (1994) (CLT) 

Khedeir and Reddy (1994) (FSDT) 

Present (FSDT) 

Fixed-free 5 6.316 - -  - -  - -  
10 6.310 - -  - -  - -  

Fixed-simple 5 27.142 - -  - -  - -  
l0 27.527 - -  - -  - -  

Fixed-fixed 5 39.336 - -  - -  - -  
10 39.931 - -  - -  - -  

Fixed-free 5 4. t 34 - -  - -  - -  
10 5.479 - -  - -  - -  

Fixed-simple 5 9.652 - -  - -  - -  
10 16.335 - -  - -  - -  

Fixed-fixed 5 10.432 - -  - -  - -  
10 19.051 - -  - -  - -  

Fixed-free 5 4.133 13.429 25.514 36.429 
10 5.476 22.205 46.095 68.988 

Fixed-simple 5 9.650 20.718 31.748 42.685 
10 16.331 37.811 60.324 82.725 

Fixed-fixed 5 10.431 20.755 31.798 42.687 
10 19.048 38.602 60.740 82.871 

where T, and T,, are the axial and shear forces, M~ is the bending 
moment respectively, k' is the shear coefficient assumed to be 6/5 
for the rectangular section of this study. ADE, SDE, and RIE 
represent the effects of the axial deformation, shear deformation, 
and the rotary inertia, respectively. The other terms in Eqs. (20) are 
as follows: 

N N 

= E P (k)A(~), ]3 = E pl*ll}k~, 
k=l k=l 

N 

A'i, : 1 / ~ O~'I~)A (k) : 1/A,,  
k=l 

N 

A~2 = 1 / E  0 ' ~ ) A  (k) = 1/A22; 
k=l 

N 

D~3 = l / ~  t~tT~' Ik)rIkhtl.b ' = 1]D33_ (21) 
k=l 

Equations (17) can be written in matrix form as 

d Z / d s  = D Z  (22) 

where Z is the state vector and I) is the dynamic differential 
matrix. The solution of Eqs. (22) is given by Pestel and Leckie 
(1963) 

Z(s )  = F(s ,  o~)Z(0). (23) 

Here F is the overalI dynamic transfer matrix. Considering the 
rotary inertia, axial, and shear deformation effects, it is very 
difficult to obtain the closed form of F for dynamic problems of 
beams. So, it is necessary to use the numerical solution for F. 
Denoting the unit matrix by I, the standard expression of F for 
constant sections is given as (Pestel and Leckie, 1963) 

F(s ,  w) = e (D= I + sI) + s 2 D 2 / 2 !  + $ 3 1 ) 3 / 3 !  + . . . .  (24) 

The presence of the factorial and power terms in Equation (24) 
restricts the required number of terms for an accurate solution. In 
order to able to devise a numerical algorithm which allows the 
numerious terms in the series, Eq. (24) can be written using the 
Cayley-Hamilton theorem as follows: 

p 

r(S, O~) = ~ ~k(S, 0~)I) k. 
k=0 

(25) 

Equation (25) is used to calculate the transfer matrix by the 
numerical algorithm given by Ylldlrlm (1996,.1998, 1999b). In Eq. 
(25), (p  + 1) corresponds to the number of equations in canonical 
form (e.g., p is equal to 5 for this study), and q)k(s, o~) are 
functions of scalar infinite series in s and o~. The number of terms 
considered in the infinite series • determines the accuracy of the 
solution. In this study, 600 terms are taken into account in each dp 
series of Eq. (25). Six hundred terms in Eq. (25) correspond to 
3600 terms in Eq. (24). 

After computation of all dp functions in an accurate manner, the 
frequency equation can be obtained from the boundary conditions 
given at both ends (s = 0 and s = L) using Eq. (23). The 
boundary conditions considered in this study are as follows: 
clamped end: U, = U,, = IL, = 0; hinged end: U, = U,, 2- M~ = 
0; and free end: T, = T,, = Mb = 0. The natural frequency is 
determined by setting the determinant of the coefficient matrix 
equal to zero. The frequency equation for fixed-simple ends is as 
follows: 

[0]  16]: E 0 = F24 F25 F26 T,, 

0 s=r F64 F65 F66 s ~. Mb .3=0 

(26) 

In this study, all numerical computations are performed using 
the double-precision arithmetic. The natural frequencies are ob- 
tained by the method of searching determinant of the coefficient 
matrix. 

3 Applications 

To assess the accuracy of the present results with the reported 
values an example is solved. Material properties of the beam for 
this study are: El~E2 = 40, G12 = Gi3 = 0.6Ez, G23 = 0.5E2, 
v~2 = 0.25 (Khedeir and Reddy, 1994). Here E~, G,j, v,; represent 
the Young's  moduli, shear moduli, and Poisson's ratios for an 
orthotropic lamina. Table 1 shows the natural frequencies. Khedeir 
and Reddy's  (1994) frequencies in Table 1 are related to the 
out-of-plane bending and axial oscillations. A good agreement is 
observed with the literature values. For various thickness/weight 
(h/b) ratios, purely in-plane (axial + in-plane bending) frequen- 
cies of the same beam are obtained and presented in Table 2. As 
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Table 2 Purely in-plane (in-plane bending and axial) natural frequencies [=~oL2(p/E2h2) 112] of [00/90010 °] beams 

Modes 

L/h 1 2 3 

h/b = 10 Fixed-free 5 0.52527 3.21119 8.66226 t6.1507 
10 0.52684 3.28137 9.09553 17.5699 

Fixed-simple 5 2.25776 7.05205 14.0125 22.6295 
10 2.29924 7.37661 15.1778 25.5016 

Fixed-fixed 5 3.21513 8.45153 15.6689 24.3479 
10 3.31912 9.03105 17.4118 27.2082 

h/b = 1 Fixed-~ee 5 3.85324 13.1300 25.6687 36.9845 
10 4.78485 21.0494 44.9508 68.7084 

Fixed-simple 5 9.57245 20.9267 32.3530 43.6691 
10 15.4562 37.0120 60.1735 83.4215 

Fixed-fixed 5 10.5552 21.0138 32.4296 43.6758 
10 18.5669 38.2898 60.8458 83.7069 

h/b = 0.1 Fixed-flee 5 5.52498 16.5673 27.7252 38.7042 
10 10.8829 32.6126 55.2156 76.8831 

Fixed-simple 5 11.0747 22.1978 33.3101 41.2747 
10 21.9663 44.2982 66.5530 85.2599 

Fixed-fixed 5 11.1013 22.1980 33.3119 44.4206 
10 22.1676 44.2990 66.5656 88.7913 

can be seen from Table 2 that the dimensionless natural frequen- 
cies increase with decreasing h/b ratios. 

A number of examples are solved to investigate the effects of 
the rotary inertia, axial, and shear deformations on the natural 
frequencies of symmetric cross-ply laminated beams. It should be 
noted that for the Bernoulli-Euler analysis, the effects of the axial 
deformation has been taken nearly zero instead of exact zero in 
order to prevent siffgularity of the characteristic equation's matrix, 
All layers are assumed to have the same thickness and the beam is 
assumed to have orthotropic material properties in the material 
principal axes. The definition of nondimensional frequency is the 
same as in Tables 1 and 2. The relative error is determined as 

relative error = 1 0 0 ( w  r - ~ r ~ ) l ~  r (27) 

where, m r and nr" denote Timoshenko's  and Bernoulli 's  frequen- 
cies, respectively. Variation of the first six in-plane nondimen- 
sional natural frequencies are presented in Figs. 2 - 4  with varying 
length/height (L/h) ratios, boundary conditions, and h/b ratios. 
These figures include the Timoshenko solutions and relative errors 
for Bernoulli theory. It is observed from the figures that relative 
errors increase with decreasing L/h ratios, increasing number of 
modes, decreasing h/b ratios, and with the number of constrains 
for boundary conditions. The effect of the h/b ratios is more 
important for the in-plane frequencies. The rotary inertia, shear, 
and axial deformation effects are also prominent for the L/h = 20 
condition. For the fundamental frequencies, while the relative error 
is - 2  percent for the fixed-free beam with L/h = 20 and h/b = 
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Fig. 2 The first six natural frequencies of (0o/90o0 °) fixed-free beam (a) Tlmoshenko's results, (b) relative errors for Bernoulli solution 
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Fig. 3 The first six natural frequencies of (0°190°0 °) fixed-simple beam (a) Timoshenko's results, (b) relative errors for Bernoulli solution 

2, this value reaches -81 percent for the fixed-fixed beam with 
L/h = 20 and h/b = 0.5. Figures 2-4 reveal that the dynamic 
problems of laminated composites must be solved by considering 

the rotary inertia, axial, and shear deformation effects to obtain 
realistic solutions. 

Table 3 shows the variation of the purely in-plane Timoshenko's 
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Table 3 Variation of the purely in-plane Timoshenko's natural frequencies [=~L2(p/E2h2)  lj2] of [0°/90°/0 °] beam with the ratio 
of E~/E~ for fixed-fixed ends (L/h = 5, h/b = 1) 

Modes 

El~E2 1 2 3 4 5 6 

1 5.5327 l 3.117 15.708 22.303 31.416 32.284 
( -  17%)* (-36%)* ( -  t22%)* , ( -  159%)* ( -  174%)* (-273%)* 

20 10.084 20.222 31.655 42.987 54.348 58.070 
( -  137%)* ( -  225%)* ( -  308%)* ( -  396%)* (-486%)* (-666%)* 

40 10.555 21.014 32.430 43.676 54.933 66.116 
(-218%)* (-340%)* (-459%)* (-586%)* (-715%)* (-846%)* 

* The relative errors for Bernoulli's results (Eq. (27)) 

natural frequencies of [00/900/0 °] beam with the ratio of E ~/E2 for 
fixed-fixed ends (L/h = 5, h/b = 1). As can be expected for 
anisotropic beams, the relative errors for Bernoulli's solution in- 
creases with increasing Ei/E2 ratios. 

Finally, a graphite-epoxy material (AS4/3501-6) (E~ = 144.8 
GPa, E2 = 9.65 GPa, G~2 = Gk3 = 4.14 GPa, G23 = 3.45 GPa, 
p = 1389.23 kg/m 3, v~2 = 0.3) is chosen to examine the behavior 
of the beam made of a physical material. Comparison of the first 
four out-of-plane bending natural frequencies of [0°/90°/90°/0 °] 
graphite-epoxy beam for fixed-fixed ends (L/h = 1 O, h/b = 1) 
with the reported results is given in Table 4. A very good agree- 
ment is observed from the table. The purely in-plane and out-of- 
plane natural frequencies are also presented in Table 5 for Timosh- 
enko and Bernoulli beam theories. The rotary inertia and shear 
deformation effects are prominent for out-of-plane vibration. 

4 Discussions 
Resolving Eqs. (17) into Frenet components, the 12 scalar 

equations can be obtained for the free vibration of symmetric 
cross-ply laminated beams. For this particular layer sequences and 
straight beams, these equations can be investigated by dividing 
them into four groups. This classification can be made as follows 
referring to the element of the state vector: (1) axial vibration: Z = 
{U,, T,} r, (2) torsional vibration: Z = {f~,, Mr} T, (3) in-plane 
bending vibration: Z = {U,,, 1)~,, T,,, Mb} r, (4) out-of-plane 
bending vibration: Z = { Ub, ~2,,, To, M,, }r. The items (1) and (3) 
are called as the purely in-plane vibration. The purely out-of-plane 
vibration is denoted by the items (2) and (4). The axial and 

Table 4 Comparison of the out-of-plane bending natural fre- 
quencies [=o~L2(plElh~) ~/2] of [001900/90010 °] graphite-epoxy 
beam for fixed-fixed ends (LIh = 10, h/b = 1) 

Singh and Abdelnaser Abramovich and 
Modes (1992) Livshits (1994) Present 

1 3.7751 3.7576 . 3.6964 
2 8.0440 7.8718 7.7529 
3 12.998 12.573 12.415 
4 18.165 17.373 17.196 

torsional free vibration equations can be expressed by an equation 
with second degree. Similarly, the bending equations can be de- 
noted by a fourth-order equation. For symmetric angle-ply case the 
classification can be made as the purely in-plane and out-of-plane 
vibrations. In this case, both A'  and D'  matrices have o u t - o f  
diagonal elements. For unsymmetric case it is not possible to 
separate the equations into subgroups. 

The transfer matrix method, which reduces the boundary value 
problem to the initial value problem, is chosen as the solution 
method in this study. As it is known, this method provides an exact 
solution to one-dimensional dynamic problems, which can be 
formulated by distributed or lumped parameter mathematical mod- 
els, in condition that the overall dynamic transfer matrix, F, is 
exact. If F is not computed accurately, some frequencies associ- 
ated with higher modes can be skipped. The exact solution is 
obtained by using the distributed parameter model as in this study 
instead the lumped parameter model as described in Myklestad's 
method (Pestel and Leckie, 1963). Moreover the method uses 
minimal computing memory comparing to the other methods such 
as the finite element procedure for the solution to dynamic prob- 
lems. A beam supported at two ends can be considered as only one 
element in the solution. The dimensions of the coefficient matrix is 
of 6 × 6 in the case of a space rod supported at its ends. The 
dynamic problem of beams made of generally orthotropic layers or 
isotropic material can be solved by the same dimensions. The 
dimensions of the eigenvalue matrix increase with the number of 
intermediate supports. The mainly drawback of the transfer matrix 
method is the determination of the natural frequencies by the 
method of searching determinant. 

The numerical algorithm used in this study allows the exact 
determination of F pertaining to symmetric cross-ply laminated 
beams with constant section. For other cases, the exact overall 
transfer matrix can be obtained by integration of the equations 
governing the dynamic behavior of those beams. Computing time 
for the determination of F with the present algorithm is consider- 
able less than the integration procedure. This algorithm can also be 
used for symmetric cross-ply laminated beam supported by elastic 
foundation. 

Table 5 The purely in-plane and out-of-plane Timoshenko frequencies [=¢oL2(plE~hZ) I/2] of [0°/90°/90°10 °] graphite-epoxy 
beam for fixed-fixed ends (L/h = 10, h/b = 1) 

In-plane Out-of-plane 

Modes Timoshenko Bernoulli Timoshenko Bernoulli 

1 3.3874 4.7168 (-39%)* 3.6964 6.0703 (-64%)* 
2 7.4350 13.002 (-75%)* 7.7529 16.733 ( -  116%)* 
3 12.143 25.489 ( -  110%)* 12.415 32.803 ( -  164%)* 
4 17.092 42.134 ( -  147%)* 17.196 54.225 (-215%)* 
5 22.140 62.940 ( -  184%)* 20.326 81.002 ( -  299%)* 
6 22.943 87.909 (-283%)* 22.010 113.135 (-414%)* 

* The relative errors for Bernoulli's results (Eq. (27)) 
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5 Conclusions  

The in-plane free vibration behavior of symmetric cross-ply 
laminated composite beams has been studied by the transfer matrix 
method, which has not been used widely for composite beam 
analysis. In this formulation, it is possible to isolate the effects of 
the rotary inertia, transverse shear and axial deformations to study 
their influence. The overall transfer matrix is obtained by using the 
effective numerical algorithm, as previously done with isotropic 
materials. The accuracy of the formulation has been verified with 
the reported results. It was observed from the comparisons that this 
formulation offers exact results for the natural frequencies associ- 
ated with the first and the higher modes. The effects of the rotary 
inertia, shear, and axial deformations have been investigated by 
considering L/h, EJE2, and h/b ratios, and different boundary 
conditions for the first six natural frequencies. It was concluded 
that these effects must be considered in the free and forced vibra- 
tion analysis of composite beams. 
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On the Initiation and 
Propagation of Buckles in a 
Beam on a Nonlinear 
Foundation 
The model of propagating buckles consisting of a beam on a nonlinear foundation with an 
up-down-up response developed by Chater et al. (1983) is revisited and used to study the 
dynamics of propagating buckles. The foundation is altered in order to allow variation of 
the ratio of the propagation pressure to the collapse pressure within a range that is 
similar to that seen in typical pipelines. In addition, the pressurizing fluid is modeled as 
an acoustic fluid. The model is used to study steady-state dynamic propagation of buckles 
where the fluid properties are shown to play a decisive role on the buckle velocity. The full 
dynamic problem is also analyzed including the transient dynamic initiation of a buckle 
in a structure under uniform pressure by a point load. Finally, the critical duration that 
the point load must have for it to initiate a propagating buckle is studied for a particular 
example. 

1 Introduction 
Propagating instabilities is now well established as a class of 

instabilities which affect certain structures of larger size. Under 
uniform loading, such structures exhibit instabilities which often 
start as global but quickly localize to a small section of the 
structure. At this stage, if the load is reduced below a critical level, 
the deformation process can be arrested and most of the structure 
remains intact. If, on the other hand, the load is maintained above 
this critical level, the local collapse propagates dynamically into 
the rest of the structure. Kyriakides (1994) reviewed a body of 
work spanning a period of 15 years on four structures which 
exhibit such instabilities. Offshore pipelines under external pres- 
sure, long circular shell liners of tunnels under external pressure, 
and long panels under uniform lateral loads all develop localized 
collapse which can propagate along the length of the structures. 
The inflation of long rubber-like tubes is similarly affected except 
that in this case the instability is in the form of a local bulge which 
tends to spread along the length of the tube. More recently, 
additional examples of this type behavior have been uncovered in 
many cases at the micromechanical level of materials such as 
shape memory metals, cellular materials including honeycombs, 
some types of woo& and fiber composites in compression. 

Although the mechanical details behind each of these instabil- 
ities differ from problem to problem, a common underlying feature 
of all problems in this class is a local up-down-up response like the 
one shown in Fig. 1. In other words, for a range of the pertinent 
load parameter, the structures have three possible equilibria (Erick- 
sen, 1975). The first ascending brunch represents prebuckling 
states, the second ascending branch represents buckled states while 
the negative slope branch joining them represents transitional 
unstable states. The presence of the limit load in this local response 
indicates that, if the structure is sufficiently large, following the 
onset of instability localized deformation will be energetically 
preferred. The presence of the local minimum in the response 
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indicates that the structure exhibits a mechanism for limiting 
(arresting) localized deformation. 

If the instability is initiated at a constant load, its propagation 
will be dynamic for all problems in this class. The dynamics of 
propagating instabilities have received relatively modest attention 
to date. Chater et al. (1983) developed a nice mechanical model for 
a propagating instability consisting of an elastic beam on a non- 
linear elastic foundation with an up-down-up response. They used 
the model to study first the quasi-static initiation and propagation 
of an instability and then the dynamic steady-state propagation. 
The dynamic version of the problem included the effect of having 
an incompressible fluid under the foundation which is forced out 
by the propagating instability. This was an effort to establish the 
effect of fluid inside a pipeline on the velocity of propagation of 
buckles. Youn (1991) extended the same model by adding a local 
zone of higher stiffness to the foundation and used it to mimic the 
quasi-static engagement of a propagating buckle with a buckle 
arrestor in an offshore pipeline. 

Here we revisit the model and use it to study various aspects of 
the dynamic initiation and propagation of buckles including the 
initial transient behavior. Kyriakides and Babcock (1979) showed 
experimentally that the pressurizing fluid (air or water) outside the 
pipe plays an important role on the velocity of propagating buckles 
in empty pipelines (see also Netto and Kyriakides (1999a)). In an 
effort to capture this effect, the pressurizing fluid is modeled as an 
acoustic fluid which allows radiation of energy away from the 
receding beam (this fluid model was used by Song and Tassoulas 
(1993) to successfully reproduce numerically the steady-state ve- 
locities of propagation in Kyriakides and Babcock (1979)), 

2 The Quasi-Static Problem 

The basic model is the same as in Chater et al. (1983) but with 
a modified expression for the nonlinear foundation. The model 
consists of a long, linear elastic beam with a bending rigidity D per 
unit width. The beam is resting on a nonlinear elastic foundation of 
stiffness k(w) per unit width and is loaded by a uniform pressure 
P. The equilibrium equation of the structure is 

dnw 
D ~x 4 + k(w)w = P. (1) 
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Fig. 1 Pressure-displacement response of foundation and critical pres- 
sures (local response) 

The model's unique characteristics are due to the up-down-up 
response assigned to the foundation which has the following 
pressure-displacement relationship: 

P(w) = k(w)w = ko[e ,,w + [~w2]w (2a) 

where ko, fi, and b are constants which will be chosen in ways that 
introduce some parity between the model and some of the critical 
parameters of pipelines under external pressure (see Appendix A). 
It will be convenient to nondimensionalize the displacement by a 
value of choice Wo; thus, if 

(2a) can be written as 

W 
~o = - - ,  (2b) 

Wo 

P(~o) = koWoK(W)co = kowo[e ,,,o + boo2]w. (2c) 

The foundation response is shown in Fig. 1. It has the following 
special characteristics: 

2 (i) = ko. 
w-0 

(ii) The pressure maximum represents the highest pressure at 
which small deformation prebuckling states can be sustained and 
will be called collapse pressure (Pco). For the range of values of 
the variables a and b that will be used in the calculations that 
follow, Pco is approximately given by 

kowo 
Pco "~ - -  (4) 

e a  

(iii) The lowest pressure at which "buckled" (w c) and straight 
(wa) configurations can coexist is the equal area pressure of 
Maxwell (see construction of Fig. 1). This is also the pressure at 
which a buckle propagates quasi-statically (propagation pressure 
Pv) and is given by 

, fie PP = (Wc - WA) k(w)wdw 
VA 

(5a) 

o r  

kow o 

ab } 
+ - ~  ( , , 4  - ~o~) . 

J o u r n a l  of  A p p l i e d  M e c h a n i c s  

(5b) 

In the results that follow a = 40 while the value of b will be 
varied in order to generate models with various ratios of the two 
characteristic pressures (PflPco). 

The spatial coordinate x will be nondimensionalized as follows: 

= 2 '  A = (6) 

where A is proportional to the characteristic wavelength of small 
amplitude sinusoidal waves that develop in beams on elastic foun- 
dations. Using (2a) and (6), Eq. (1) can be written as 

d%o P 

d ~  4 -1- K ( ~ ) ~  - kowo. (7) 

This equation is solved numerically over the domain 0 -< ~ -< 1. 
= 0 is assumed to be a symmetry point and the value of 1 is 

chosen large enough for the far end of the beam to remain flat 
while localized collapse initiates and propagates from the symme- 
try point. The two-point boundary value problem is expressed in 
difference form and solved numerically in an incremental fashion 
using the IMSL package BVPFD routine (see Lentini and Pereyra 
(1977) and Pereyra (1979)). The pressure is assumed to be one of 
the unknowns. The solution is characterized by limit load and 
turning point instabilities thus, initially, the displacement at ~ = 0 
is prescribed. The resulting boundary conditions are 

oo(0) = ~o*, oo'(0) = 0, oY"(0) = 0, 

~o'(l) = 0 and M'(l) = 0. (Sa) 

At some stage following the initiation of the instability, oo(0) stops 
growing and the volume under the beam becomes the prescribed 
quantity. Thus, the first of (8a) is replaced by 

fo v = ~o(~)d~ = v*. (8b) 

The pressure-change in volume (45v/v,,) response for a particular set 
of problem parameters for which Pe/Pco = 0.219 (Case II in Table 1) 
is shown in Fig. 2(a) (vo = woM). A sequence of deformed config- 
urations corresponding to the points marked with solid bullets on the 
response are shown in Fig. 2(b). Initially, as the pressure increases the 
foundation recedes uniformly and the beam remains fiat (configura- 
tion 0)). The response follows the nonlinearity of the foundation until 
the pressure maxilnum is reached. At this stage, with the addition of 
a small disturbance at ~ = 0, the deformation localizes in this neigh- 
borhood (® to ®). Localization takes place with decreasing pressure 
and, as a result, away from the localizing zone, the structure unloads. 
In the present scheme, the tbundation is elastic and during unloading 
its nonlinear response is traced back. For the beam length used (176A) 
the volume recovered from the part of the structure that is unloading 
is much larger than the decrease in volume that takes place in the 
collapsing part of the structure. The net effect is the formation of a 
cusp in the response characteristic of problems in this class which are 
elastic (see Kyriakides and Chang (1991) and Power and Kyriakides 
(1994)). It should be noted that the details of the cusp are affected by 
the overall length of the structure while the limit load is sensitive to 

Table 1 Model  parameters  for cases analyzed 

Case a b 

Pp 
Pco 

ko lbin -3 (GNm 3) D lbin (Nm) 

I 0.269 40 0.0637 548 x 103 
(149) 

II 0.219 40 0.0283 388 × 103 
(105) 

iii 0.184 40 0.0142 183 x 10 3 

(49.6) 

2500 
(282) 
2500 
(282) 
25O0 
(282) 
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Fig. 2 (a) Pressure-displaced volume response during quasi-static buckle Initiation 
and propagation, (b) corresponding sequence of beam deformed configurations 

small geometric imperfections. The effect of small imperfections on 
the propagation of the buckle is small and, as a result, we will limit 
attention to the behavior of the perfect structure. 

By configuration ® the local downward displacement of the 
beam is arrested and the buckle starts to propagate along the length 
of the beam. Steady state is achieved soon after configuration ® as 
indicated by the pressure plateau that develops in the response at 
the level of Pc. Beyond this point, the buckle profile connecting 
the straight part of the beam with the collapsed section propagates 
unchanged from left to fight as seen in configurations @ to ®. 

As pointed out above, in this model the two characteristic 
pressures (Pe and Pet) are strictly determined by the response 
assigned to the foundation. The beam bending rigidity plays a role 
in the determination of the length of the profile of the buckle 
(Chater et al., 1983). In the present example the profile length is 
approximately 16A. 

Additional calculations were performed for the same beam but 
for different values of b and ko listed in Table 1 so that the ratio 
of PP/Pco attains values of 0.269 (Case I) and 0.184 (Case III) as 
shown in Fig. 3(a). The pressure change in volume responses 
calculated for these cases are shown in Fig. 3(b). They have the 
same general characteristics as the response shown above but they 
terminate into different pressure plateaus. 

Figure 4(a) shows a comparison of the steady-state buckle profiles 
for the three cases. For the parameters used the normalized profile 
lengths are similar: 15A, 16X, and 17A, respectively, for Cases I, II, 
and III despite the difference in the maximum deflection (We) 
achieved in each case. Indeed, the three profiles become nearly 
coincident when to is normalized by OOc as shown in Fig. 4(b). 

3 Dynamic Problem 
we now consider the dynamic version of the problem. The beam 

has density p and is pressurized by an acoustic fluid with density 
Pl and speed of sound of c I. The simplest method of incorporating 
the effect of the local change in pressure due to radiation of energy 
away from the receding surface of the beam is to assume that a 
plane wave is emanating from every point on the beam producing 
a pressure change given by 

AP = c~#fv (9) 

P 
% 

0.8 

0.6 

0.4 

P 
0.2 

0.184 Pet 

0 
0 0:2 0:4 0:6 018 

03 (a) 

P 

0.8 

0.6 
Pc° 

0.4 

0.2 

0 
0 0.02 0.04 0.06 0.08 0.1 0.12 

~ / v  ° 
(b) 

Fig. 3 (a) Local pressure-deflecUon responses for three different foun- 
dations, (b) corresponding quasi-static pressure-displaced volume re- 
sponses 
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Fig. 4 (a) Steady-state quasi-static profiles for Cases I, II, and Ill and (b) 
normalized counterparts 

where v is the outward normal component of the velocity of the 
beam surface. Incorporating the assumption that the beam slope is 
small at all times 

3w 3w 
v ~ - 3 - ~ -  and A P = - c / p : - ~ - .  (10) 

Thus, the equation of motion of the beam becomes 

04w OZw Ow 
D ~x4 + k(w)w + ph ~ - =  P - p:c:- ~-  (111 

in which the fluid is seen to play the role of damping to the motion 
(p is the density of the beam and h is its thickness). 

(a) Steady-State  Buckle Propagation.  We first consider a 
buckle which has been initiated at a pressure P1 > Pp, has reached 
a steady-state condition, and is traveling at a constant velocity U as 
shown in Fig. 5. This enables the usual transformation of 

X = x -  Ut. (12) 

If simultaneously we nondimensionalize the variables with A and 
wo, Eq. (11) can be written as follows: 

d4m {phUZ] d2w (p:c/U] dw P 
cl~ ---~ + \ ko~ ~ I d ~  ---~ + \ koX I Y ~  + ,,(oo)oo - kowo' 

X 
,.~ = ~ .  (13) 

The fluid parameters are chosen to correspond to those of water 
(p:c: ~- pwCw). The domain is 0 -< E -~ l and boundary 
conditions (8) still hold. The two-point boundary value problem is 
again expressed in difference form and is solved with the BVPFD 
solver. The velocity is prescribed and the pressure is evaluated 
from the solution. The solution represents a buckled configuration 
in steady-state propagation. The buckle profile can occur anywhere 

in the domain and thus the solution is nonunique. This difficulty is 
overcome by prescribing the volume displaced by the beam. Ini- 
tially, the solution yields a fictitious P - 8v response but after 
several increments P remains constant as 3v is increased further 
indicating that a steady-state solution has been reached. The value 
of the buckle velocity is then increased and the process is repeated. 

Figure 6(a) shows plots of buckle velocity as a function of the 
initiation pressure for the three structures analyzed earlier. In each 
case solutions are obtained for Pe < P/ < P c o  (the collapse 
pressure of each case is indicated on the abscissa). The velocity is 
normalized by the critical velocity of the structure given by 

I 4koD ] ,:4 
Uc = (ph)2j (14) 

based on the spring stiffness at small deflections. (Kenney (1954) 
showed that for a point load traveling at a constant velocity U on 
a beam resting on a foundation with constant stiffness, when U > 
Uc the deformation downstream of the load gets progressively 
smaller as the velocity is increased; a phenomenon akin to super- 
sonic events in fluids.) The velocity varies somewhat nonlinearly 
with pressure although the nonlinearity is different from that 
exhibited by the velocity of buckles in pipelines (Kyriakides and 
Babcock, 1979). As expected, the velocity at a given value of 
P~/Peo becomes higher as the stiffness of the structure increases. 

Figure 6(b) shows a comparison of the buckle profiles for Case 
II at the propagation pressure and at Pi/Pp - 3.414 when the 
steady-state velocity is 0.0687 Uo The buckle is deeper due to the 
higher pressure but the slope of the transition region does not 
change very much by dynamics. This conclusion was found to hold 
for all cases examined. 

As is obvious from Eq. (1 I), the fluid as modeled plays the role 
of damping. This has several consequences. For example, for a 
beam on a foundation of constant stiffness k, the damping becomes 
critical when it reaches the level of 2V'phk. In the case of 
steady-state propagation of a disturbance, this critical damping 
increases to some degree with the velocity (see Eq. (18) of Kenney 
(1954)). In the present problem, exact derivation of the critical 
value of damping is difficult due to the nonlinearity. However, a 
conservative procedure is to require that 

p:c: < 2 ~/phk (15) 

with k being the slope of the foundation stiffness on the second 
ascending branch corresponding to the pressure at which the 
buckle is propagating. In the course of this study, the properties of 
the fluid, the beam and the foundation were varied and it was 
confirmed that in some cases where (15) was violated no solution 
could be found. 

The velocity of propagation is strongly dependent on the fluid 
properties. Figure 7 shows the velocity for the structure with 
PflPco = 0.219 but with fictitious fluids with a p:c: = tz(p,:w) 
(/z = 0.045, 0.45 and 1). As /z becomes smaller the velocity 
increases. Kyriakides and Babcock (1979) (see also Netto and 
Kyriakides (1999a)) reported that pipe buckle velocities in exper- 
iments in which air was the pressurizing medium were signifi- 
cantly higher than the buckle velocities measured at the same 
pressures when water was the pressurizing fluid. However, in that 
problem other dissipation mechanisms also play a role in the 
determination of the velocity of the buckle and the difference is not 

ru 

Fig. 5 Schematic of steady-state dynamic buckle propagation 
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(a) Buckle velocity as a funcUon of  pressure for  the three cases, (b) comparison 
between steady-state quasi-static and dynamic profiles (Case II) 

as large as in the present problem. It is interesting to note that in 
the extreme case when the fluid is removed (psc f  = 0) the velocity 
ceases to depend on the pressure (as observed by Chater et al. 
(1983)). 

(b) The Transient  Problem. We now consider the transient 
initiation and propagation of a buckle in the same structure. Con- 
sider the same beam and foundation under a uniform pressure P > 
Pc. The fluid properties used are pie+ = pwcw. The initiation of 
propagating buckles is a complex subject deserving special atten- 
tion. Here, we choose to initiate it with a line force F(t)  per unit 
width applied at x = 0 as shown in Fig. 8. Thus, the equation of 
motion becomes 

04w O2w Ow 
D ~ x  4 + k ( w ) w  + ph - ~ -  = P - p f c / ~ - .  (16) 

The line load will have ampfitude F and duration T sufficient to 
initiate the buckle (the sufficiency of these will be discussed 
further in the next section). Thus, 

0.08 

= 0.045 

= 0.45 

0.04 

Case II 

p~o= 0,219 

Pco 

" P , / B  
Fig. 7 Influence of the f luid properties on buckle velocity (Case II) 

0, t < 0  
F( t )  = F,  O < t < T (17) 

0, t > 0 .  

The variables w o and x will be normalized as in (2b) and (6) while 
time will be normalized by 

,c = to '  to (18) 

where to is proportional to the period of a small deflection wave 
traveling at the critical velocity defined in (14). Equation (16) can 
then be written as 

04(0 02(D P pfCf 00) 
O~ 4 + K(w)(0 + ~ 2  = kowo ~ o p h  0~" " (19) 

The boundary conditions are 

and 

(0'(0, , )  = 0, ~ o ' ( 1 , 7 ) = 0 ,  (0"(1, 7 ) = 0  V~- 

,,, f F/Akowo,  0 < "r < T/to, 
oJ (0, 7) = 1 O, 7 > T/to (20) 

where (0' -= 0w/0£. 
Equation (19) with boundary conditions (20) are integrated 

using the implicit integration scheme described in Appendix B. 
The velocity and acceleration at time i" + AT are evaluated in terms 
of (0(~)1,+~, and the solution at 7. The two-point BVP for T + A7 

Fig. 8 Schematic of buckle initiation by a point force 
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(a) Point force as a function of time, (b) beam deformed configurations during 
the transient initiation of a buckle followed by steady-state dynamic propagation 

is then solved using the BVPFD solver. The process is repeated 
successively producing the solution as a function of time, Time 
increments of the order of 0.002to were used at the initiation stage 
of the calculation but were increased by a factor of 10 as steady- 
state propagation was reached. 

Results from a transient analysis involving Case II are shown 
in Figs. 9 and 10. The pressure is at a level of 0.748Pco. The 
amplitude of the force is F = 0.99Fo per unit width where 
Fo = A.Pco and its duration is T = 0.188to (Fig. 9(a)), This 
duration is almost double the minimum duration required (crit- 
ical value) to initiate the buckle at this amplitude of F. Figure 
9(b) shows a sequence of calculated deformed configurations. A 
more dense set of configurations appear in the ~-~--~o diagram in 
Fig. 10. The numbered configurations correspond to the times 
marked in Fig. 9(a). 

The pressure is applied first so in configuration ® the beam is 
straight but uniformly displaced (corresponds to WA' in Fig. 1). On 
the application of the force at the origin, the beam starts to deflect 
locally as seen in ®. By the time the load pulse terminates, the 
beam has deflected sufficiently for the buckle to be initiated. 
Localized deformation continues to take place driven by the pres- 
sure alone. By configuration ®, the downward motion at ~ = 0 
terminates (at Wc, in Fig. 1), the buckle profile is fully developed 
and starts to propagate along the length of the beam in a steady- 
state manner. The time taken for the buckle to get fully developed 
is 0.564to. The steady-state nature of the propagation is clearly 
illustrated in Fig. 10 where the upper ridge of each buckled 
configuration is seen to fall on a straight line in the ~-~- plane the 
slope of which represents the velocity of propagation. The steady- 
state velocity is 0.0687Uc which is the same as the value corre- 
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Fig. 11 (a) Force versus displacement at ~ = 0 for quasi-static case, (b) corresponding 
beam deformed configurations for PiIPco = 0.748 (Case II) 

sponding to this pressure in Fig. 6(a). The steady-state buckle 
profile is also the same as that in Fig. 6(b). 

An interesting feature of the results in Fig. 10 is that the ridge 
of the deflecting beam is traveling at the steady-state velocity even 
at the early stages of the deformation history when the buckle is 
not fully developed. This is different from dynamic propagation of 
buckles in pipes where during their initiation buckles take time to 
accelerate to the steady-state velocity. Another difference is that 
here the buckle profile does not undergo the initial sharpening 
reported in Netto and Kyriakides (1999b). 

(c) Dynamic Initiation of Buckles by a Point Force. The 
issue of the critical combination of the line force amplitude F and 
its duration T in order for them to initiate a propagating buckle in 
the model structure at a given pressure P > Pp is considered next 
(for a general expose of dynamic buckling see Simitses (1990)). 
First we examine the quasi-static version of the problem in which 
we calculate the beam response to the point load at particular 
pressure levels. Equation (7) is solved With boundary conditions 
(8a) (without o1"(0) = 0) and 60* being prescribed incrementally. 
Figure 1 l(a) shows plots of the force as a function of the displace- 
ment at ~ = 0 at pressure levels of PJPco = 0.748, 0.486, 
0.246, and 0.201. In all cases the force-displacement response 
exhibits a limit load. For the three higher pressures, the force 
decays down to zero level indicating that the pressure takes over 
and causes the deformation to grow and propagate. For P~/Pco = 
0.748 this is demonstrated in the deformed beam configurations 
shown in Fig. 1 l(b) (correspond to the force levels marked in Fig. 
l l(a)). The lowest pressure considered (P~/Pco = 0.201) is 
below the propagation pressure, and so although the beam initially 
undergoes localized collapse the pressure is not high enough to 
propagate the buckle and the force is seen to recover after reaching 
a local minimum. Figure 12 shows the maximum level reached by 
the line force as a function of the pressure (designated as Fs). 
Included in the same figure is the displacement at the origin 
corresponding to Fs. The two quantities monotonically decrease as 
the pressure increases. As expected, the force drops to zero level 
when P~ = Pco. 

We now return to the transient problem and seek to evaluate the 
shortest duration that a given load amplitude must be applied for it 
to initiate a propagating buckle at a particular pressure level. This 
is called critical duration and is designated as 

'rc = Tc/to. (21) 

The sequence of events associated with the initiation of a buckle 
was demonstrated in Figs. 9 and 10. The line load is applied long 
enough to destabilize the structure sufficiently so that upon its 
removal the buckle keeps growing and eventually propagates. For 
contrast, Fig. 13 shows a similar calculation at the same pressure 
and force levels in which the duration of the load pulse was not 
sufficiently long (T/to = 0.094). Upon the termination of the 
pulse the beam rebounds (dashed lines in Fig. 13(b)) and a buckle 
is not initiated. The critical pulse duration for F/Fo = 0.99 was 
determined by successive calculations to be ~c = 0.105. 

The critical times of load pulses of various amplitudes were 
evaluated in this fashion for pressure levels of P~/Pco = 0.748 
and 0.486 for Case II. The results are summarized in Fig. 14. For 
long duration pulses, the force levels are the same as the values 
calculated in the quasi-static calculations (F,). As the pulse dura- 
tion decreases the force amplitude required to initiate a buckle 
increases significantly. Interestingly, the results for the two pres- 
sure levels scale with the static force level. 
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Fig. 12 Maximum concentrated load and corresponding displacement 
at ,~ = 0 as a function the applied pressure 
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Conclusions 
The beam on a nonlinear foundation model of Chater et al. 

(1983) has been revisited. The expression for the up-down-up 
foundation response has been modified somewhat in order to 
enable calibration of the model to parameters of actual pipes. The 
effect of the pressurizing fluid has been added by approximating it 
as an acoustic fluid. The model has been used to establish the 
steady-state and transient dynamic propagation of the buckle as a 
function of pressure. The velocity of propagation depends mainly 
on the fluid properties. This dependence is more extreme than that 
in pipes because the model does not possess the other energy 
dissipation mechanisms of the actual structures. In the transient 
analysis, the buckle was found to start propagating at the steady- 
state velocity much earlier than in the actual problem. The dy- 
namic initiation of buckles in the model by a point force has been 
examined and the minimum time that the force must be applied for 
the buckle to be initiated has been quantified. 
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Fig. 14 Point force amplitude as a function of the duration required for 
buckle to be Initiated 
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A P P E N D I X  A 

Some parity between propagating buckles in pipes and in the 
present model can be achieved by selecting the model variables so 
that some of the critical quantifies are matched. In Table A1 we list 
calculated values of collapse and propagation pressures for three 
representative steel pipes with the material properties of a typical 
steel (Young's modulus E = 30 msi, Poisson's ratio v = 0.3, yield 
stress O'o = 45 ksi, and hardening exponent n = 13; for details on 
how these are calculated see Dyau and Kyriakides (1993a, b)). The 
model parameters corresponding to each case (Table 1) were 
selected as follows. Equation (4) with Wo = 1 and a = 40 is used 
to choose ko so that the values of Pco are matched to those in Table 
A1. The value of b in Eq. (2c) was then selected through an 
iterative process so that the model propagation pressure (5b) 
matches that of the pipes. The beam thickness was selected to be 
h = 0.1 in (2.54 mm) as this yielded buckle profile lengths (I/o~c) 
which were of the same order as those of the pipes (at Pe). The 
beam density was made equal to that of steel and apart from the 
cases specified the pressurizing fluid was water. 

Table A1 Pipe parameters for three example cases analyzed 

D Pco psi Pp psi PP 
Case ~ (bar) (bar) Pco 

I 17.5 5043 1357 
(347.8) (93.6) 

II ' 21.88 3565 782 
(248.9) (53.9) 

III 31.82 1679 310 
(115.8) (21.4) 

A P P E N D I X  B 
The equation of motion of the structure (19) is solved using the 

implicit integration numerical scheme described below. Assume that 
the solution o9(~, ~') is known for 0 -< ~ -< l. At time ~- + A~ (19) is 

04oo a2~ P pfcf O~ ~+a~' 

031) 

The time derivatives in (B 1) are estimated as follows (Newmark, 
1959): 

oo[,+a, = w[. + Arrhl, + (Am)2[(½-/3)63[, + /3631,+~J, (B2) 

~bl,+a , = 69[~ + A~'[(1 - 3,)631, + T631,+a,] (B3) 

where, 

/ 3 = ¼ ( 1 - c ~ )  2 a n d 3 ' = ½ - a  (B4) 

and (0) denotes differentiation w.r.t.r.  
In this study, the damping parameter a is set to zero, i.e., the 

trapezoidal rule is employed in the integration of the equations of 
motion (also known as constant average acceleration method). 
Thus, Eqs. (B2) and (B3) become 

0o1,+~, = o,I, + ~x~-6,1, + ~ (631, + 63t-~,) (B5) 

and 

~ T  
~1,+~, = ,~L, + 5 -  (~1~ + 631-~,). (B6) 

0.269 
Using (B5) and (B6), the time derivatives ~[,+~, and /biT+a, are 

0.219 evaluated in terms of ~o[,+a~ and the variables at time ~'. They are 
substituted in (BI) which then becomes a two-point BVP for 

0.184 ool,+a~. The equation is solved using the BVPFD solver. The 
solution marches on in time by prescribing a new value for A~-. 
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Physical Modifications to 
Vibratory Systems With 
Assigned Eigendata 
The problem of  determining the structural modification needed to prescribe some 
natural frequencies and mode shapes, in the presence of  model uncertainty, is consid- 
ered. This problem has been previously solved by Ram and Braun (ASME Journal 
of Applied Mechanics, Vol. 58, 1991), and a mathematical family of  solutions has 
been derived. It is shown here how to extract from the complete mathematical set 
some physical solutions that can be realized by actual modifications to the system. 

1 I n t r o d u c t i o n  

Forward problems in structural modification are those con- 
cerned with the determination of modal data caused by known 
modifications to structures. The associated backward problems 
deal with the determination of the necessary structural modifi- 
cations which produce prescribed modal data. Various analyti- 
cal approaches for solving forward problems are reviewed in 
Baldwin and Hutton (1985). In order to solve these problems 
it is required to know either the analytical model of the structure 
or, equivalently, the complete set of its natural frequencies and 
mode shapes. Note that if the analytical model of the unmodified 
system and the analytical model of the modification are known 
explicitly, then the forward problem is trivial. The interesting 
case is when the data are given in terms of experimental results, 
measured by modal tests. The obvious advantage of using these 
data is by virtue of their independence of analytical model 
assumptions. However, a complete set of eigendata cannot be 
obtained by experiments (see, e.g., Berman, 1984). Incomplete 
set of modal data does not describe the model fully. An approxi- 
mation in a Rayleigh-Ritz sense has been derived for the solu- 
tion of the forward problem in Ram, Braun, and Blech (1988). 
The truncation error obtained by this approximation has been 
bounded in Ram and Braun (1990a-b) and in Ram, Blech, and 
Braun (1990). 

The associated backward problem in which we wish to deter- 
mine the modification matrices that assign prescribed spectral 
data, has been analyzed in Ram and Braun ( 1991 ) and a mathe- 
matical family of solutions for the problem has been obtained. 
The set of solutions contains all possible mathematical modifi- 
cations, irrespective of their potential to be realized. It may be 
that for some particular problems none of the solutions can be 
implemented by physical changes to the structure. If realizable 
solutions do exist then it is not clear how to extract such solu- 
tions from the general set. In fact, this difficulty has been men- 
tioned in Ram and Braun (1991) and left as an open problem 
for future study. We address this problem here. 

The main results obtained in Ram and Braun (1991) are 
summarized for completeness in Section 2. They lead to a cer- 
tain singular Lyapunov-type equations, The necessary and suf- 
ficient conditions for the solvability of these equations are de- 
rived in Section 3. Using the conditions obtained and certain 
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connectivity assumptions we determine in Section 4 realizable 
solutions. A numerical example demonstrating the results is 
given in Section 5, and the paper is summarized in Section 6. 

2 B a c k g r o u n d  

We now summarize the main results of Ram and Braun 
(1991). Consider an n degree-of-freedom vibratory system 
which is modeled by the symmetric definite generalized eigen- 
value problem 

K ~  = M@A, ~ r M ~  = I  (1) 

where K E R n×n and M E R "×" are symmetric positive definite 
matrices, A = diag {~-1, ik2 . . . . .  ~-n}, @ = [q~ll(~21 . . .  Its,,] 
with 4'i E R", i = 1, 2 . . . . .  n, and I is the identity matrix of 
appropriate dimensions. Partition @ and A in the form 

= [ ~ 1 l ~ 2 ] ,  ~ l  E R ..... , (2 )  

A =  [ A '  A z ] '  A, E R  . ....... (3) 

Suppose that (I'i and Ai are given (e.g., measured by a modal 
test), and consider ~2 and A2 unknown. Let a new modal set 
-A-i = diag { ~ ,  ~2 . . . . .  ~,,,}, '~'l = [~ll~21 . . .  I~,,,] be given, 
and suppose that '~l E span { ~ }, ie., there exists an invertible 
W E R "×m such that 

gPl = ~ i W .  (4) 

We would like to determine the symmetric modifications 1VI 
and K such that 

where ~ = K + K and l~I = M + l~I. By achieving this 
goal a modified system with partial spectrum A1 and modal 
matrix ~1 may be constructed. Since M and K cannot be recon- 
structed uniquely from A1 and ~ l ,  this objective cannot be met. 
To overcome this difficulty a residual matrix 

R = (19I)- t /2(K~l  - I ~ I ¢ ~ i A i )  (6)  

is defined and the following problem is formulated: 

Problem 1: Mathematical Backward Problem 

Let A~, 'I~l, ilk1 and ~ l  be given and let M and K be unknown. 
Find lVl and K which minimize the Frobenius matrix norm 

IIRII~. 

If IIRIIF = 0 then 1~1 and K which solve Problem 1 are the 
exact modifications that solve (5).  If IIRIIF is small then with 
1~I and ~ which solve Problem 1 Eq. (5) is satisfied approxi- 
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mately in a Rayleigh-Ritz sense, as shown in Parlett, 1980, pp. 
321-322. 

Let A ÷ be the Moore-Penrose generalized inverse of A and 
denote 

P = ( O ~ r ) + ( ( W W r ) - '  - I ) ~  (7) 

T = ( c I ~ ) + ( ( W ~ k l l W T )  - 1  - -  A l ) O i  ~, (8) 

and 

H = ~ 1 ~ .  ( 9 )  

It has been shown in (Ram and Braun, 1991) that the solution 
to Problem 1 is given by 

1~I = P + X - HrXH,  (10) 

= T + Y - HrYH (11) 

where X E R ~×" and Y ~ R ~x" are arbitrary symmetric matrices. 
The Lyapunov-type Eqs. (10) and (11 ) represent a family of 
mathematical solutions for Problem 1. Note that it follows from 
(9) that H is singular whenever m < n. 

We now focus on the practical problem of determining the 
solutions from the set ( 1 0 ) - ( 1 1 )  which are realizable, i.e., 
solutions that can be implemented by a physical change in the 
structure. The following questions arise: (a) are there solutions 
in the set ( 1 0 ) - ( 1 1 )  which are realizable? (b) if there are, 
how can we extract such realizable solutions? and (c) if there 
are no realizable solutions in ( 1 0 ) -  (11), how can we deter- 
mine one which is close in some sense to a mathematical solu- 
tion in the set? Before attempting to answer these questions, 
we need to take a close look at the solvability of the singular 
Lyapunov equations. 

3 T h e  C o n d i t i o n s  f o r  S o l v a b i l i t y  

Let us divert our atter~tion from the problem of determining 
a realizable solution and consider the following problem. Let 
lVl, P, and H be given. Determine the condition which ensures 
that there exists a matrix X such that (10) is satisfied. 

T h e o r e m  1. 

Let 

H =UX~U r, UU r = I ,  (12) 

be the spectral decomposition of H and partition 

U = [UtIU2], U, E R "xm. (13) 

Then the system (10), together with the definitions (7) and 
(9),  is a consistent system of equations if and only if 

Ulrl~IUi = U~rPU~. (14) 

Proof.  

We first show that if (14) is not satisfied then (10) does 
not hold. Multiplying (10) from right and left by U r and U, 
respectively, gives 

U ~ I U  = U r ( P  + X)U - ~UrXUX (15) 

Noting that (9) implies that 

Z = [  Im O ]  (16) 

we may write (15) in the following block matrix form 

[ U~'I~IUi U~I~U2] = ~ UrPU1 U~'(P + X)U2]  

U;MUi U~IU:J [U~(P + X)U1 U~(P + X ) U : J  ' 

(17) 

1% 

(a) Or ig ina l  sy s t em 

lq 

(b) Modified system 

Fig. 1 A three-degree-of-freedom system and its modification. (a) Origi- 
nal system, (b) Modified system. 

Since the leading block in (17) is independent of X it follows 
that if (14) is not satisfied then (10) does not hold. 

Conversely, if (14) holds then we may always find X such 
that (10), or equivalently (17), holds. One such possible obvi- 
ous choice is 

X = M - P, (18) 

and the proof of the theorem is completed. 
In an analogous manner we may prove that 

U~KU1 = UiTTU1 (19) 

is a necessary and sufficient condition for the solvability of 
(11). 

We now show how to use the conditions (14) and (19) in 
the determination of realizable solutions to Problem 1. 

4 R e a l i z a b l e  S o l u t i o n s  

It follows from the solvability results of Section 3 that instead 
of finding X which determines a realizable M via (10), we may 
find a realizable lVl which satisfies the condition (14). Then, 
by Theorem 1, 1VI belongs to the mathematical family of solu- 
tions (10) which solves Problem 1. Similarly, by determining 
a realizable K which satisfies (19) we have a solution from the 
family ( 1 1 ). 

We now show how to apply this general principle in a particu- 
lar case. Consider an n-degree-of-freedom mass-spring system, 
such as that shown in Fig. 1 (a)  for n = 3. Suppose that only 
m < n eigenvalues hi, h2 . . . . .  h,, and their corresponding 
mass-normalized mode shapes 451,452 . . . . .  45m are given. Hence, 
generally the system cannot be reconstructed from these data. 
We wish to modify the system with the objective that the eigen- 
values hi, hz . . . . .  ~,, and the associated normalized eigenvec- 
tots ~1, ~2 . . . . .  45,, of the modified system are prescribed. 
Suppose that the allowed modifications are restricted to changes 
in the n existing masses, the n - 1 springs connecting neigh- 
boring masses and the spring connecting the left system to the 
ground. Denote the changes in these parameters by rh~ and 
kj, i = 1, 2 . . . . .  n, respectively. Such a modification for the 
three-degree-of-freedom case is illustrated in Fig. 1 (b),  where 
ffti = m i  + ffli and k~ = Ki + kt, i = 1, 2, 3. 

The connectivity conditions for this problem are (see, e.g., 
Gladwell, 1986, p. 23) 
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and 

where 

and 

1VI = diag { rhl, rh2 . . . . .  rh. } 

= EDE r 

l)  = diag { kl, k2 . . . .  Kn } 

(20) 

(21) 

(22) 

1 - 1  
1 - 1  E = ... ... E R "×n. (23) 

1 

Realizable solutions in this case are those which satisfy the 
connectivity relations ( 2 0 ) - ( 2 3 ) ,  in addition to the require- 
ments that 1VI has positive diagonal and the diagonal of K is 
positive weakly dominant. 

We now show how to determine a diagonal/~I which satisfy 
(14). For convenience denote 

B = U~PU~, (24) 

so that (14) can be written as 

U~TI~'IU~ = B. (25) 

Partition 

U,  = [ u t l u ~  . lUm] (26 )  

and 

B = [b, lbzl . .  Ib.,]. (27)  

Then (25) consists of the following m systems of m equations: 

U~/VIuk = bk, k = 1, 2 . . . . .  m. (28) 

Note that (28) can be written equivalently as systems of linear 
equations 

Akrh =bk ,  k =  1,2 . . . . .  m (29) 

where 

A~ = [ai,:], = [uziuzk], (30) 

= (rhl, ~h2 . . . . .  rh,) r (31) 

and where ui.j is the i - j element of U. Hence, denoting 

A = [ATIA~I . . .  IA~,] r (32) 

and 

b = (bTIb2TI . . .  Ib,r,) r (33) 

Eq. (25), and its equivalent systems of Eq. (29), can be written 
in the linear form 

Alia = b. (34) 

The system (34) consists of m 2 equations with n unknowns. 
It should be noted, however, that generally only p = m(m + 
1 )/2 Eqs. of (34) are linearly independent. (We could eliminate 
the dependent Eqs. in (34), but for the sake of simplicity we 
decided not to pursue this issue). Hence, depending whether 
the ratio n/p is less than, equal to, or greater than unit, the 
system (34) has no solution, a unique solution, or a family of 
solutions, respectively. If the system (34) has no solution, we 
may still solve (34) in a least squares sense and obtain an 
approximation to M. A realizable solution must have the addi- 
tional property^that M + 1VI is positive definite. When M is 
unknown and M contains negative diagonal elements it may be 
difficult to say whether the solution is really realizable. We may 
restrict the magnitude of negative values in 1VI by solving the 

(a) Original  system 

(b) Modif ied  system 

Fig. 2 A five-degree-of-freedom system and its modification. (a) Origi- 
nal system, (b) Modified system. 

least-squares problem (34) under inequality constraints. A study 
of this topic is presented in Lawson and Hanson (1974). 

The modification of the stiffness matrix may be determined 
in a similar manner. Denote 

C = U~rTUt (35) 

and 

V -~ [l/i ,j] : ErU,.  (36) 

Then the solvability condition (19) and the connectivity con- 
dition (21) imply that we need to find a diagonal I) which 
satisfies 

Vrl)V = C. (37) 

According to (22) the diagonal elements of ~ determine the 
modification to the stiffness matrix. This problem can be written 
in the linear form 

where 

z ~  = c ( 3 8 )  

= (kl ,  k2 . . . . .  k,,)r, (39) 

z = [ z ~ l z ~ l  . . .  Iz ,~ ]  ~, (40)  

c = ( c ~ I c ; l  . . .  I c ~ )  r ( 4 1 )  

and where Zk and ck are defined by 

ZK = [ Z j k  = [uj.iuj.k]~ (42) 

and 

C = [c, 1c21 . . .  leo]. (43) 

Here again only p = m(m + 1)/2 Eqs. in (38) are linearly 
independent. So, depending on the ratio n/p, (38) may be 
solved exactly, or in least squares sense, for the unknown k. 
The magnitude of the elements of k may be controlled by 
solving (38) subject to inequality constraints. 

We have demonstrated how to determine a realizable modifi- 
cation for a specific case, namely the mass-spring system, with 
a particular modification constraint. The principle that the realiz- 
able modification may be determined by the solvability condi- 
tions (14) and (19), however, is applicable for the more general 
case. Other problems, e.g., discrete models of beams or plates, 
involve other connectivity conditions. These conditions together 
with (14) and (19) may yield a realizable model of modifica- 
tions. 

5 A n  E x a m p l e  

The system shown in Fig. 2 (a )  has five eigenpairs. Suppose 
that we know only two of its eigenvalues 
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Table 1 Modifications to the masses and spring constants 

i rhi 

1 -0.1600 3.0653 
2 -0.2400 13.7389 
3 -0.1600 10.0593 
4 -0.2400 14.1000 
5 -0.1600 19.6549 

0.5774 
-0.6830 

Ui = 0.2887 
0.1830 

-0.2887 

Invoking (30) and (27) we have 

= [0.3333 
Al [0.0000 

0.0000 ] 
-0.1830 

0.5000 . 
-0.6830 

0.5000 

0.4665 0.0833 0.0335 0.0833 
/ 

0.1250 0.1443 -0.1250 -0 .1443J  

hi = 3, M = 3.7321 

and their two corresponding mass-normalized eigenvectors 

~l = ( - 0 . 5  0.5 0 -0 .5  0.5) r, 

q52 = (0.2887 -0 .5  0.5774 -0 .5  0.2887) r, 

while the actual system is considered unknown. Clearly, a five- 
degree-of-freedom system which generally consists of 15 
springs and 5 masses cannot be reconstructed uniquely from 
the above 12 pieces of information. In other words, there are 
many different mass-spring systems with the same two eigen- 
pairs. Although the system is considered unknown we may 
determine a modification, optimal in a Rayleigh-Ritz sense, 
which changes the two given eigenpairs to say 

k, = 50, g.2 = 70, 

~1 = (-0.6443 0.75 -0.2887 -0 .25 0.3557) r, 

~2 = (0.0387 -0.25 0.5774 -0 .75 0.5387) r. 

This will be done by changing the five masses and the five 
springs K~ . . . . .  Ks, shown in Fig. 1 (a ) ,  only. Note that the 
new eigenvectors are constrained by 

[ & l & ]  = [~,l~dW 
where 

[1 1 W = -0 .5  

We note that despite its simplicity, this problem may repre- 
sent an important engineering application where the analytical 
model of a vibrating structure is unknown, modal data are avail- 
able, and the objective is to determine structural modification 
which assign part of the eigendata. As mentioned above this 
objective can be achieved only by approximation, optimal in 
some sense. 

Using (7) and (9)  we obtain 

r -0.0667 0.0789 -0.0333 
| 0.0789 -0.1000 0.0577 

P = | - 0 . 0 3 3 3  0.0577 -0.0667 
| -0.0211 0.0000 0.0577 
l_ 0.0333 -0.0211 -0.0333 

and 

0.3333 -0.3943 0.1667 
-0.3943 0.5000 -0.2887 

H =  0.1667 -0.2887 0.3333 
0.1057 0.0000 -0.2887 

-0.1667 0.1057 0.1667 

The spectral decomposition of I t ,  

0.5774 0.0000 -0.6597 
-0.6830 -0.1830 -0.3142 

U = 0.2887 0.5000 0.1324 
0.1830 -0.6830 -0.2682 

-0.2887 0.5000 -0.6137 

and, as expecmd, Z = diag {1 1 0 
by (13) 

-0.0211 0.0333 
0.0000 -0.0211 
0.0577 -0.0333 

-0.1000 0.0789 
0.0789 -0.0667 

0.1057 -0.1667 
0.0000 0.1057 

-0.2887 0.1667 
0.5000 -0.3943 

-0.3943 0.3333 

given by (12), yields 

-0.3829 0.2912 
-0.0068 0.6334 

0.6086 0.5279 
0.6420 -0.1261 
0.2659 -0.4683 

0 0}. We thus have 

0.0000 0.1250 0.1443 -0.1250 -0 .1443]  

A2 = 0.0000 0.0335 0.2500 0.4665 0.2500J 

b~ = ( - 0 . 2 0 0 0 )  0.0000 
0.0000/ b2 = ( , ' -0.2000,/  

The linear system of Eqs . (34)  is thus 

0.3333 0.4665 0.0833 0.0335 
0.0000 0.1250 0.1443 -0.1250 
0.0000 0.1250 0.1443 -0.1250 
0.0000 0.0335 0.2500 0.4665 

0.0833 ] 
-0.1443 
-0.1443 

0.2500 

ff~2 0.0 
× rh3 = 0.0 ' 

rh4 -0 .2  
r& 

The second and third equations are identical, hence the above 
system consists of three independent equations with five un- 
knowns. There is thus a continuous family of realizable solu- 
tions. We choose arbitrarily the unique solution with the mini- 
mal norm by solving 

f ia= A+b. 

This solution has the attractive feature of minimizing the 
required changes in the mass configuration (see e.g., Golub and 
Van Loan, 1983, pp. 162-164). This minimal modification is 
given in Table 1. In a similar manner, using ( 3 5 ) - ( 4 3 )  we 
find that there exists a continuous family of realizable stiffness 
modifications which solves Problem 1. The one which requires 

0 

-1 

_• Required 

"-._____7.:-'-" 

0 

-1 

Required ~ ~  / /  
Obtained m m V 

Fig, 3 The required mode shapes and their approximations 
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the minimal spring changes in the Euclidean vector norm sense 
is shown in Table 1. 

To evaluate the results we added the modification matrices 
obtained to the (so far regarded "unknown")  mass and stiffness 
matrices of the original system, and solved the eigenvalue prob- 
lem associated with the modified system. The modified system, 
shown in Fig. 2 (a ) ,  is indeed realizable, and has eigenvalues 
~.t = 51.1143 and k2 = 71.8761. The associated mass normal- 
ized mode shapes, together with the required modes are shown 
in Fig. 3. Recalling that only incomplete modal data has been 
used, the approximation seems satisfactory in this case. 

6 Summary 
We have considered the problem of approximating realizable 

mass and stiffness modifications required to assign some eigen- 
values and eigenvectors. The analytical model of the system has 
been considered unknown, and only truncated set of eigenpairs 
associated with the unmodified system has been used. The fami- 
lies of mathematical solutions for the problem, suggested in 
(Ram and Braun, 1991), have been replaced by solvability 
conditions. These conditions, together with the connectivity im- 
posed by the realizable constraints, form sets of equations which 
define realizable solutions. We have analyzed the mass-spring 
system model with certain constraints on the permitted modifi- 
cations. The solvability conditions have been then transformed 

to a standard linear form and solved in a least-squares sense. 
A numerical example has provided a satisfactory approximation 
to the modifications in a particular, specially chosen, case. 

References 
Baldwin, J.F., and Hutton, S. G., "Natural Modes of Modified Structures," 

AIAA Journal Vol. 23, No. 11, pp. 1737-1743, 1985. 
Berman, A., "System Identification of Structural Dynamic Models--Theoreti- 

cal and Practical Bounds," AIAA paper 84-0929, pp. 123-129, 1984. 
Gladwell, G. M. L., Inverse Problems in Vibration, Martinus Nijhoff Publish- 

ers, Dordrecht, 1986. 
Golub, G. H., and Van Loan, C. F., Matrix Computations, Johns Hopkins Uni- 

versity Press, Maryland, 1983. 
Lawson, C. L., and Hanson, R. J., Solving Least Squares Problems, Prentice- 

Hall, 1974. 
Parlett, B. N., The Symmetric Eigenvalue Problem, Prentice-Hall, 1980. 
Ram, Y. M., Braun, S. G., and Blech, J.J., "Structural Modification in Trun- 

cated Systems by the Rayleigh-Ritz Method," Journal of Sound and Vibration, 
Vol. 125, No. 2, pp. 203-209, 1988. 

Ram, Y. M., Blech, J. J., and Braun, S. G., "Eigenproblem Error Bounds With 
Application to the Symmetric Dynamic System Modification," SlAM Journal on 
Matrix Analysis and Applications, Vot. 11, pp. 553-564, 1990. 

Ram, Y.M., and Braun, S.G., "Upper and Lower Bounds for the Natural 
Frequencies of Modified Structures Based on Modal Testing Results," Journal 
of Sound and Vibration, Vol. 137, No. 1, pp. 69-81, 1990a. 

Ram, Y. M., and Braun, S. G., "Structural Dynamic Modifications Using Trun- 
cated Data: Bounds for the Eigenvalues," Mechanical Systems and Signal Pro- 
cessing, Vol. 4, No. 1, pp. 39-52, 1990b. 

Ram, Y. M., and Braun, S. G., "An Inverse Problem Associated With Modifi- 
cation of Incomplete Dynamic System," ASME JOURNAL OF APPLIED MECHANICS, 
Vol. 58, No. 1, pp. 233-237, 1991. 

Journal of Applied Mechanics JUNE 1999, Vol. 66 / 431 

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A. A. Renshaw 
Department of Mechanical Engineering, 

Columbia University, 
New York, NY 10027 

Mem, ASME 

Vibration Considerations in 
Foil-Bearing Design 
The semianalytic foil-bearing solution algorithm of Eshel and Elrod (1965) is extended to 
the solution of the linearized, free vibration problem for one-dimensional self-pressurized 
foil bearings. The results demonstrate that unwanted variations in the spacing between the 
moving foil and the stationary bearing surface can be eliminated through proper design. 
The penetration depth through which vibration of the free span penetrates into the foil 
bearing is determined by two exponential exponents, one describing inlet penetration, the 
other describing outlet penetration. When the inlet exponent is large and negative and the 
outlet exponent is large and positive, there is negligible coupling between the vibration of 
the free spans and the vibration of the spacing between the foil and the stationary bearing 
surface. This decoupling is desirable in magnetic recording and web handling applica- 
tions and can be achieved by properly selecting two dimensionless parameters, one 
describing the ratio of the viscous forces to the tape tension, the other describing the ratio 
of the tape transport speed to the wave speed in the tape. The values of these two 
parameters in current designs of both magnetic tape recording and web-handling devices 
are consistent with the design goal of minimizing foil vibration over the bearing. The inlet 
and outlet exponents are the roots of a fourth-order polynomial, and, in most cases, good 
estimates for these roots can be found without explicitly solving the foil-bearing problem. 
The effects of the air compressibility, tape bending stiffness, and slip flow are also 
investigated. Tape bending stiffness is found to play a significant role in vibration 
coupling. These results provide new insight into the influence of vibration on foil-bearing 
design. 

1 Introduction 

Self-pressurized foil bearings are often used in magnetic tape 
drives to position a flexible magnetic tape over a stationary re- 
cording head as the tape is wound from one reel to another. Foil 
bearings are also found in web-handling devices to assist in trans- 
porting, drying, and controlling the web during processing. In both 
applications, performance is generally enhanced by foil bearing 
designs that: (1) minimize the spacing between the moving foil and 
the stationary bearing surface and (2) minimize the temporal 
variations of this spacing. 

The equilibrium spacing between the foil and the stationary 
bearing surface has been extensively analyzed during the past 
four decades. A one-dimensional steady-state model of the foil 
bearing was first proposed and approximately solved by Blok 
and Van Rossum (1953). His results were subsequently im- 
proved and extended by Baumeister (1963), Langlois (1963), 
and Eshel and Elrod (1965). Since then, numerous efficient and 
increasingly sophisticated numerical algorithms for solving the 
one and two-dimensional steady-state foil-bearing problem 
have been proposed (for example, Stahl et al., 1974; Lacey and 
Talke, 1990; Moes, 1991; Ono et al., 1991; Wickert, 1993; 
Sakai et al., 1996). 

Vibration of the spacing between the foil and the stationary 
bearing has only recently attracted research attention. Wickert 
(1993) and Lakshmikumaran and Wickert (1996) linearized the 
foil-bearing equations about the steady equilibrium and then de- 
termined the eigenvalues associated with free linear vibration 
about the equilibrium using a finite difference algorithm. Using the 
real and imaginary parts of those eigenvalues as measures of the 
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system damping and stiffness, they performed several parametric 
studies aimed at optimizing these quantities. One interesting phe- 
nomenon that was demonstrated by their work was the existence of 
two different types of vibration modes. The first kind of vibration 
mode possesses significant motion of the foil both before and after 
the stationary bearing with, presumably, small but nonzero motion 
across the bearing. The other vibration mode had significant mo- 
tion only after the bearing. The results shown were not adequate to 
determine the magnitude of motion across the bearing in either 
vibration mode or its relevance to foil-bearing design. 

In the present paper, we use a simple, one-dimensional model 
and the semianalytic method of Eshel and Elrod (1965) to show 
that vibration coupling across the stationary bearing produces 
unwanted variations in the spacing and that such coupling can be 
eliminated through proper design. The penetration depth through 
which vibration of the free spans penetrates into the bearing is 
determined by two exponential exponents, one describing inlet 
penetration, the other describing outlet penetration. When the inlet 
exponent is large and negative and the outlet exponent is large and 
positive, there is negligible coupling between vibration of the free 
spans and vibration of the foil bearing film thickness. This situa- 
tion is desirable in both magnetic recording and web-handling 
devices and can be achieved by properly selecting two dimension- 
less parameters, one describing the ratio of the viscous forces to 
the tape tension, the other describing the ratio of the tape transport 
speed to the wave speed in the tape. The values of these two 
parameters in current designs of magnetic tape recording and 
web-handling devices are consistent with the design goal of min- 
imizing foil vibration over the bearing. The inlet and outlet expo- 
nents are the roots of a fourth-order polynomial, and, in most 
cases, good estimates for these roots can be found without explic- 
itly solving the foil bearing problem. The effects of the air com- 
pressibility, tape ,bending stiffness, and slip flow are also investi- 
gated. Tape bending stiffness is found to play a significant role in 
vibration coupling. These results provide new insight into the 
influence of vibration on foil bearing design. 

432 / Vol. 66, JUNE 1999 Copyright © 1999 by ASME Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



v 

X=-R X=R 

Fig. 1 Schematic of the foil-bearing problem 

2 Model ing  
A thin flexible tape (or web) of constant linear density 0, tension 

or, and width W travels at constant speed V between two fixed 
eyelets located at X = - R  and X = R as shown in Fig. 1. The 
transverse displacement of the tape is U(T, X) where T is time. A 
stationary recording head (or web control bar) with transverse 
profile 

A(X) = Ao - X2/2R (1) 

lies below the tape, and a thin film of air of viscosity/z supports 
the tape as it wraps around the recording head so that the tape does 
not make direct contact with the recording head. The thickness of 
the air film between the recording head and the tape is 

n = U - zX (2) 

and P is the pressure difference from ambient within this air film. 
The tape is modeled as an axially moving string (Wickert and 
Mote, 1990) 

p(U,rr + 2VU, rx + V~U,xx) - o'U,xx = P W  (3) 

where a comma indicates partial differentiation. The pressure in 
the air film is modeled by the one-dimensional incompressible 
isothermal Reynolds equation (Szeri, 1980) 

(H3P,x),x = 12~H,T + 61xVH,x. (4) 

The tape displacement and pressure satisfy the boundary condi- 
tions 

U = P = 0  at X = - + R .  (5) 

Dimensionless variables are defined by 

u =  U/R 8 = A / R  h = H / R  

x =  X/R t =  T , f ~ / ~  p =  P R W / ( o ' -  pV 2) (6) 

for which Eqs. (1)-(4) become 

8 = 80 - x2/2 (7) 

h = u - 8 (8) 

u,,t + 2vu,, ,  + (v 2 - 1)u,xx = (1 - v2)p (9) 

v(h3p,x),x = 2e3h , /+  ve3h,x (10) 

where 

v = V . f ~  E 3 = 6 ~ V W / ( o - -  oV 2) 80 = A o / R .  (11) 

Straight lines emanating from each eyelet are tangent to the re- 
cording head at the locations 

x'r= - 1  + ~/1 - 2 8 0  x ~ =  1 - ~/1 - 26o (12) 

where subscripts L and R indicate the left and right side of the 
recording head. The span to the left of the recording head is termed 
the inlet span, while the span to the right of the recording head is 
termed the outlet span. 

Journa l  of Appl ied  M e c h a n i c s  

The steady-state problem depends on the parameters e and 80, 
while the transient problem depends on v, E, and 8o. All three 
parameters are usually small. For magnetic recording applications, 
consider the commonly used test problem of Stahl, White, and 
Deckert (1974) (Lacey and Talke, 1990; Wickert, 1993) for which 
,50 = 0.63 cm, R = 1.97 cm, p/W = 0.0207 kg/m 2, o-/W = 277 
N/m, V = 2.54 m/s, and /.1, = 1.81 × 10 -5 kg/m-s. For these 
values v = 0.02, e = 0.01, 3o = 0.3, and x '  = _+0.4. In a 
typical web-handling device such as the Heidelberg Harris M 1000 
BE, R = 9.2 cm, W = 97 cm, p = 0.02 kg/m ~, o- = 500 N, V = 
11 m/s, and p, = 1.81 × 10 -5 kg/m-s. For these values, v = 0.07, 
E = 0.01. 

In the sequel, we impose the formal restrictions E < 1, v < 1 and 
80 < } in order to ensure that the problem is both physically and 
geometrically well posed. 

3 Equi l ibr ium 

Under steady-state conditions, Eqs. (7) and (9) give 

p = 1 - h,xx (13) 

which, together with (8) and (10), give the classical foil-bearing 
equation (Blok and Van Rossum, 1953; Baumeister, 1963; Lang- 
lois, 1963; Eshel and Elrod, 1965) 

h .... = ~3(E2h - h)/h 3 (14) 

where h is an integration constant. (h has been scaled by e 2 in 
order to simplify subsequent manipulations.) The particular solu- 
tion h = E2h is a good approximation to the actual solution over 
most of the recording head, but is inadequate when the tape is far 
from the recording head and does not satisfy the boundary condi- 
tions (5). 

Eshel and Elrod (1965) developed a solution algorithm for (14) 
based on numerical integration. We summarize that solution here 
in order to improve the clarity of the vibration analysis of the next 
section. Assume that over some finite region 1 in the center of the 
recording head h is given by 

h = ez(,~ + y(x)) (15) 

where lyl << ,~. When lyl << /~, (14) can be linearized to give 

E3h3y,xxx ,-k y = 0 (16) 

whose general solution is 

y = ae -x/d' + e'/2&[b sin ( , f3x /2 ,h )  + c cos (x/3x/2 ,h)] .  (17) 

Since E << 1, that part of (17) proportional to a is exponentially 
large as e ~ 0 for any x = Xo < 0, while those parts of (17) 
proportional to b and c are exponentially large as E ~ 0 at any x = 
xo > 0. As a result, lyl << h is valid only if the contribution of 
(17) proportional to a is non-negligible only on the left edge of I 
and the contribution of (17) proportional to b and c is non- 
negligible only on the right edge of I. Therefore, in the inlet region 
x~ << x << 0, h must be well approximated by 

h = e2[h + aoe-('-'z)/d] (18) 
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while in the outlet region 0 << x << x~, h must be well 
approximated by 

h = e2{h + e(~-x~)n° '[bo sin ( , f 3  (x - x~)/2~/~) 

+ co cos ( .f3(x - x~)/2~h)]}.  (19) 

With the four parameters h, ao, bo, and co fixed, (18) and (19) can 
be differentiated and evaluated to estimate h, h,~, and h .... at any 
x within the appropriate region. These estimates can then be used 
as initial values to numerically integrate (14) either from x = xo to 
x = - 1 in the case where x'L << xo << 0 and (18) has been used, 
or from x = xo to x = l in the case where 0 << Xo << x~ and 
(19) has been used. The errors in the boundary conditions at x = 

1 can then be used as inputs to a multidimensional nonlinear 
equation solver to modify initial estimates of h, a o, b o, and c o until 
the boundary conditions are satisfied. While the solver could 
simultaneously determine for all four parameters using the four 
boundary conditions, it is more efficient to first determine h and ao 

using the boundary conditions at x = - 1 since (18) is independent 
of b o and co and then, with ,~ and a o fixed, determine b o and c o 
using the boundary conditions at x = 1. 

Because of the large difference in the exponential exponents in 
(17), (14) is generally too stiff to be numerically.integrated from 

' ' dg x = x~ to x : x~. Ju ement is therefore required in choosing xo, 

the starting point for the numerical integration, in order to prevent 
spurious errors related to the numerical stiffness of (14) from 
creeping into the estimate of the boundary conditions at x = + 1 
and to avoid needless and time consuming numerical integration 
over regions in which the approximations (18) and (19) are ade- 
quate. For the results reported here, we used Xo = x~ + e /2  for 
the inlet and Xo = x'~ - ~ / 2  for the outlet. These starting locations 
gave results that were within 0.1 percent of the results produced 
using starting locations closer to the center of the bearing. 

For ~ = 0.01 and 60 = 0.3, the four parameters are ,~ = 
0 .6430,  ao = 0 .5292,  bo = - 0 . 0 7 1 2 ,  and co = - 0 . 1 4 0 8 .  The 
value of ,~ agrees exactly with the value determined by Eshel and 
Elrod (1965). 

4 Free  L i n e a r  V i b r a t i o n  

We next consider harmonic vibration of (9) and (10) linearized 
about the equilibrium found in the previous section as first pro- 
posed by Wickert (1993). Letting 

u = Ue + t ie xt p = p~ + l~e at h = h~ + l,~e at (20) 

where subscript e denotes the equilibrium solutions and the tildes 
indicate small, spatially dependent functions, the linear versions of 
(9) and (10) are 

A2a + 2vAti,~ + (v 2 - 1)tL.~.~ = (1 - v2) t  5 (21) 

v(h3efi,x --l- 3h~ap~,x) ,~  = 2 e 3 A / i  + E3vt~,~. (22) 

Equation (21) can be solved for/~ and substituted into (22) to give 
a single linear fourth-order ordinary differential equation for t7 

v( l  - v 2 ) h ~ a  . . . . .  + vh2e[3(1 - v2)h~,x - 2Xvh~]/7 ..... 

- A v h ~ ( 6 v h e , ~  + a .h~)a ,~  + v[(1 - v2)(E 3 + 3 h ~ h  . . . . .  ) 

- 3A2h~h~,~]a,~ + (1 - v2)[2E3A + 3 v h ~ ( h , h  . . . . . .  

+ 2he,x  h ...... )]t~ = 0. (23) 

We now extend the solution algorithm of Eshel and Elrod 
(1965) to numerically solve (23). We seek an approximate, ana- 
lytic solution to (23) valid over the interval I to provide starting 
values for ~7 and its derivatives for numerical integration. Over 
most of 1, he = ~2,~ and (23) is well approximated by 

v( l  - U2)E3~/3/~  . . . . . .  - -  2 A V 2 E 3 ~ / 3 U  .. . . .  - -  /~21)E3h3/~,xx 

+ v ( 1 -  v 2 ) ~ t , x + 2 A ( 1 -  v a ) ~ = O .  (24) 

Equation (24) is a fourth-order linear ordinary equation with 
constant (complex) coefficients. Consequently, its solution is 

17 = c l e  '°6x-xL) -.4- c2 e°n(x-xL) -q- c3 e"j3(x-xk) -l- c4 e°°O-xk )  (25) 

where c ~-c4 are complex constants and 001-004 are the four roots of 
the polynomial 

v ( 1  - u 2 ) e 3 h 3 w  4 - 2 A v 2 6 3 h 3 0 0  3 - X 2 v E 3 h 3 w 2  -t- v(1 - ve)w 

+ 2A(I - v 2) = 0  (26) 

ordered such that 

Re[oo,] <- Re[w2] -< Re[oo3] --< Re[e4].  (27) 

There are five unknown complex parameters embedded in (25)--A 
and c~-c4- -and  only four boundary conditions. However, the 
magnitude of the eigenfunction is arbitrary, so one nonzero coef- 
ficient c l - c 4  can be arbitrarily set to unity. As a result, there are as 
many unknown parameters as boundary conditions, and the prob- 
lem is well posed. 

Unfortunately, there is no simple analytic formula for the roots 
of (26) so it is difficult to know a priori whether only a few of the 
four independent solutions in (25) are non-negligible in either the 
inlet or the outlet spans. Just as in the equilibrium problem, such 
a simplification would enable us to decompose the problem into 
inlet and outlet problems in which only two unknown parameters 
are sought at a time. While such a simplification may not always 
be possible, for physically relevant values of v, E, and 60, Re[ooj] 
<< - 1 ,  1 << Re[o)3] << Re[to4], and, Re[to2] << - 1  or Re[w2] = 
O(1).  This knowledge enables us to decompose the eigenvalue 
problem into separate inlet and outlet eigensolutions each of which 
requires at most only two nonlinear solutions for two complex 
parameters rather than a more difficult single nonlinear solution for 
four complex parameters. 

The Inlet Eigensolutlon: The inlet eigensolution is found as 
follows. An initial estimate is made for A and c~. At x = Xo = 

x~ + e/2,  ~ is approximated by 

= c~e '°~lx-xi~ + e '02(~-~). (28) 

Equation (23) is numerically integrated to x = - 1. The nonlinear 
equation solver adjusts estimates of A and c~ until the boundary 
conditions at x = - 1  are satisfied. Then, with A and el deter- 
mined, t7 is approximated by 

= Cl e'°~(x-xL) + e '°2(x-xL) -l- c3 e'~3(x-x~) + c4 e~°a(x-xk) (29) 

a t x  = Xo = x~  - e / 2  and (23) is integrated t o x  = 1. The 
nonlinear equation solver then determines c3 and c4 so that the 
boundary conditions at x = 1 are satisfied. In the case when 
Re[oh] << - 1, t~ is negligible across the bearing (the interval I) so 
that c3 = c4 = 0. In this case, the inlet eigensolution decouples 
from motions of the tape over the bearing and in the outlet span. 

The Outlet Eigensolution: For the outlet eigensolution, ~ is 
approximated by 

= c3eOO3(x-x~) + e °°4(x-xl~) (30) 

Table 1 The first few inlet and outlet eigenvalues for ¢ = 
0.01, v = 0.02, and 6o = 0.3 

n Inlet A,, Outlet A,~ 

1 -0.134___ 5.08i - 0 . 141+  5.10i 
2 -0.313 -+ 10.3i -0.309 _+ 10.3i 
3 -0.481 _+ 15.5i -0.467 _+ 15.5i 
4 -0.632 + 20.7i -0.610 _+ 20.8i 
5 -0.796 -+ 25.9i -0.738 _+ 26.0i 
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Fig. 2 Contour plot of Re[w=] for the Inlet elgensolutlon with minimum 
IIm[Xll. ~o = 0.3. 

t at x = Xo = xR - • /2  and (23) is integrated to x = 1. Estimates 
of A and c3 are adjusted until the boundary conditions at x = 1 are 
satisfied. Since 1 << Re[to3] << Re[to4], a is negligible across the 
beating (the interval I) and throughout the inlet span. Hence the 
outlet eigensolution decouples from motions in the inlet and over 
the bearing. 

If both Re[to3] = O(1) and Re[to2] = O(1), then the inlet and 
outlet eigensolutions do not decouple and the nonlinear equation 
solver must find all four unknown parameters simultaneously. This 
is not the case for the parameter ranges considered here. 

The first few inlet and outlet eigenvalues for • = 0.01, v = 0.02, 
and 3o = 0.3 are shown in Table 1. As noted in previous analyses 

(Wickert, 1993; Lakshmikumaran and Wickert, 1996), the natural 
frequencies of these eigensolutions, Im[)q, are close to n~'(1 - 
v2)/(1 - x~), n = 1, 2, 3 . . . . .  the frequencies of an unloaded 
axially moving string whose span length is ( l  - x~) (Wickert and 
Mote, 1990). In addition, these solutions are lightly damped. 

Re[A] and Im[A] are important foil-bearing vibration character- 
istics, and previous studies (Wickert, 1993; Lakshmikumaran and 
Wickert, 1996) have explored variations of system parameters to 
determine their influence on Re[A] and Im[A]. However, while 
these same studies have identified eigensolntions both with and 
without coupling between the inlet and outlet spans, the implica- 
tions of this coupling have not been fully brought to light. Specif- 
ically, vibratory motion of decoupled eigensolutions does not 
affect the film thickness over the recording head and is therefore 
highly desirable for high fidelity magnetic recording and web 
handling. Coupled eigensolutions, however, do involve non- 
negligible variations of the film thickness, which may degrade 
recording fidelity. As a result, the magnitudes of  Re[to2] and 
Re[to3] may be more important vibration considerations for foil 
bearing design than Re[A] and Im[A]. 

Figure 2 shows a contour plot of Re[to2] for the inlet eigenso- 
lution with minimum IIm[to]l for the parameter ranges 0.001 -< • e 
0.1 and 0.005 -< v -< 0.5 with 3o = 0.3. Figure 3 shows contour 
plots of the inlet Re[A] and Im[A] over the same range. The value 
of Re[to2] is most negative, and therefore most decoupled, for 
small • and v. For a fixed •, increases in v increase Re[to2]. For 
example, in the test case • = 0.01 and v = 0.02, Re[to2] = - 6 2 .  
Doubling v to 0.04 increases Re[to2] to - 4 1 ,  which is more 
susceptible to span coupling, whereas halving v to 0.01 decreases 
Re[to2] to -82 .  In the cases explored by Wickert (1993) and 
Lakshmikumaran and Wickert (1996) • = 0.01 but v = 0.5. Here 
Re[to~] = 0.07, and there is extensive deleterious coupling be- 
tween the inlet and outlet spans. As shown in Fig. 3, over most of 
the parameter range explored, 4.5 < Im[A] < 5.5, which is close 
to the unloaded string natural frequency. Damping is improved by 
increasing e; however, increases in • also increase the nominal film 
thickness across the recording head, which may be detrimental to 
recording fidelity. Increases in v increase Re[A] slightly, but Re[A] 
< 0 over the full range explored. 
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Figure 4 shows a contour plot of Re[oo3] and Fig. 5 shows 
contour plots of Re[A] and Im[A] for the outlet eigensolution with 
the minimum IIm[A]l over the same ranges as Figs. 3 and 4. Unlike 
the inlet eigensolution, the value of Re[oJ3] is essentially indepen- 
dent of v, and except for exceptionally large values of ~, is always 
large and positive. Hence the outlet eigensolution is always de- 
coupled in the parameter ranges of interest. Despite this change in 
coupling, the behavior of the outlet Re[X] and Im[A] shown in Fig. 
5 is very similar to the behavior of the inlet Re[A] and Ira[A] shown 
in Fig. 3. 

5 A Possible Design Strategy 
The shape of the contour plot in Fig. 2 suggests the following 

design strategy for foil bearings which is supported by actual 

Re[X] 

values of e and v for existing foil-bearing devices. The first step is 
to set v by determining the maximum velocity and strength of the 
foil. Next, with v fixed, E is chosen to minimize the value of Re[t02] 
so as to reducing temporal film thickness variations. For any fixed 
v, Fig. 2 shows that an optimal E exists that minimizes Re[w2]. The 
only free parameters available at this stage are the foil width and 
viscosity. Since viscosity is usually difficult to change, this opti- 
mization essentially sets the foil width. Finally, with both v and E 
determined, the radius of curvature of the foil bearing is chosen to 
achieve the desired film thickness. 

This strategy is quite different than that suggested by steady- 
state analyses that set e and R to achieve a desired film thickness. 
The fact that existing devices operate at values of e that do, in fact, 
minimize Re[w2] for their specific values of v is only circumstan- 
tial support for the strategy. Nevertheless, the strategy proposed 
will lead to foil bearing designs with well decoupled inlet and 
outlet vibration responses. 

6 Discussion 
One of the most compelling features of this analysis is that the 

decoupling parameters, Re[on2] and Re[w3], are e x p o n e n t i a l  expo- 
nents so that the response across the bearing is orders of magnitude 
smaller than at the tangency points. For design purposes, response 
amplitude and mode shape can be ignored since their effect will be 
negligible in a well-decoupled bearing. For example, in the test 
problem of Stahl, White, and Deckert (1974), Re[w2] = -62 .  This 
value implies that by a distance of 0.04 into the bearing, the 
vibratory response is reduced to five percent of its value at the 
tangency point. By a distance of 0.1, the response is only 0.2 
percent. 

The roots of the polynomial (26) depend on four parameters: A, 
,~, e, and v. However, the results show that A is well approximated 
by the unloaded axially moving string eigenvalues, i n w ( 1  - 

v2)/(1 - x~) and ,~ - 0.6430. These approximations enable us 
to find approximations for ~o for different values of e and v without 
actually solving the eigenvalue problem. For example, the four 
roots of (26) when e = 0.01, v = 0.02, ,~ = 0.6430, and A = 
iTr(1 - v2)/(1 - x~) = 4.96i are compared against the actual 
roots for both the inlet and outlet eigensolutions in Table 2. The 
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Table 2 Actual inlet and outlet roots to,, compared with the 
direct solution of Eq. (26) using A = 4.96i and h = 0.6430. e = 
0.01, v = 0.02, 60 = 0.3. 

n Inlet w,, Outlet oJ,, Direct oJ,, 

1 -209.4 + 64.8i -209.7 + 64.9i -207.8 + 65.3i 
2 -62.3 - 178.2i -62.4 - 178.6i -63.1 - 176.2i 
3 93.1 + 208.3i 93.1 + 208.6i 93.9 + 207.1i 
4 178.6 - 94.8i 178.9 - 94.8i 177.1 - 96.0i 

estimated roots deviate from the actual roots by about one percent 
in all cases. 

In contrast to most current foil bearing studies, we have used the 
simplest possible model. The effects of air compressibility, tape 
bending stiffness and slip flow have not been included in order not 
to divert our attention from the fundamental mechanism of vibra- 
tion coupling. However, such extensions are straightforward to 
incorporate. For example, consider the dimensionless axially mov- 
ing beam model with the compressible Reynolds equation and a 
slip-flow colTection 

U,a + 2vu,,x + ( v  2 - 1)u,xx + /3u,.~xxx = (l - v 2 ) p  (3l) 

v[h3(1 + otp)p,x],~ + e~hrlv(hZp,x),x 

= 2e3[h(l  + ap)],,  + e3v[h(1 + c~p)],~ (32) 

where ~x,/3, and ~/are dimensionless measures of compressibility, 
tape bending stiffness, and slip flow, respectively (Wickert, 1993). 
For this model, the polynomial defining the exponential exponents 
60 is 

- - /3U( i  + a + 3~)E3h3w6 -q- 7)(1 -- 712)(1 @ od + ~)E3h300 4 

- 2Av2(1 + a + '0)fi3~/300 3 - A21)(l q- ~ + '1"/)E3~/303 2 

+ v(1 - v2)(1 + a )oo+  2A(1 - v2)(1 + a)  = 0  (33) 

which is sixth order because (31) is fourth order instead of second 
order and there are two boundary conditions on u at x = ± 1. As 
a result of this increase in order, decoupling occurs when the real 
parts of three of the roots are large and negative and the real parts 
of the other three roots are large and positive. For the test problem 
of Stahl, White, and Deckert (1974), a = 0.14,/3 = 0.00014, and 

= 0.31. If we let h = 0.6430 and A = 4.96i, we obtain the six 
roots shown in Table 3. In this case the crucial numbers are Re[oo3] 
= - 3 6  and Re[to4] = 43, which are about half what they are for 
the simplified model (a = 13 = '0 = 0). Hence, in the more 
complete model, the foil bearing appears to be more susceptible to 
vibration. 

Of the three parameters, a,/3, and 'q, the roots of (33) appear to 
be most dependent on/3. The roots shown in Table 3 are essentially 
unchanged when a = ~ = 0. For c~ = 'q = 0, Re[ms] = - 1 9  for 
/3 = 0.01 and Re[to3] = - 1 3  for /3 = 0.1. Consequently, it is 
anticipated that high tape-bending stiftness may be detrimental to 
vibration decoupling. 

Although comparisons of numerical solution schemes are diffi- 
cult, the Eshel/Elrod solution algorithm appears to be less compu- 
tationally expensive in both time and memory than other solutions 

Table 3 Direct solution of Eq. (33) using A = 4.96i and h = 
0.6430. ¢ = 0.01, v = 0.02, t~ = 0.14, /3 = 0.00014, ~ = 0.31. 

t/ (~0~ I 

l - 147.9 - 42.4i 
2 -116.9 + 98.8i 
3 - 3 5 . 8 -  128.9i 
4 43.3 + 141.6i 
5 102.0 - 98.9i 
6 [55.2 + 29.8i 

algorithms. Lakshmikumaran and Wickert (1996) spend consider- 
able effort reducing the number of finite difference nodes required 
to achieve convergence of their eigenvalue analysis. Such memory 
considerations are not relevant to the Eshel/Elrod algorithm. The 
only potential convergence issues in the Eshel/Elrod algorithm are 
the convergence of the nonlinear equation solver and the accuracy 
of the numerical integration. For the results presented here, these 
were not problems. The one serious disadvantage of the Eshel/ 
Elrod algorithm is that it can not be easily extended to two- 
dimensional problems. 

In many modern recording heads there is direct contact between 
the magnetic tape and the recording head at the asperity level and 
the recording heads are flat rather than semicircular with negative 
pressure designs that preload the tape against the head. While the 
results derived here may be useful for describing the inlet foil 
bearing dynamics to such a bearing, the simple one-dimensional 
analysis here cannot account for such two-dimensional effects as 
cross-tape flow and asperity contact. 

7 C o n c l u s i o n s  

1 The numerical algorithm first proposed by Eshel and Elrod 
(1965) for the solution of the one-dimensional equilibrium foil- 
bearing problem is extended to the solution of the eigenvalue 
problem describing harmonic linear vibration problem about equi- 
librium. This solution algorithm appears to be computationally less 
expensive than previously described algorithms. 

2 Analytic analysis of the eigensolutions over the stationary 
bearing indicates that some eigensolutions describe non-negligible 
motion of the foil over the bearing as well as in both free spans of 
the tape, while other eigensolutions describe non-negligible mo- 
tion only in one free span. The former eigensolutions, herein 
denoted as coupled eigensolutions, may be undesirable since dis- 
turbances in the spans create film thickness variations over the 
bearing. The later eigensolutions, herein denoted as decoupled 
eigensolutions, may be desirable since disturbances in the spans do 
not affect the film. 

3 Decoupled vibration modes can be achieved by proper 
selecting two dimensionless parameters describing the foil- 
bearing system, herein denoted e and v. A design strategy for 
selecting these two parameters is described that maximizes 
decoupling. 

4 Excellent approximations for the magnitude of coupling can 
be made by solving a fourth-order polynomial equation without 
actually solving the foil bearing problem. 

5 The effects of air compressibility, tape bending stiffness, 
and slip flow can be incorporated into this analysis in a straight- 
forward manner. Of these three effects, tape bending stiffness 
appears to play the most important role in influencing the magni- 
tude of vibration coupling. 

R e f e r e n c e s  
Baumeister, H. K,, 1963, "Nominal Clearance of the Foil Bearing," lBMJouraal of 

Research and Development, Vol. 7, No. 2, Apr., pp. 153-154. 
Blok, H., and van Rossum, J. J., 1953, "The Foil Bearing--A New Departure in 

Hydrodynamic Lubrication," Lubrication Engineering, Vol. 9, No. 6, Dec., pp. 
316 -320. 

Eshel, A., and Elrod, Jr., H. G., 1965, "The Theory of the Infinitely Wide, Perfectly 
Flexible, Self-Acting Foil Bearing," ASME Journal of Basic Engineering, Vol. 87, 
pp. 831-836. 

Lacey, C. A., and Talke, F. E., 1990, "A Tightly Coupled Numerical Foil Bearing 
Solution," IEEE Transactions on Magnetics, Vol. 26, pp. 3039-3043. 

Lakshmikumaran, A. V., and Wickert, J. A., 1996, "On the Vibration of Coupled 
Traveling String and Air Bearing Systems," ASME Joulwal of Vibration and Acous- 
tics, Vol. 118, pp. 398-405. 

Langlois, W. E., 1963, "The Lightly Loaded Foil Bearing at Zero Angle of Wrap," 
IBM Journal of Research and Development, Vol. 7, No. 2, Apr., pp. 112-116. 

Moes, H., 1991, "The Air Gap Between Tape and Drum in a Video Recorder," 
Journal of Magnetism and Magnetic Materials, Vol. 95, pp. 1-13. 

Ono, K., Kodama, N., and Michimura, S., 1991, "A New Numerical Analysis 

Journal of Applied Mechanics JUNE 1999, Vol. 66 / 437 

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Method for Two-Dimensional Foil Bearing Problems Based on Inverse Analysis 
Concept," JSME International, Series III, Vol. 34, No. 1, pp. 82-90. 

Sakai, K., Nagawa, Y,  Okuyama, K., Terayama, T., 1996, "Thin Spacing Analysis 
for Head-Tape Interface," AS ME Journal of Tribology, Vol. 118, pp. 800-812. 

Stahl, K. J., White, J. W., and Deckert, K. L., 1974, "Dynamic Response of 
Self-Acting Foil Bearings," IBM Journal of Research and Development, VoL 18, pp. 
513-520. 

Szeri, A. Z., ed., 1980, Tribology: Friction. Lubrication, and Wear, McGraw-Hill, 
New York. 

Wickert, J. A., and Mote, Jr., C. D., 1990, "Classical Vibration Analysis of 
Axially Moving Continua," ASME JOURNAL OF APOLmD M~CHANICS, Vol. 57, pp. 
738-744. 

Wickert, .L A., 1993, "Free Linear Vibration of Self-Pressurized Foil Bearings," 
Journal of Vibration and Acoustics, VoL 115, pp. 145-151. 

438 / Vol. 66, JUNE 1999 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



V. N. Pilipchuk 

R. A. Ibrahim 
Fellow ASME 

Department of Mechanical Engineering, 
Wayne State University, 

Detroit, MI 48202 

Application of the Lie Group 
Transformations to Nonlinear 
Dynamical Systems 
This paper describes the theory of  Lie group operators in a form suitable for the applied 
dynamics community. In particular, it is adapted to analyzing the dynamic behavior of  
nonlinear systems in the presence of different resonance conditions. A key ingredient of  
the theory is the Hausdorff formula, which is found to be implicitly reproduced in most 
averaging techniques during the transformation process of  the equations of  motion. The 
method is applied to examine the nonlinear modal interaction in a coupled oscillator 
representing a double pendulum. The system equations of  motion are reduced to their 
simplest (normal) form using operations with the linear differential operators according 
to Hausdolff's formula. Based on the normal form equations, different types of resonance 
regimes are considered. It is shown that the energy of the parametrically excited first 
mode can be regularly (or nonregularly) shared with the other mode due to the internal 
resonance condition. I f  the second mode is parametrically excited, its energy is localized 
and is not transferred to the first mode, even in the presence of internal resonance. 

1 Introduction 

The quantitative theory of nonlinear vibration has been ad- 
vanced by new developments in asymptotic expansion techniques 
originally developed for solving nonlinear differential equations. 
Most traditional methods are essentially based on perturbation 
methods or averaging techniques (Giancaglia, 1972; Nayfeh and 
Mook, 1979). The theory of Poincare normal forms (Nayfeh, 
1993), which is similar to averaging techniques, retains resonance 
terms, since all nonresonance terms are removed from the equa- 
tions of motion by means of a special coordinate transformation. In 
this case the Poincare normal forms is qualified as the simplest 
possible form of the equations of motion. Alternatively, one can 
use Lie group operators, which can lead to the simplest form of the 
system equations of motion. The Lie group theory has become a 
powerful tool for studying differential equations among mathema- 
ticians and specialists, and needs to be adapted for dynamicists. 
Belinfante et al. (1966) presented an overview of the mathematical 
structure of Lie groups and Lie algebras with applications to 
nonlinear differential equations. Hori (1966) used Lie series to 
construct an additional first integral in an autonomous Hamiltonian 
system. Zhuravlev (1986) developed an algorithm for the asymp- 
totic integration of nonlinear differential equations as monomial 
Lie group transformations of the phase space into itself. 

In this paper we adapt the Lie group operators to transform 
nonlinear dynamical systems into their simplest form. The method 
is essentially based on the work of Zhuravlev (1986) and Zhurav- 
lev and Klimov (1988). An essential ingredient of the Lie group 
operators is the Hausdorff formula, which will be demonstrated in 
the Appendix. This formula relates the Lie group operators of the 
original system and the new one, and the operator of coordinate 
transformation. Zhuravlev (1986) and Zhuravlev and Klimov 
(1988) made a conjecture that most of averaging techniques re- 
produce this formula, each time implicitly, during the transforma- 
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tion process. There is no need to do this, since it is reasonable to 
start the transformation using Hausdorff's relationship. 

The theory of Lie groups deals with a set of transformations. In 
other words, an original dynamical system, ~ = fly, E), is trans- 
formed into its simplest form, ~ = g(z, e), by means of a coordinate 
transformation, y ----> z, which is given as the solution z = z(y, e) 
of a third dynamical system, dz/de = T(z, E), zl,_0 = y, in the 
same phase space. The selection of the vector-function T(z, e) 
depends on the desired properties of the transformed system. One 
of the advantages of the group formulation is that it specifies a 
general class of near identical transformations. Specifically, one 
should select the expression z = z(y, e) among solutions of a 
dynamical system, but not among all classes of the near identical 
transformations. Another basic advantage is that all manipulations 
of the scheme can be done in linear terms, i.e., the monomial Lie 
group operators. Moreover, the result of transformation in general 
terms of operators is well known and is given by the Hausdorff 
formula. 

Since the theory of Lie group operators is not well known in the 
applied dynamics community, in Section 2 we will outline the 
general scheme of transformations, including normal form coor- 
dinates and Lie group operators. The method is demonstrated using 
a nonlinear system simulating liquid sloshing impact interaction 
with an elastic support structure (Pilipchuk and Ibrahim, 1997). 
The example considers different cases of simultaneous parametric 
and internal resonance conditions. 

2 General Scheme of Transformation 

2.1 Normal Form Coordinates. In terms of the principal 
coordinates qk, a nonlinear dynamical system of n-degrees-of- 
freedom may be described by a set of n + 1 autonomous differ- 
ential equations written in the standard form 

cJk + ~o~qk = ¢Fk(ql . . . . .  q,,+l, 41 . . . . .  q,,+l); 

k = l  . . . . .  n + l  (1) 

where a dot denotes differentiation with respect to time t, e is a 
small parameter, and an external excitation has been replaced by 
the coordinate q,,+~. The functions Fk include all nonlinear terms 
and possibly parametric excitation terms, and wk are the principal 
mode frequencies. 

The Poincare normal form theory deals with sets of first-order 
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differential equations written in terms of normal form coordinates 
(Nayfeh, 1993). In this case it is convenient to transform the (n + 
1) second-order differential Eqs. (1) into (n + 1)first-order 
differential equations plus their conjugate set. This can be done by 
introducing the complex coordinates yk(t) (Landau and Lifshitz, 
1976): 

Yk = Oh + i~kqk 

1 1 
q k = ~ ( Y k - - Y ~ ) ,  0 h = ~ ( Y k + Y k ) .  (2) 

The physical meaning of these coordinates can be understood by 
considering the linear case (obtained after setting e = 0). The 
linear solution of (1) and its first derivative (the velocity) are, 
respectively, 

qk = Ak ei°Jkt +itke-iwkt,  i z = - 1  

Ok = (Ake iook, _ Ake -i°'kt)iwk 

where Ak and Ak are complex and an overbar denotes conjugate. 
The complex coordinates Yk and p~ can be viewed as vectors 

rotating in the complex plane with angular velocities ook and - w~, 
respectively, 

Ye = Oh + ioOkqk = 2iOOkAk ei'ok' 

Yk = --2itokAke-i°'kt" 

Introducing the transformation (2) into the equations of motion (1) 
gives 

d 
ilk + to~qk = ~ (Oh + iwkqk) -- io)k(Ok + iwkqk) 

dYk 
d t  itokyk = EFk(Yl . . . . .  Y,,<; Yl . . . . .  9,,+1) 

o r  

p~ = iw~yk + eFk(yl  . . . . .  Y,+i; Yl . . . . .  Y,,+I); 

k = l  . . . . .  n + l  (3) 

and the corresponding complex conjugate (ec )  set o f  equations 

where 

F k ( y l  . . . . .  Y n + l ;  Y l  . . . . .  Y n + l )  

= F k ( q l  . . . . .  q n + l ,  q l  . . . . .  qn+l)lqj=(l/2iooj)(yj--5'j),qk=(l/2)(yk+5'k)" 

(4) 

These terms can be represented in the polynomial form 

Fk ~ tT ml /Tin4. I-- II -- In+ 1 = F k y l  • • • Y,,+I (5) • • • Y n + l Y l  

Io-1=2,3 . . . .  

where the Taylor coefficients are defined by the partial differenti- 
ation of (4) as 

1 0 I~lFk 

F~ = tr! Oy"l" °Y,,+I Yl  " ' "  OY,+I • . .  ~ mn+lo--ll --ln+! y=O' 

Here the multi-index notations, o- = {ml . . . . .  m,,+t, It . . . . .  
/ n + l } ,  I~rl = m, + . . .  + m,,+1 + I I  + . . .  + 1,,<, Cr! = ml! . . .  
m,,+ t!ll .../,,+1!, have been used. Equations (3) correspond to the 
standard form, which is ready for analysis in terms of Lie group 
operators. 

2.2 Lie Groups Operators. To apply the theory of the Lie 
groups we rewrite Eqs. (3) in the form 

where 

and 

~, = A y ,  A = Ao + cA1 (6) 

Y = (Yl . . . . .  Y,,+l; .~1 . . . . .  Y",,+I) T 

,+1 0 . + 1  0 
- - +  c . c .  and A~ = ~ F k - - +  c.c .  Ao = 7~ icokY~ Oyk Oyk 

k = l  k =1 

(7) 

are operators of linear and nonlinear components of the system, 
respectively. 

In order to bring the equations of motion to their simplest form, 
we introduce the coordinate transformation in the Lie series form 

E 2 

y = e  ~ V z = z - e U z + ~ U 2 z - . . .  

Y = (Yl . . . . .  Yn+l; Yl . . . . .  # , ,+1)  T- '-~ 

z = ( z t  . . . . .  z,,+~; ~i . . . . .  # . < ) r  (8)  

where the operator of transformation U is represented in the power 
series form with respect to the small parameter e 

U =  U0+ E U i +  . . . .  (9) 

The coefficients of this series are 

n + l  
0 

= - - + C • C .  U j  £ r j , k  Ozk  
k = l  

(lO) 

where 

Tj,k = rj.k(zl . . . . .  Z,,+~; ~1 . . . . .  L,+0; 

j = 0 ,  1 . . . .  ; k =  1 . . . . .  n +  1 (11) 

are unknown functions to be determined• 
One of the advantages of this process is that the inverted 

coordinate transformation to the form (8) can be easily written as 

e'Uy = z (12) 

where one simply replaces z with y in the operator of transforma- 
tion, U. 

If e = 0, transformation (8) becomes identical, y = exp(0)z = 
z. In this case Eq. (6) has the simplest linear form and there is no 
need to transform the system. For e ¢ 0 transformation (8) 
converts the system (6) into the following one: 

~. = Bz (13) 

where the new operator B is given by the Hausdorff formula 
(Belinfante, 1966) 

E 2 

B = a + E[A, U] + ~ [[a ,  U], U] + . . .  (14) 

where [A, U] = A U - UA is the commutator of operators A and 
U. 

Substituting the power series expansions for A and U given by 
relations (6) and (9) into (14) gives 

B = ao + e(al  + [ao, Uo]) + e2([ao,  U,] + [ a b  Uo] 

+ ~ [[Ao, Uo], Uo] + . . . .  (15) 

A simple calculation gives 

440 / Vol. 66, JUNE 1999 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



n+l 0 
B = ~ { iwkzk  + • [ F k  + (Ao - i~oDro,j} ~z~ + c . e  + 0 ( ~  2) 

k - I  

(16) 

where the terms of order •2 have been ignored, Fk = F k l y ~ ,  A o  = 

A01y~,. 
The above relationships show that a transformation of the sys- 

tem ~ = Ay --~ ~ = Bz can be considered in terms of operators 
A ~ B. To bring the system into its normal (the simplest) form, 
one must eliminate as many nonlinear terms as possible from the 
transformed system such that the system dynamic characteristics 
are preserved. It follows from (16) that all nonlinear terms of order 
E would be removed if 

F~ + (A0 - iwk)T0.k = 0, and c . c .  

Representing the unknown functions in the polynomial form 

T0,~ = ~ . . . . . . . . . .  --/l - - I  . . . .  (17) T o , k Z  1 • . . Z n +  1 • . . Z n + i Z  I 

h r l - 2 , 3  . . . .  

and taking into account (5) one obtains the left-hand sides of the 
above written conditions as 

Fk + (Ao - iook)To.~ = 
h r l = 2 , 3  . . . .  

where 

(F~ + izX~To~)z;'... 

inn+ i -  It -- 1,,+ i 
Z n +  1 Z  1 . . . Z n + l ,  and c . c .  

A~" = (ml - nl - 81k)w, + . . .  + (m,,+l - l,+1 - 8,,+1.~)o%+1. 

n~ 1 i n  n + [ - -  11 To reach zeroth coefficient of nonlinear form z~ . • • z,,+l z~ . •. 
- - l n + l  Z,,+t, one must put 

F; 
T~[ k = i A~5 

if only AZ ¢ 0. If A~ = 0 for definite k and cr then the 
corresponding nonlinear term cannot be eliminated from the trans- 
formed equation since it is qualified as a resonance term. 

Finally, the result of transformation is summarized as follows• 

The  Or ig ina l  Set. 

~ =  icoky k +  • 
I~'1~ 2 , 3  . . . .  

o- t l l l  .11 I n n + l ~  II -- l , J+ t ,  
F k y l  • • • J , t + l Y l  • ' • Y,+I, 

k =  l ,  2, 3 (18) 

The T r a n s f o r m a t i o n  o f  Coord ina te s .  

i - - z l  • • • 
I o ' 1 = 2 . 3  . . . .  A ~  

~ 0  

Yk = Zk  - -  • 

...... -t, -I .... + 0 ( •  2) (19) 
Z n + l  Z l  • . . Z n +  1 

The T r a n s f o r m e d  Set. 

zk = io~z~ + • ~ F;~z'; '' . . .  
Io -1=2 ,3  . . . .  

a~:o 

....... -I, -~ .... + O(e 2) (20) 
Z n + I Z  I • . . Z n +  1 

This is the normal form of the system, and the summation in this 
form is much simpler than the one in the original set (18). The 
summation in (20) contains only those terms that give rise to 
resonance while the first term on the right-hand side stands for the 
fast component of the motion. The fast component of the motion 
can be extracted by introducing the complex amplitudes ak(~-) as 

zk = ak('r) exp(ioJkr). (21) 

2 R  
i -  ' I  

/ I l 

11 "-00 I H 

Fig. 1 Schematic diagram of the model 

Substituting (21) into (20) and taking into account the resonance 
condition, A~ = 0, gives 

(tk • 2 F k a , ~ = . . .  m,,~,-I~ -z.+, + O(e2). (22) = o- a n t  I a 1 • • • a n +  I 
h r l = 2 , 3  . . . .  

Note that relationships (19)-(22) have been obtained under no 
concrete assumptions regarding the type of resonance. In order to 
promote our understanding of this method we consider a nonlinear 
coupled two-degree-of-freedom system under parametric excita- 
tion. 

3 A p p l i c a t i o n  

3.1 System Modeling.  In this section we consider a nonlin- 
ear system considered previously by Pilipchuk and Ibrahim (1997). 
The system can be viewed as the simplest model of liquid free 
surface in a moving container interacting with the dynamics of an 
elastic support structure. The sloshing part of the liquid free 
surface can be replaced by an equivalent mechanical model in the 
form of simple pendulums or mass spring systems (Abramson, 
1966). The first asymmetric sloshing mode is the most significant 
which can be modeled by one simple pendulum. Other modes have 
less influence on the dynamic characteristics of the system dynam- 
ics. The mathematical model can be developed by considering a 
simple pendulum suspended in a rigid container. The container is 
supported by four massless rods of length L which are restrained 
by four torsional springs k at the base, as shown in Fig. 1. The 
system is subjected to parametric excitation F~( t ) .  Let M be the 
total mass of the container, including the liquid, and m be the 
equivalent sloshing mass of the first asymmetric mode of the liquid 
free surface. The fluid free surface is modeled as a pendulum of 
mass m and length 1. Following Pilipchuk and Ibrahim (1997), the 
interaction between the pendulum and the tank walls will be 
phenomenologically described by a special potential field of inter- 
action, which is very weak in the region 101 < 00, but grows rapidly 
in the neighborhood of the points 0 = ±00• The corresponding 
force of interaction is 

Fi = O0 (23) 

where b is a positive constant parameter. 
For a small magnitude of the angle 00, i.e., 00 = • ~ w/2, the 

interaction between the pendulum and the tank will be observed in 
a small region of the angle coordinate, where 0 - •. In this region 
the relationships sin 0 = 0 + O(•  ~) and cos 0 = 1 + O(e 2) hold. 
Thus the geometrical nonlinear terms are of orders O(e2), O(•3), 
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at the same time the nonlinearity of the pendulum motion is 
(0/00) 3 = O(1). 

It follows that one can keep the nonlinear terms but linearize the 
rest of the terms in the equations of motion derived by Pilipchuk 
and Ibrahim (1997). As a result, one obtains 

d20 d2qoq_ ( 0 )  3 
1 2 m ~ + l L m ~ T  l m [ g - F y ( t ) ] O + b  Oo = 0  (24) 

d20 d2qo 
ILm ~ + L Z M - ~ - -  LM[g - Fr(t)]q~ + kq~ - O. (25) 

It is convenient to introduce the following dimensionless variables 

~/g, - (26) Xl = 0o'0 X2 = ZOo, r =  ~ t t, fy(r) Vy(t)g 

LmgOo' A = ~ ,  i x = F ,  v=--ool = 3, - 1 

oo~ = k - LMg g 
ML2 , t o ~ = ~ .  (27) 

The parameter v is important for future analysis. It denotes the 
ratio of two local frequencies, i.e., the frequency of the tank toc in 
the absence of the pendulum motion, and the frequency of the 
pendulum oo~ when the tank is standing still. The frequency w~ is 
equivalent to the fluid first antisymmetric sloshing mode and 
depends on the tank geometry and fluid depth (see, for example, 
Abramson, !966). 

Taking into account the notations listed in (26) and (27), the 
equations of motion are written in the matrix form 

M~ + [K + f~(~-)Q]x + ~N(x) = 0 (28) 

where a dot denotes a derivative with respect to the non- 
dimensional time parameter r, x = (x~ x2) r, and 

M =  1 1/(A~) , K =  0 v2/(A/z) ' 

- A  0 

Q =  0 1 
/z 

, N(x) = ( x~ o). 
It is convenient to analyze the problem in terms of the principal 

coordinates of the linear system, when e = 0 andfr ( r )  --- 0, 

M~ + Kx = 0. (29) 

The principal coordinates are determined by solving the eigen- 
value problem 

KH = oo2MH 

where x = H cos cot, H = (a~)h~ and the natural frequencies, o~, are 
given by the solution of the characteristic equation 

det (K - oo2M) = 0 ~ 00 4 - -  - -  

1 + v 2 v 2 

1 - ~  1 - ~  
= 0 .  

The two normal mode frequencies and their eigenvectors are 

1 + v 2 -  ~(1 - v 2 ) 2 + 4 ~ v  2 

2(1 - ~ )  

1 + v 2 +  X/(1-  v2) 2 + 4 / x v  2 

2(1 - ~ )  

Xtzo~ 
h2 = v2 _ oJ------~ hi 

in-phase mode 

h2  = 1/2 - -  O.J--~------~ hi 

out-of-phase mode. 

The principal coordinates q ~, q2 are introduced as 

x(r)  = t l l q l ( r )  + ~I2q2(r) 

w h e r e  

Hk2 ; k = 1, 2 

are normalized vectors satisfying the orthogonality conditions 

HkrM~Is = 8kS (k = 1, 2; j = 1, 2) (34) 

where 3kj is the Kronecker's symbol. 
Now consider the external excitation to be small and harmonic 

with respect to time, i.e., fy(r) = Eq3(r), where q3(r) is the 
solution of the harmonic oscillator with a natural frequency o93. In 
terms of the principal coordinates, the system equations of motion 
may be written in the standard autonomous form 

ql + to'q1 = - e [ ( Q l , q l  + Ql2q2)q3 + Nl(qt,  q2)] 

q2 + ~22q2 = -~[(Q21q, + Qz2q2)q3 + N~(ql, q2)] 

/]3 + ° )~q3  = 0 ( 3 5 )  

where Qkj = H~QI-Ij, Nk = f t~N(ft lql( r )  + H2qdr))" 
This set of equations corresponds to the standard form (1), with 

n = 2 and it is transformed to (3) with 

F i  = - ( Q l l q l  -t- Q12q2)q3 - N l ( q l ,  q2)lai=(l/2iooj)(yj-yj) 

F2 = -(Q21ql + Q22q2)q3 - Nz(ql, q2)lqj=(ll2i~j)(yj-yj) 

F3 = 0. (36) 

Note that the third Eq. (35) is linear and basically is not 
transformed during the future transformation. To illustrate the 
general scheme we consider the model with cubic nonlinearity in 
the neighborhood of three types of resonance conditions. 

4.1 Parametric Excitation of the In-Phase Mode. Con- 
sider the case when the natural frequencies of the system and the 
excitation frequency satisfy the resonance conditions 

Internal resonance, ~o2 = 3~ol, and 

parametric resonance: 003 = 2o91. (37) 

Substituting the expressions of the natural frequencies (32) and 
(33) into ¢o2 = koo~ gives the resonance condition in terms of the 
system parameters v and/x as 

1 + k  4 - /x (1  +k2) 2+ ~[1 + k  4 - / x ( 1  +k2)2] z - 4 k  4 
'1) 2 

2k 2 

{ 1 - k 2 ' ~  2 
(30) 0 < ~ <_ \ 1 + k:} (38) 

Under conditions (37), Eqs. (22) take the form 

E 
d, = ~ [i(9H~,lall 2 + 2n121H~lla212)al -- 3Q,lto,t51a3 

(31) P . . . .  tric 

-- Q12oola2h3 - 3iH~lH21fi~a2] (39) 
Parametric +Internal Internal 

E 
a2 = ~ [i(18H~lH~ltall 2 + H2411a212)a2 

(32) + 9Q21001ala3 - 9iH~ln21a~] (40) 
Parametric + Internal lnternal 

a3 = 0 (41) 

where the type resonance is written under those terms which 
(33) produce the indicated resonance condition. The combined label 

442 / Vol. 66, JUNE 1999 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



"parametric + internal" is the result of cross-coupling due to 
parametric excitation, such as Q~2q2q3 and Q21q~q3 in Eqs. (35). 
In the absence of internal resonance conditions these terms will not 
appear in Eqs. (39) and (40). Introducing the polar coordinate 
transformation 

ae = p~(r) e x p [ i ~ ( r ) ] ;  k = 1, 2, 3 

and substituting these expressions into (39)-(41) gives 

1 3 3 = 0 ,  4~3=0 

(42) 

and, taking p3(r) = P3 =const,  q~3 = 0, 

E 

13t - 24a~ [3Qil~lPlP3 cos 2~p~ 
Parametric 

÷ Q12001p203 cos (q~l - g~2) 
Parametric +Internal 

3 2 + 3Hl|H21plP2 sin (3q~ - (~2)]  
htternal 

E 
= 2 2 2 (~ ~ [9H4~p~ + 2HIiH21P2 + 3allm~p3 sin 2q~ 1 

Parametric 

Q I 2 ~ i  - p2f13 sin (~l  - ~2) - 3H~iHzlp,p~ cos (3~1 - q~)] 
P 1 Internal 

Parametric+Internal 

E 

132 = ~ [9Q~lw,plP3 cos (~, - ~02) 
Parametric + Internal 

3 3 + 9H~lH21Pl sin (3q~l - ~2)] 
Tntenlal 

E 
2 2 2 4 2 ~P~ = 7 ~  [18HllH~pl + H~Ip2 

+ 9Q21oo I PlP3 sin (~p~ - q~2) 
P2 

Parametric+ Internal 

9H~iH21 p~ - - - c o s ( 3 ~ l -  ~2)]. (43) 
P2 

Internal 

Taking into account expressions (21), (42), (2) one can write 

ze = pk(r) exp{i[~okr + q~k(r)]} 

1 1 
qk = ~ (Yk - Yk) = 2&o----7 (zk - zk) + O(~) 

_ oR(r) sin [~o~r + q~(r)] + O(e);  k = 1, 2, 3. 
W.O k 

Recall that the third equation for q3 plays an auxiliary role and is 
not transformed during the transformation. The external force is 
defined now as fy(r) = ~qa(r) = e(P3/W3) sin to3r. 

In the neighborhood of the system equilibrium position the 
nonlinearity plays no significant rote. In order to describe the 
dynamics of the system in close vicinity to the equilibrium, one 
can drop the system nonlinearities. This can be done in terms of 
Eqs. (43) by setting all H~ = 0. In this case the set of equations 
admits an analytical family of solutions, if 

2 ~  =m~- ;  m = 0 ,  1 , 2  . . . .  and 

q~l -  ~P2=n~r;  n = 0 ,  1, 2 . . . . .  (44)  

Substituting these stationary phases into (43) gives the linear set of 
equations 

eP3 
131- 24w7 [ 3 ( - l ) " Q , l p t  + (-1)"Q,202]  

P2  = ( - -  l ) n  E p 3  
8oo---~ Q2,Pl. 

The solution can be written as 

(45) 

where 

Pl = C1 exp(rtr)  + C2 exp(r2r) 

[ C2 1 02 = ( - 1 ) "  EP3 Ci exp(rtr)  + 
8 6 0 ~  Q21  r 7  ~ r2  exp(r2~') (46) 

r , . 2 -  16co 2 ( -  _+ 1 3Q~, J '  (47) 

Both r~ and r2 are real and positive for even integer m and for 
all 0 < > < (( l  - k2)/(1 + k2)) 2, k = (~oJoo,) (see (38)). 
Apparently for odd m, both r~ and r2 are real and negative. These 
two cases correspond to exponentially unstable and stable regimes 
with stationary phases, respectively. In the presence of nonlinear- 
ity, the exponentially growing amplitudes will reach bounded 
values. Figures 2(a) and 2(b) give different time-history records of 
the response amplitudes, as obtained by numerically integrating 
Eqs. (43) for two different values of parametric excitation ampli- 
tude. Both records indicate that the response of the two modes does 
not achieve any steady state. It is also seen that the first mode 
which is parametrically excited transfers energy to the second 
mode through nonlinear coupling. This energy transfer takes place 
when the two modes are in internal resonance. It is obvious that the 
simultaneous presence of internal and parametric resonances is the 
main source of the unsteady state of the system response in the 
present case. If one of these resonance conditions exists alone in 
the absence of the other, one may get a steady-state response. 

4.2 P a r a m e t r i c  E x c i t a t i o n  o f  the O u t - o f - P h a s e  M o d e .  
This case deals with parametric excitation of the second mode 
subject to the resonance conditions: 

Internal resonance: co2 = 3oo~, 

parametric'resonance: 003 = 2~o2. (48) 

Under these conditions Eqs. (22) take the form 

ie 
d, - 2 4 ~  H~l[(9H~lla'12 + 2H~lla212)a' -- 3Hl'H21a~a2] 

Internal 

(49) 

E 

= 8HllH21lall +H~lla21Z)a2 a2 7~m.1~ [i(1 2 2 2 

Q 2 2 0 ) l a 2 a 3  . 3 3 - --9tHllH21al] (50) 
Parametric Internal 

a 3  -~ O,  

Introducing variables {p~(t), ~k(t)} (42) one obtains 

(5l)  

E 
1 3 1 =  3 2 ~ HliH2lPlP2 sin (q~2 - 3q~l) 

E 
= 2 2 2 2 2 ~l ~ - ~  Hll[9HllPl + 2H2102 

-- 3HIIHzlP~P2 cos (qP2 - 3q~j)] 
hlterna[ 

E 
3 3 132 = - 7 ~ 3  [9HllH21Pt sin (3~Pl-  (D2) - -  Q22wlP203 cos 2g~2] 

Inllernal Parametric 
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0.25 

0.20 

0.15 

0.10 

0.05 

If cubic nonlinearities are neglected, these equations are reduced to 
the following form: 

hi = O, ¢1 = 0 

cO22 EQEz 
/~z = 7 2 ~  P2P3 COS 2~2, ~2 = ~ P3 sin 2q~2. 

These equations indicate that the two modes are uncoupled and 
that the second mode accumulates energy due to parametric reso- 
nance. The second-mode amplitude and phase are obtained by 
separation of variables, and are given by the expressions 

Ci [ EQ~2p~ ) 
Pa= s i n ~ 2 '  tanq~2= C2exp t -  ~ - z _  (53) 

where C~ and C2 are constants. In this case the response is 
unimodal, governed mainly by the second-mode response, which 
does not transfer energy to the first mode. Figure 3 shows a sample 
of the time-history record as obtained by numerical integration of 
Eqs. (52). It is seen that the solution for the amplitudes is periodic 
bounded and achieves a steady state. On the other hand the linear 

0.00 solution reveals that the amplitude is unbounded since as z ---~ ~, 
0.00 200.00 400.00 ~2 "--~ rr/2, and P2 ~ ~. 

4.3 "Mixed" P a r a m e t r i c  E x c i t a t i o n .  This case considers 
Fig. 2(a) Excitation amplitude Pa = 0.5, ~a = 0 

parametric excitation of both modes under internal and combina- 
tion parametric resonance conditions of the following form: 

0,50 I I t 

Internal resonance: tOE = 3tel, 

I I  parametric resonance: to3 = tel + to2. 

0,40 / 1 The normal form complex equations are obtained as 

ai  = [2ialH~l(9H~lla112 + 2H~,la212) 
0.30 

- 6iH~lH21a~a2- a12tOlfiEa3] 
Internal Parametric 

0.20 

0.00 I , ~ I ~ t 0 .20  

0.00 200.00 400.00 600.00 
t 

Fig. 2(b) Excitation amplitude Pa = 2.0, ~oa = 0 

Fig. 2 Response time-history records under resonance condit ions ~o2 = 
3a~1, and ~oa = 2~ol for ~1 = 0.81829, ooz = 2.63487, E = 0.53, k = 0.25,/ I ,  = 
0.576, v = 1.50689, Pa = 0.5, ~#a = 0. Initial condlUons: pl = P2 = 0.01, ~1 = 0.10 
~2 = 0.01. 

= ~ H2ip2 18HliH21Pl + ~2 2 2 2 4 2 

0.00 
o.oo 400.00 8oo.oo 12oo.oo 

9H~1H21 p~ ] t - - -  cos (3qh - q~2) + Q22tOlP3 sin 292 
P2 Parametric J Fig. 3 Response time-history record under resonance condit ions a~2 = 

Internal 3(m, and ~o3 = 2ca  for ~ol = 0.81829, ~a = 2.63487, • = 0,53, A = 0.25, p = 
0.576, v = 1.50689, Pa = 2.0, ~a = 0. Initial conditions: pl = p2 = 0.01, ~#1 = 

P3 = 0 ,  q~3 = 0 .  ( 5 2 )  ~o2 = 0 . 0 1 .  
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0.40 

0.30 

0.20 

0.10 

EP2 
P,  - 4 8 w ~  [6H~iH2io~ s i n  (3Sol - ~P2) 

Internal 

+ Ql2oJip3 cos (q~l + ~2)] 
Parametric 

p2 

~ P l  3 2 
/52 = 16to~ [-2HIIH21Pl sin (3qh - q~2) 

Internal 

+ Q21ool03 cos (q~ + ~o2)] 
Parametric 

0.30 i 

2 2 2 ~bl ~ - p ~ t 3  [ lSH4,p?  + 4H,,HzIoiP2 

3 2 
- 6Hi1H210102 cos (3~1 - q~2) + Q12oo~0203 sin (q~l + q~2)] 

Internal Parametric 

p2 

0'04.00- 200.00 400.00 600.00 

t 

Fig. 4(a) R e s p o n s e  t i m e - h i s t o r y  record under resonance c o n d l U o n s  0.20 
oJ2 = 3oJ1, and  oJ3 = ool + oJ2 f o r  ¢O l=  0.81829,  oo2 = 2.63407,  E = 0.53, A = 
0.25, / / .  = 0.576, v = 1.50689, P3 = 2.0, ~o~ = 0, and  In i t ia l  c o n d i t i o n s :  Pl  = 
P2 = 0.01, ~Ol = ~o2 = 0.01. 

0.40 ' I ' i ' { 

0.1 

t t ° 
= : : . r ,  = , o r  ° - - o ,  

i 0.30 _ , 

0,00 L ~ m m m ~ m ~ m J  
0.00 0.05 0.10 0.15 0.20 0.25 

p! 

Q.. 

E 
144oJ~ [-2ia2H~'(18H~Itall2 + H~llazl2) 

+ 18iH~lH21a ~ + 9Q21oojfila3] 
Internal Parametric 

0.10 

0.20 

0.00 
0.00 0.04 0.08 0.12 0.16 

t 

91 

Fig. 4(b) Trajectory of the system on the plane of amplitudes 

Fig. 5(b) Trajectory of the system on the plane of amplitudes 

c~ 2 - 

~3 = 0. (54) 

It is seen that the parametric excitation appears as a cross coupling 
between the two modes, while the internal resonance is a result of 
nonlinear coupling. Introducing the polar coordinates {Ok(t), 
q~k(t)} (42) gives 
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E 2 2 2 4 3 
~2 = 14402o~ [36HHH21PlP2 + 2H2102 

3 3 
- -  18HllH21pl  cos (3qh - q~2) + 9Q2ltolplP3 sin (~l + ~2)] 

Internal Parametric 

P 3 = 0 ,  ~ 3 = 0 .  (55) 

In the absence of internal resonance w2 = 3cot, all terms marked 
as "Internal" are dropped. Figure 4(a) shows the system response 
in the time domain in the presence of internal resonance. The 
response does not achieve a steady state and is nearly quasi- 
periodic. The corresponding trajectory is shown in Fig. 4(b) in the 
plane of amplitudes. Figures 5(a) and 5(b) show the system re- 
sponse in the absence of internal resonance in the time and am- 
plitude domains, respectively. It is seen that the response achieves 
a steady state, as expected. The response in the amplitude domain, 
Fig. 5(b), exhibits a single linear trajectory. It can be seen that in 
both cases the system accumulates energy due to parametric res- 
onance. The internal resonance is responsible for the exchange of 
energy between the two modes (compare the amplitude planes 
shown in Figs. 4(b) and 5(b)). 

5 Conclusions  

The method of Lie group operators has been presented in a form 
suitable for the analysis of the response of nonlinear dynamical 
systems. The key ingredient of the method is the Hausdorff for- 
mula, which is implicitly reproduced in the averaging techniques. 
The method has been implemented to determine the response of 
coupled modes of a nonlinear system to parametric excitation in 
the presence of internal resonance. The system simulates the 
interaction between the first asymmetric sloshing mode with an 
elastic support structure. The interaction is modeled based on a 
phenomenological concept by introducing a power function with a 
higher exponent. The equations of motion are reduced to their 
simplest (normal) form by means of single-parameter Lie group 
operators. Based on the normal form equations, different kinds of 
resonance regimes are considered under parametric excitation. In 
the neighborhood of 1:3 internal resonance, it is shown that the 
energy of the parametrically excited in-phase mode can regularly 
(or nonregularly) oscillate between the two modes due to internal 
resonance between the modes. If the out-of-phase mode is para- 
metrically excited, its energy is localized without transfer to the 
other mode, even under 1:3 internal resonance. The results re- 
ported in this paper have also been obtained using the method of 
multiple scales by Ibrahim and El-Sayad (1998). Furthermore, the 
analysis can be extended to dynamical systems with other different 
weak conservative and nonconservative nonlinearities. 
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A P P E N D I X  

Hausdorff ' s  Formula  

The mathematical formulation presented in Section 2 is based 
on the Hausdorff formula. The derivation of this formula is hard to 
find in the Western literature. The purpose of this appendix is to 
present a simple justification of this formula. This justification 
cannot be considered as a rigorous mathematical proof. 

Consider the Caushy problem for the vector-function y(t): j, = 
f(y), yl,=0 = yO. Using the monomial Lie group operator, A = 
f(y)(0/0y), the equation is rewritten as f¢ = Ay, and its formal 
solution can be represented in the exponential form 

y = e rAy 0. (56) 

Here the operator A must act on y0 components, i.e., A = f(y°)(0/ 
0y°). 

Similarly, one has the exponential form of transformation y 
z depending on parameter e: 

z = e ~Vy. (57) 

For the Cauchy problem in the new coordinates ~ = Bz, zl,=o = 
z ° one can write a formal solution as 

z = e'nz ° (58) 

Now consider two different ways of transformating yO ~ z(t) as 
indicated in Fig. 6. Taking into account (56)-(58), these transfor- 
mations can be written in the form 

z : e W y  = e~Uetay °, and z : e tnz  ° : etBe'Uy °, 

Equating the right-hand sides, and recalling that y0 is an arbitrary 
initial point, gives 

e We'a = e tBe ~U (59) 

when E = 0 the transformation becomes identical and the operator 
of transformed system coincides with the original one: A = B. For 
small E one has 

d?. A = B + ~=o~ + O(eZ).  (60) 

Now consider expression (59) with the time parameter t equal to E. 
Expanding the exponents in power series, in leading-order terms 
with respect to e, one obtains 

(t) 

z ° = exp (~U) yO 

i z = exp (~U) y \ 
~ z = e x p ( t B )  z ° 

(~) 

Fig. 6 Two different ways of transformating yO ~_~ z ( t )  
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A + EUA = B +  EBU. 

Substituting (60) into the last expression gives 

d B  
dE [B, U] (61) 

where [B, U] = B U  - UB is the commutator. 
This is the Hausdorff equation for the operator of the trans- 

formed system. The equation is supposed to be solved under the 
initial condition Bl,=0 = A. A solution of the Caushy problem (61) 
can be found in the power series form 

E 2 

B = A +  E[A, U] + ~ [ [ A ,  U], U] + . . . .  

This expression is called the Hausdorff formula. 
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Interaction Between Slow and 
Fast Oscillations in an Infinite 
Degree-of-Freedom Linear 
System Coupled to a Nonlinear 
Subsystem: Theory and 
Experiment 
The interaction dynamics of a cantilever linear beam coupled to a nonlinear pendulum, 
a prototype for linear/nonlinear coupled structures of infinite degrees-of-freedom, has 
been studied analytically and experimentally. The spatio-temporal characteristics of the 
dynamics is analyzed by using tools from geometric singular perturbation theory and 
proper orthogonal decompositions. Over a wide range of coupling between the linear 
beam and the nonlinear pendulum, the coupled dynamics is dominated by three proper 
orthogonal (PO) modes. The first two dominant PO modes stem from those characterizing 
the reduced slow free dynamics of the stiff~soft (weakly coupled) system. The third mode 
appears in all interactions and stems from the reduced fast free dynamics. The interaction 
creates periodic and quasi-periodic motions that reduce dramatically the forced resonant 
dynamics in the linear substructure. These regular motions are characterized by four PO 
modes. The irregular interaction dynamics consists of low-dimensional and high- 
dimensional chaotic motions characterized by three PO modes and six to seven PO modes, 
respectively. Experimental tests are also carried out and there is satisfacto~ agreement 
with theoretical predictions. 

1 Introduction 

Many mechanical components in naval/marine, aerospace, and 
automobile engineering consist of linear or weakly nonlinear con- 
tinuous substructures such as rods and plates coupled to nonlinear 
oscillators. Examples of such structures are ship and sea cranes, 
coupled cable structures supporting rigid bodies, and tethered 
spacecrafts. In applications, the linear substructure is designed to 
support the nonlinear substructure, or vice versa. A basic issue 
regarding the dynamics of a linear/nonlinear coupled structure is 
the stability of the motions of its substructures; in particular, one 
needs to examine the interaction of the linear and nonlinear mo- 
tions by reducing the dynamics on appropriate low dimensional 
invariant manifolds. 

The qualitative dynamics of a linear/nonlinear coupled structure 
depends on the ratio of the nonlinear substructure mass to that of 
the linear substructure, and on the ratio of the fundamental fre- 
quency of the nonlinear substructure to that of the linear one 
(Georgiou, 1993; Georgiou et al., 1998a). When the coupling 
between the linear and nonlinear substructures is small, the linear 
substructure generates high-frequency oscillations (fast dynamics), 
whereas the nonlinear one low-frequency oscillations (slow dy- 
namics). In this case, one obtains a stiff/soft coupled structure, 
Such a stiff/soft coupled structure can be viewed (Georgiou, 1993; 
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Georgiou et HI., 1998a; Georgiou and Schwartz, 1997a) as a 
singular perturbation of the soft substructure, and ideas from 
geometric singular perturbations (Fenichel, 1979; Knobloch and 
Aulbach, 1984; Nipp, 1985; Jones, 1995) and invariant manifolds 
(Wiggins, 1990; Scheck, 1990; Boothby, 1985) can be combined 
to study systematically the dynamics. The pivotal feature of the 
singular perturbation/invariant manifold approach in solid me- 
chanics (Georgiou, 1993; Georgiou et al., 1996a) is the natural 
introduction of slow and fast invariant manifolds of motion in the 
phase space of the dynamics. Physically, for sufficiently weak 
substructure coupling the existence of a slow (fast) invariant 
manifold means that there are motions during which the soft (stiff) 
substructure of the coupled system behaves qualitatively the same 
as the uncoupled soft (stiff) substructure. In essence, the stiff (soft) 
substructure is enslaved by the soft (stiff) one. If dissipation is 
present, the slow manifold is attracting (exponentially stable), and 
the long-term motions of the coupled system are dominated by 
motions very close to those of the uncoupled soft substructure. 
Moreover, one can study the dynamics of a linear/nonlinear cou- 
pled structure as the mass and frequency ratios of the correspond- 
ing stiff/soft substructures vary (Georgiou et al., 1998a). As sub- 
structure coupling increases, instabilities emanating transversely 
from the invariant manifolds of the stiff/soft system render the 
dynamics complex, in the sense that many degrees-of-freedom are 
activated. In this case one obtains interaction between slow and 
fast waves rather than almost decoupled slow and fast dynamics. 
This has been observed in previous works where numerical studies 
of the dynamics of coupled linear/nonlinear systems were carried 
out (Georgiou et al., 1998a, 1996a; Georgiou and Schwartz, 
1999a). 

The singular perturbation/invariant manifold approach was 
combined (Georgiou and Schwartz, 1999a) with ideas form proper 
orthogonal projections (Sirovich, 1987) to study how the qualita- 
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I ~ L~ ~1 

Fig. 1 Schematic of the beam/pendulum configuration 

tive dynamics change as the coupling in a soft/stiff structure is 
increased. The system studied in (Georgiou and Schwartz, 1996a) 
was a linear viscoelastic rod coupled to a pendulum. The pendulum 
was the soft substructure, and was directly forced. We found that 
the proper orthogonal decomposition of spatio/temporal numerical 
solutions extracted the spatial normal modes of the coupled sys- 
tem. Furthermore, abrupt changes from periodic motions to chaos 
occurred (Georgiou and Schwartz, 1999a), similar to those found 
in (Schwartz and Georgiou, 1998). The number of proper orthog- 
onal modes required to study the complicated motion produced by 
the abrupt transition from periodicity to chaos was larger than the 
number of degrees-of-freedom supporting the periodic motion 
(Georgiou and Schwartz, 1999a). Preliminary general results show 
why singularly perturbed systems which exhibit slaving between 
degrees-of-freedom have fewer acting PO modes (Schwartz and 
Georgiou, 1998). 

In this paper we apply the singular perturbation/proper orthog- 
onal decomposition methodology (Georgiou and Schwartz, 1999a) 
to study the interaction of forced fast oscillations and unforced 
slow oscillations in a coupled structure that consists of a linear 
viscoelastic beam supporting at its tip a nonlinear pendulum. Our 
objective is to understand the nature of the interaction of fast/slow 
dynamics of a system representative of more practical structures. 
Furthermore, we perform experiments to validate theoretical re- 
sults, and show that proper orthogonal projections of numerical 
and experimental data extract correctly the spatial modes of such 
coupled structures. 

2 The Beam/Pendu l um System 

Figure 1 depicts a coupled linear/nonlinear structure consisting 
of a cantilever linear viscoelastic beam coupled to a nonlinear 
pendulum oscillator. The coupled structure is constrained to move 
only in the plane defined by the unit vectors ~ ,  ~ .  Let 0 and v 
denote, respectively, the displacement of the pendulum and the 
displacement field for the beam. The pendulum is free to rotate in 
the plane defined by ~ ,  and 8> The length, cross section, mass 
density, modulus of elasticity, and coefficient of viscous damping 
of the beam are denoted by L~,, As, p~,, Eb, L,, 8~,. The length, 
mass, and coefficient of viscous damping for the pendulum are 
denoted by Lp, Mp, 8 v. The frequency of the uncoupled pendulum 
is given by %] = g/L v, whereas the fundamental frequency of the 
uncoupled beam is given by oo~ = K~E~Ib/L~4Abpt,. We introduce 
the following dimensionless parameters: space ~ = x/Lb, time r = 
o%t, beam displacement V = v/Lp, distributed force F = f/Apg; 
mass ratio 13 = Mp/At, pbLb, frequency ratio /x = oJv/wl; and 
damping factors for the beam and pendulum: 2~b = 8blbK~/ 
oolApLb 4, 2~1, = Ct , /~pMp,  respectively. 

The stable and unstable equilibrium configurations of the un- 
forced coupled system are given by 

C: 6I?(~) = 1.L2/3/(~(~-  3 ) ~  2 0 = 0, ( l a )  

S_+l: 69(~) = /*z/3K4(~-- 3)~ 2, 0 = _+rr. ( lb )  

Let W = V - I3" denote the displacement of the beam with respect 
to the static stable equilibrium C. Then the motion of the beam/ 
pendulum system is described by the following system of coupled 
equations: 

tz2K14gc(f, r) + weee~(f, r) + 2K~Weeee(f, r) 

= ~2K41F(~, T), (2a) 

O(r) + [1 + Wa(r)] sin (O(r)) + 2g~,0(r) = 0, (2b) 

where the term l;l?a(r) ~ W (~ = 1, r) denotes the acceleration 
of the beam tip, and the constant K~ is the first root of the 
well-known equation 

cosh (K,) + cos ( ,q)  + 1 = 0 (3) 

that determines the natural frequencies of the uncoupled cantilever 
beam. The boundary conditions are 

w ( ~ = O , r ) = O ,  we(~= O, r) = O, 

W~ (~ = l ,  r) = O, (4a) 

Wet e (~ = 1, r) + /x2/3K4[1 - T(r) cos (0(r))] = 0 (4b) 

where the term T(r) =- oZ(r) + [1 + g?a(r)] COS (O(r)) denotes 
the normalized tension in the pendulum arm. 

The coupling between the beam and pendulum is nonlinear 
parametric and appears in the equations of motion of the pendulum 
(2b) and the natural boundary conditions of the beam (4b). Note 
that the natural frequency of the uncoupled pendulum and the 
fundamental natural frequency of the uncoupled beam are normal- 
ized at wp = I, and o) I = 1//*, respectively. 

We are interested in analyzing the interaction dynamics between 
the beam and the pendulum substructures for various levels of 
coupling. Clearly, for fixed mass ratio/3, the strength of coupling 
depends on only the frequency ratio/, .  

3 The Reduced Dynamics  of  the Stiff/Soft System 

To understand the mechanisms causing the interaction dynam- 
ics, we first need to understand the global geometry of the reduced 
dynamics of the system with weak coupling. For fixed mass ratio 
/3, the beam/pendulum system is weakly coupled, also referred to 
as stiff/soft, if the frequency ratio/., is sufficiently small. The beam 
is the stiff substructure and generates high-frequency oscillations, 
or fast dynamics, whereas the pendulum is the soft substructure 
and generates low-frequency oscillations, or slow dynamics. For 
fixed pendulum parameters, as/x -+ 0, the beam becomes increas- 
ingly stiff. In fact, at /x = 0, the coupled system reduces to the 
uncoupled pendulum 

0 + sin (0) + 2~p0 = 0. (5) 

The limiting process reveals two important properties. First, the 
degrees-of-freedom drop from infinity to just one; and second, the 
coupled system, for sufficiently small /x, can be viewed as a 
singular perturbation of the nonlinear soft subsystem. By defini- 
tion, a dynamical system is singularly perturbed when the pertur- 
bation increases its degrees-of-freedom. 

The above properties show that increase and reduction of the 
dimension of dynamics should be central themes in developing 
techniques to understand basic issues, such as interactions among 
substructures, in dynamics of coupled systems. A systematic 
analytic/computational technique based on singular perturbations 
and invariant manifolds of motion has been developed and applied 
to mechanical and structural systems to study the reduced dynam- 
ics (Georgiou, 1993; Georgiou et al., 1998a). Details for the 
singular perturbation approach of the beam/pendulum problem are 
given in the Appendix and in Georgiou and Schwartz (1999a). 

For the weakly coupled system, we have the following concrete 
results: In phase space of the unforced dissipative system, there 
exists an invariant manifold. The manifold is two-dimensional, 
global, and attracting. It contains the purely slow free motions of 
the system. For any motion residing on this manifold, the state of 
the beam is given by 
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(w(~, r), W(~, ~)) 

= ( ~ ( ~ ,  0(~'), 0(~-)), ~ ( ~ ,  0(~'), 0(~))) (6) 

where Y~, i = 1, 2 are O(/x ~) and derived in the Appendix. 
According to Eq. (6), the beam slow dynamics are slaved to those 
of the pendulum. The pendulum slow dynamics, referred to as the 
master slow dynamics, is governed by an oscillator which is a 
regular perturbation in /x of the uncoupled pendulum (Georgiou 
and Schwartz, 1996b). 

There exists a stable infinite-dimensional linear manifold pass- 
ing through the stable equilibrium C. The manifold is given by 

(0, 0) = (0, 0). (7) 

There exists an unstable infinite-dimensional linear manifold pass- 
ing through the unstable equilibrium S_. 1. The manifold is given by 

(0, 0) = (±~r, 0). (8) 

These manifolds are very important since they contain motions 
which are small perturbations of the motions of the uncoupled 
substructures. They stem from analogous invariant manifolds of 
the conservative system. The manifolds become time dependent 
for the forced system, 

We are interested in analyzing the interaction dynamics. To this 
end, we will determine and analyze the amplitude and shapes of 
optimum degrees-of-freedom. In particular, we will analyze the 
acceleration field obtained from the numerical integration of the 
equations of motion in singular perturbation formulation and ex- 
periments with a physical prototype for the beam/pendulum struc- 
ture, In doing so, we keep in mind the fundamental geometric 
structure of the reduced dynamics of the stiff/soft system. 

4 Proper Orthogonal Decomposition Analysis for Cou- 
pled Vector Fields 

We will determine optimum degrees-of-freedom for the coupled 
position and acceleration fields: 

@(~, r) = [W(~, ~), O(r)], ..~(~, z) = [~ (~ ,  ~), O(r)]. (9) 

To this end, we defined the following inner products: 

L 
1 

([g~(~), g,] ,  [fb(~),ff])  = gb(~)ff(~)d ~ + gVff, (10a) 

L 
1 

(gb(,~), fb(~:)) = gb(,~)fb(~)d~. (lOb) 

All functions have the required smoothness for all mathematical 
operations to be well defined. 

To determine independent spatio-temporal characteristics of a 
vector field, say the acceleration field, we expand it as follows: 

K 

g(~, .) = Era(C, ~-), 0(~-)]  = 2 ~(.) #~[.~(~), .~]. 
k = l  

(11) 

K 

m(~, ~-)= ~ .~(.)]~Yf(O. (121 
k = l  

The function of time otk(T) and the function of space %/~[(Pkb(~), 
~k p] represent the amplitude dynamics and the shape of the kth PO 
mode. The scalar Xk ~ 0 is the fraction of the energy, defined by 
Eq. (16), of the vector field contained in this mode. The amplitudes 
a k and the scalars A ~ are the eigenfunctions and eigenvalues of the 
following eigenproblem: 

1 I 7'2 
T2 - T1 C(~-, s)o~k(s)ds = Akak('r), (13) 

Tt 

where CO, s) --- f ~ ff:( ~, ~') W( ~, s)d~ + O('r)O(s) is the temporal 
autocorrelation operator over the time window [Tt, T2]. We have 
0 -< X~ since CO', s) = C(s, ~1. 

The spatial distribution, or shape, of the kth mode can be 
determined by the following projection: 

* k ( ~ )  --- ,,/X~[ k(~), *~] - r2 - T, j '~k(T) 
Fi 

x [fg(~, r), O(r)]dr. (14) 

The terms ~ q~(~) and V : ~  dpf represent, respectively, the 
beam and pendulum spatial components of the mode. The norms of 
~k(~) and and qb~(~) are defined by using the inner products (10a) 
and (10b), respectively. 

The normalized beam component of the ruth mode is defined by 

b ^,, ~,,,(~) 
'~"(~) - I1~ , (~ )1 [  ' (151 

The "energy" of the acceleration field over the time window ITs, 
T2] is defined by 

E -  T 2 -  Ti C(~', ~')d~" (161 
i 

and should not be confused with mechanical energy, since it is a 
measure of the second-order fluctuation of the system. It can be 
shown that E = ~kK=l ~k  : 1. Therefore, 0 --< Ak --< 1; Clearly, 
the eigenvalues are energy fractions; we ordered them as follows: 
0 -~ , . . -~  A,,, -~. A m - i  ~ . . . ~ A2  ~ ) t t  .~- l .  Moreover, we say 
that mode (P,, is more energetic than mode ~ , ,  if a ,  > a,,,. 

A spatio-temporal record of data, numerical or experimental, 
will be characterized by the sequence { Ak, ak(r), ~k(~) } ~2~. The 
set ~ ------ {Ak}~2f will be referred to as the proper orthogonal 
decomposition (POD) spectrum. 

Equation (13) guarantees that the temporal amplitudes as well as 
the companion spatial modes are orthonormal. Furthermore, the 
expansion is optimal in the sense that the amount of energy 
contained in n modes is equal or larger to that contained in the first 
n modes of any other basis expansion. For this reason, the expan- 
sion is called POD, or K-L expansion (Sirovich, 1987). In solid 
mechanics, it has been applied to study aspects of the dynamics of 
vibro-impact problems (Cusumano et al., 1994). The POD method 
has been combined with geometric singular perturbations in (Geor- 
giou and Schwartz, 1999a). Recently the POD method has been 
applied and developed further to analyze the finite element dy- 
namics of geometrically exact nonlinear continua (Georgiou et al., 
1997b; Georgiou and Sansour, 1998b). 

We will apply the POD technique to identify the optimum 
degrees-of-freedom in the dynamics of the beam/pendulum cou- 
pled structure. We analyze sets of spatio-temporal data over the 
space-time domain [0, 1] × [T~, T2]. The space-time domain is 
discretized into N and M points, respectively: 1 = NAt, T2 - 
T~ = MAr ,  where A~ and Ar are space and time increments, 
respectively. We integrate the equations of motion in singular 
perturbation formulation (24) for N = 32 beam modes by using 
the Gear method. The space interval [0, 1] is discretized into 32 
equispaced points, and including the pendulum, we have 33 points 
in space. 

5 Experimental Procedure 
Now we describe the experimental procedure to obtain spatio- 

temporal data. A prototype for linear/nonlinear coupled structures 
was built and tested. Figure 2(a) shows a beam/pendulum exper- 
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Fig. 2(a) 

Fig. 2(b) 

Fig. 2 The beam/pendulum physical system: (a) side view, (b) top view 
showing arrangement of the seven aecelerometers 

imental setup. The beam substructure consists of two identical 
beams that are coupled at their tips by a rigid bar about which a 
pendulum can rotate freely. The length, width, and thickness of the 
beam are Lb = 660.40 ram, D~ = 25.40 ram, H~ = 3.175 ram, 
respectively. In the experiment, we vary the strength of the cou- 
pling between the beam and the pendulum by varying the pendu- 
lum length or the pendulum mass. In particular, the length of the 
pendulum is varied from 50.80 mm to 292.10 mm to cause vari- 
ation in/x  from 0.419 to 0.175, respectively. 

For fixed coupling parameters (p~,/3), the beam/pendulum cou- 
pled system was forced by applying a concentrated harmonic 

force, F = P cos (At), generated by a shaker with sensitivity 
54.174 mV/(pounds of force) at x = 25.40 mm (~ = 1/26)^away 
from the clamped end of the beam. The forcing frequency ~2 was 
varied in an interval containing the fundamental frequency of the 
coupled beam, measured at ~ = 28.525 rad/s. Seven acceler- 
ometers, see Fig. 2(b), were attached at the locations x~ = 116.40 
mm, x2 = 205.40 ram, x~ = 293.40 mm, x4 = 382.40 mm, 
x5 = 471.40 ram, x~ = 559.40 mm, x7 = 645.40 ram, to collect 
spatio-temporal data for the acceleration field of the beam and 
derive PO modes similar to those derived from numerical exper- 
iments. The corresponding sensitivities, measured in mV/g, of the 
accelerometers are sj = 9.84, s2 = 9.72, s3 = 96.60, s4 = 
98.10, s5 = 9.80, s~ = 10.15, s7 = 10.12, where g denotes the 
acceleration of gravity. 

Several experiments were performed for the following values of 
coupling (/x,/3): (0.175, 0.1), (0.183, 0.1), (0.4189, 0.1), (0.2324, 
0.05), (0.211, 1.0). The acceleration of the beam during transient, 
periodic, quasi-periodic, and chaotic motions was measured and 
recorded. 

6 On the Nature of the Interaction Dynamics 
During pure slow or fast motions, that is, when the dynamics are 

restricted to the invariant manifolds, there cannot be interaction 
between the beam and pendulum substructures. To the contrary, 
during slow motions the beam substructure is slaved to the pen- 
dulum substructure. This implies that the motion of the beam does 
not contain the natural frequency of the beam but frequencies 
related to the frequency of the pendulum. We expect interactions 
in the stiff/soft system, where the attracting fast and slow invariant 
manifolds are global, during motions initiated a finite distance 
away from the invariant manifolds. Furthermore, we expect inter- 
actions during motions initiated in the neighborhood of unstable 
regions of the invariant manifolds. The mass ratio and the fre- 
quency ratio, the coupling parameters, control the energy level of 
the transverse instabilities of the invariant manifolds. 

6.1 The Spatial Signature of the Slow Dynamics. In this 
section, we determine the PO modes of the acceleration field of 
free motions of the coupled system with small coupling as pre- 
dicted by the equations of motion and measured from experiments. 
We fix the coupling parameters at (/x,/3) = (0.175, 0.1). First, we 
analyze the acceleration field as predicted by the equations of 
motion for dissipation (~b, ~,) = (0.005, 0.01). We analyze 
global motions initiated near the slow invariant manifold. A global 
motion with initial conditions (0, 0) = (1.75, 0.0) for the pendulum 
is initiated near the slow invariant manifold if the initial conditions 
for the beam are computed from Eq. (6). The POD analysis for the 
coupled acceleration field for this motion, the transients have been 
removed, gives a spectrum that consists of three points: b ° -- {A~, 
A2, A3}. The sh~_e of the first mode is characterized by x/X~tl~rl 
= O(/3/x2), ~v/A~lqsf[ = O(1). Thus, most of the energy of the 
dominant mode is contained in the pendulum substructure. The 
shapes of the other two modes are characterized by: ~,,,,[JdP,~i,I = 
O(1), M~,,,[qb~,[ = O(/3~2), m = 2, 3. Thus, most of the 
remaining energy is contained in the beam substructure. Since in 
the experiments with the physical system, we measure only the 
acceleration of the beam, we exclude the pendulum acceleration 
dynamics and analyze the acceleration field of the beam only. We 
find that its POD spectrum consists of two points: S ° = {3'j, 3'2}. 
Now we have the following computational result: 

+~'(~) : +~(~) = .~iYi~(~), ^ ~ = O3(tj) \ ~/~2Y 2b(~), (17a) 

vl('r) = c~2(q'), v2('r) = c~3(7). (17b) 

The above equation reveals that the POD analysis of the beam 
acceleration field gives all temporal information for the coupled 
acceleration field but the dynamics related to pendulum substruc- 
ture. The spatial information is partial. Moreover, the shapes of the 
beam components of the first two modes of the coupled acceler- 
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ation not only do coincide but are identical to the scaled dominant 
PO mode of the beam acceleration field. This is shown in Fig. 3(a) 
depicting the beam components of the three PO modes. 

A similar experiment was performed with the physical system 
with tx = 0.175, achieved by fixing the pendulum length Lp = 
292.10 mm. Figure 3(b) shows the spatio-temporal behavior of the 
beam acceleration, as recorded by the seven accelerometers for a 
motion with initial conditions (0, 0) = (1.75, 0.0), (W, W) = 
(0.0, 0.0). Compared to the motion of the numerical experiment 
discussed above, this motion is not initiated near the slow invariant 
manifold. However, if an attracting slow invariant manifold exists, 
the motion after an initial time interval will come close to the slow 
invariant manifold. Physically, the motion will be dominated by an 
underlining slow motion. Figure 3(c) reveals that the shape of the 
dominant PO mode of this record of experimental data is almost 
identical to that extracted from a record of numerical data for a 
motion predicted by the equations of motion. 

We have computed the PO modes as a function of the pendulum 
amplitude, or energy level, for motions initiated near the slow 
invariant manifold. To keep the motions for a sufficiently long 
time close to motions of the conservative system, we have set the 
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Fig. 3 (a) Shapes of the beam components of the PO modes of the 
coupled acceleration field and the beam acceleration field (theory), (b) 
spatio-temporal measurement of the beam acceleration of the physical 
system shown in Fig. 2, (c) Shapes of PO modes of the beam acceleration 
f ield (theory-experiment). 
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Fig. 4 (a) The single PO mode of the beam slow dynamics Is identical to 
the beam PO modes of a coupled motion not residing on the slow 
invariant manifold, (b) projection of the slow dynamics onto the plane 
~1 - a2, (c) projection of the slow dynamics onto the plane ~1 - WA. 

dissipation of the pendulum ~, = 0. Since the dependence of the 
slow dynamics on the beam dissipation fib is O(~/x3), the slow 
dynamics are close to the dynamics of the conservative system for 
a sufficiently long time. The conservative system possesses a 
global slow invariant manifold (Georgiou and Schwartz, 1999b). 
The numerical experiment reveals that a generic motion in the 
neighborhood of the slow manifold is governed by three PO modes 
if 0t < 0 and by two PO modes if 0 < 0r. For coupling strength 
(/x,/3) = (0.175, 0.1), we have 0.5 < 0~ < 1.0. The shapes of the 
modes do not change with the energy level. 

Now for weak coupling, there exists a global slow invariant 
manifold. For the unforced system, it is two-dimensional and is the 
geometric realization in phase space of a single degree-of-freedom. 
We lower the coupling at/x = 0.025, considered to be weak, and 
initiate a motion on the slow invariant manifold. The POD analysis 
of the beam acceleration gives a POD spectrum with a single point: 

= {7}, with Y = 1.0. Thus, all energy is contained in a single 
mode. We have the following decomposition: 

gO(g, r) = v(r)Yb(~). (18) 

Figure 4(a) reveals that this single PO mode is identical to the 
beam components of the first and second PO modes for coupling 
/x = 0.175. Note that at this level of coupling there is interaction. 

The above result seems to agree with the expectation that the 
dynamics restricted to a two-dimensional invariant manifold 
should be characterized by a single PO mode. However, the POD 
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Fig. 5 The beam component of the first fast PO mode 

analysis of the coupled acceleration field gives a POD spectrum 
with two points: 5° = {Am, A:}. So we have the following decom- 
position: 

+ ~ 2 ( r ) ~ 2 [ q b ~ ( ~ ) ,  qb;]. (19) 

Just as in the case of small coupling, we have the following 
remarkable results: First, the first PO mode is dominated by the 
pendulum whereas the second one by the beam. Second, the shapes 
of the beam components of two PO modes not only do coincide but 
also are identical to the single PO mode, that is, we have the 
computational result 

(~b(~) = +b(~) = yb(~),  (20a) 

v(r) = o~2(r). ( 2 0 b )  

A motion on the two-dimensional manifold is characterized by two 
PO modes because the slaved beam dynamics have basic fre- 
quency twice that of the master slow dynamics of the pendulum: 
~oe = 2~o v (Georgiou and Schwartz, 1999b). Numerical experi- 
ments reveal that the long-time dynamics of local and global 
motions initiated near the slow invariant manifold possess two PO 
modes satisfying relation (20). This verifies the singular perturba- 
tion result that, for weak coupling, the slow invariant manifold is 
global and attracting. Figure 4(b) shows the projection of the 
dynamics on the slow manifold onto the plane spanned by the 
amplitudes of the two PO modes. Figure 4(c) reveals that this 
trajectory is topologically the same as the trajectory from the 
projection of the dynamics onto the configuration plane • t - WA. 
Equation (20a) will be referred to as the spatial signature of the 
free slow dynamics. It does underline the spatial characteristics of 
the free interaction dynamics at small coupling. 

The fast invariant manifolds are linear. The best way to excite a 
fast PO mode is to force the beam at one of its natural frequencies. 
In particular, any motion initiated on the fast manifold and forced 
with ~ = wj is characterized by a single PO mode with shape 
identical to that of yb(~). And any motion initiated on the fast 
manifold and forced at ~ = w2 is characterized by a single PO 
mode with shape identical to that of ~b3b(~), the beam component 
of the third PO mode supporting free interaction motions in the 
neighborhood of the slow invariant manifold for small coupling. It 
turns out that this mode has shape similar to that of the second PO 
mode computed from acceleration measurements in the physical 
system. Figure 5 shows good agreement between theory and ex- 
periment. Since this mode is identified in the free interaction 
dynamics, it is called the dominant fast PO mode. 

6.2 The Temporal Signature of the Slow Dynamics. We 
now examine the amplitude of the dominant mode of the acceler- 
ation of the beam as predicted by theory and measured in the 
experiment for the system with coupling (~,/3) = (0.175, 0.1). The 
time scale of numerical and experimental time series is renormal- 
ized such that the beam frequency is fh = 1 and the pendulum 
frequency is fp = tx. The frequency spectrum of the amplitude of 

the dominant mode derived from the spatio-temporal measure- 
ments of the beam acceleration is computed to be 9~ xpe~ = { 2, 4, 
4.9485, 6.1067, 6.9489 } × fiexo~r wherefv~xpor = 0.2090 whereas 
that predicted by theory is given by 9', h~°r = { 2, 4, 5.5, 6, 7.5 } × 
f~l .... where fp U'~°r = 0.195265. We have fv ~°er ~ fv'he°". Further- 
more, in both spectra the dominant harmonic is at the fast fre- 
quency and lies between 4wp and 6oJ1,. The experiment verifies the 
existence of the slow invariant manifold predicted by singular 
perturbation theory. This is so since as we shall see below both 
spectra 9~ xv~r and 9tl  he°r bear the frequency or temporal signature of 
the free slow dynamics. What is important is the fact that this has 
been accomplished by applying the POD method to experimental 
and numerical data. 

Motivated by the fact that the spectrum of the dominant mode 
above contains frequencies close to multiples of the slow and fast 
frequencies, we have computed the frequency spectra of the three 
PO modes supporting the coupled acceleration field for the system 
with (IX,/3) = (0.175, 0.1) and zero dissipation in the pendulum 
substructure. We have the following computational result: 

91 = {%, 3OOp + al, 5o% + a2 . . . . .  }, (21a) 

92 = {2COp, 4 %  + bl, 6o9p + b 2 . . . . .  }, (21b) 

93 = {2%, 4~Op + el, 6Wp + c2 . . . . .  }. (21c) 

The numerical experiments reveal the existence of a critical pen- 
dulum amplitude, 1.55 < 0~ < 1.75, or energy level. When the 
critical amplitude is crossed, the detuning factors a,,,, b,,,, c,,, above 
change sign. In particular, near this critical motion, we have a j = 
a2 = b~ = b2 = c~ = c2 = 0; and the dominant harmonics of 
the three modes are at oJl,, 6wp, and 8w,, respectively. Near the 
critical energy level, the spectra 9~ and ~2 are characterized by 
~o~ = 6wj,. Since for any motion on the slow manifold the beam 
basic frequency ~ob is twice the pendulum basic frequency wp, the 
above relation yields o9~ = 3wb. Thus, we have a 3:1 internal 
resonance between the fast dynamics and the slaved slow beam 
dynamics. This resonance is global since it involves a global 
motion. 

A motion on the global slow invariant manifold is characterized 
by two PO modes. For IX = 0.025, we have the following com- 
putational and analytic result for a motion on the slow invariant 
manifold: The amplitude of the dominant PO mode is character- 
ized by the spectrum: 9 , ,  = {o%, 3o%, 5oop . . . .  }, to be referred 
to as the master slow spectrum, whereas the spectrum of the slaved 
amplitude is given by 9s  = {2o%, 4oop, 6%, . . . .  }, to be referred 
to as the slaved slow spectrum. We call the set { 9 ,  9 , ,  } the 
temporal or frequency signature of the uncoupled free slow dy- 
namics. From Eq. (21) we see that interaction between slow and 
fast free dynamics manifests itself as an interweaving of the master 
and slaved slow spectra. Moreover, additional rational multiples of 
the slow frequency are generated. Here we see how knowledge of 
the slow invariant manifold guides us to gain fundamental under- 
standing of the interaction dynamics. In analyzing the PO modes of 
the interaction dynamics, we will look for the spatial and temporal 
signatures of the free slow dynamics. 

The POD method has identified successfully the spatio-temporal 
characteristics of the motions restricted to the two-dimensional 
slow invariant manifold. Moreover, it reveals that a PO mode is 
not sufficient to describe the coupled dynamics on a two- 
dimensional invariant manifold. Thus, it is not always true that a 
PO mode represents completely a degree-of-freedom, that is, an 
oscillator. Here we add that the position and acceleration fields 
give most of the time PO modes with identical shapes. 

7 Interactions in Regular Motions 
Interactions between slow and fast dynamics can occur when- 

ever a motion lies neither on the slow nor on the fast invariant 
manifolds. A motion escapes from an invariant manifold, when the 
latter develops transversal instabilities. Interaction mechanisms 
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will produce regular and chaotic attractors. We will analyze them 
by computing the spatial and temporal characteristics of the PO 
modes. 

We are interested in the interaction between the resonance fast 
beam dynamics and the slow pendulum unforced dynamics. We 
force the beam at its fundamental natural frequency. We perform 
numerical and physical experiments with initial conditions: (0, 
0) ~ (0.01, 0.0), (W, W) = (0, 0). These conditions initiate a 
motion slightly off the fast invariant manifold. This experiment 
will produce attractors for the interaction dynamics due to the 
transverse instabilities of the fast invariant manifold. Furthermore, 
we perform other numerical and physical experiments with initial 
conditions: (1) (0, 0) ~ (7r/2, 0.0), (W, W) = (0, 0), and (2) 
(0, 0) = (Tr, 00), (W, W) ~ (0, 0) where 00 ~ 0.0. These initial 
conditions place, respectively, a motion at a finite distance off the 
slow manifold and another motion on the slow invariant manifold. 
This experiment will generate attractors for the interaction dynam- 
ics due to transverse instabilities of the nonlinear slow invariant 
manifold. 

For weak coupling, such as (/x, /3) = (0.025, 0.1), a generic 
motion initiated near the fast or the slow invariant manifold is 
attracted by the fast invariant manifold for sufficiently large forc- 
ing amplitudes. The long-time dynamics reside on the fast mani- 
fold; it is linear and resonant, and supported by a single PO mode 
with shape identical to that of the single mode supporting the 
acceleration field of the beam during purely slow free motions. For 
small coupling, the motion is repelled if the forcing amplitude 
exceeds a critical value. This motion, depending on the forcing and 
dissipation, is chaotic or regular, that is, periodic or quasi-periodic. 
For example, the system with coupling (/,, /3) = (0.175, 0.1), 
considered to be small, dissipation (~e, ~p) = (0.005, 0.01), 
undergoes a stable periodic motion when forced at (12, P) = (wa, 
260) where oJ, = 4.8293 is the value of the first natural frequency 
of the beam with the pendulum mass at its tip. The forced fast 
dynamics of the beam substructure and the unforced slow dynam- 
ics of the pendulum substructure interact in such a way as to 
produce a stable periodic motion. During this motion, the beam 
amplitude is very small compared to that of the resonant dynamics, 
that is, the dynamics restricted to the fast manifold. However, the 
amplitude of the pendulum is large, reaching a value around 7r/2. 
Thus, the interaction causes a dramatic decrease in the resonant 
linear dynamics. 

The POD analysis of the coupled acceleration and beam accel- 
eration fields yields four and three P,O modes, respectively. The 
first two dominant modes satisfy the following result: ~ ( ~ )  
~ ( ~ ) ,  ~ ( ~ )  = V ~  Y~(~) = yb(~:). The beam components of 
the first two PO modes do not coincide but have similar shapes. 
This is the spatial signature of the free slow dynamics, although 
slightly distorted. Moreover, N/~[[¢~I[ = O(1), V~[qb~[ = 
O(/3/xa). The energy of the dominant mode is now contained in the 
beam substructure whereas the energy of the second mode is 
contained in the pendulum substructure. The opposite is true for 
motions on the slow invariant manifold. The other two modes have 
beam components with shapes similar to the second and third PO 
modes of the beam with a mass at its tip. They have the spatial 
characteristics of the fast modes of the pendulum substructure. 

All amplitudes of the PO modes but the second one have basic 
frequency at 2top and additional frequencies at to~ and multiples of 
it. The second mode, where the pendulum substructure dominates, 
has basic frequency at top and other frequencies close to multiples 
of w~. Just as in the case of free interaction dynamics in the 
neighborhood of the slow invariant manifold, the interaction caus- 
ing the periodic motion mixes slow and fast frequencies. The 
multiples of the pendulum frequency reflect the frequency signa- 
ture of the free slow dynamics. In particular, we find the relation 
w~ = 3tob = 6tob in the frequency spectra of the amplitudes of the 
PO modes. It seems that the interaction mechanism creating the 
periodic motion manifests itself as a 3:1 internal resonance be- 
tween the fast dynamics and the slaved slow dynamics. Recall that 
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Fig. 6 (a) Spatio-temporal behavior of the acceleration field as recorded 
by the accelerometers. The amplitude of the first beam PO mode: (b) 
theory, (c) experiment. 

we have already encountered this internal resonance in the inter- 
actions of the slow and fast free dynamics. 

Figure 6(a) shows the spatio-temporal behavior, as recorded by 
the accelerometers, of the beam acceleration during a periodic 
motion of the physical system. This motion has similar character- 
istics as the one predicted by the equations of motion. The POD 
analysis reveals that this motion is supported by three PO modes. 
Figures 6(b) and 6(c) show good qualitative agreement between 
the experimental dynamics and those predicted by the equation of 
motion for the amplitude of the first PO mode. 

Depending on the amount of dissipation, the system may re- 
spond with a quasi-periodic motion where the pendulum performs 
large amplitude oscillations whereas the beam oscillations have 
very small amplitude compared to that of the resonant dynamics. 
For example, at coupling strength (/x,/3) = (0.4226, 0.1), consid- 
ered to be strong since it creates a 2:1 internal resonance, and 
dissipation (~p, ~b) = (0.01, 0.05), the system responds with 
stable quasi-periodic motion when forced at (12, P) = (w~, 280) 
where w~ = 2 is the natural frequency of the beam. The coupled 
acceleration field of this motion is supported by four PO modes 
whereas that of the beam by three PO modes. The first two 
dominant modes satisfy the following result: qb~(~) ~ qb~(~), 
qb~(~) = % / ~  y~(~) ~ y~(~). This is the spatial signature of the 
free slow dynamics, although distorted quantitatively but not qual- 
itatively. Moreover, VX-~II~II = o (1 ) ,  x /2~]~; I  = o(/3t,=): 
The energy of the dominant mode is contained in the beam 
substructure whereas that of the second mode is contained in the 
pendulum substructure. The spatial characteristics of the first three 
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Fig. 7 (a) Spatio-temporal behavior of the acceleration field as recorded 
by the accelerometers. The amplitude of the first beam PO mode: (b) 
theory, (c) experiment. 

PO modes are qualitatively the same as that for the periodic motion 
at small coupling, 

Such a quasi-periodic motion has been observed in experiments 
with the physical system at 2:1 internal resonance, obtained by 
fixing the pendulum length at L~, = 50.80 ram. Figure 7(a) shows 
the spatio-temporal behavior, as recorded by the accelerometers, of 
the acceleration of the beam. During this motion, the pendulum 
executes large amplitude motions whereas the beam motion has 
been reduced to very small amplitudes. The POD analysis of the 
beam acceleration data gives three to four modes. Figures 7(b) and 
7(c) reveal qualitative and quantitative agreement between exper- 
iment and theory for the amplitude dynamics of the dominant PO 
mode during such a quasi-periodic motion. 

The system at 2:1 internal resonance and dissipation (~ ,  ~,,) = 
(0.005, 0.01) responds to small amplitudes of forcing with peri- 
odic motions. The coupled acceleration field of this periodic mo- 
tion is supported by four PO modes whereas that of the beam by 
three PO modes. The shapes of these PO modes are almost 
identical to those of the periodic motion at small coupling /~ = 
0.175. The frequency spectrum of the amplitude of the dominant 
mode contains (wp, 3~%) whereas that of the second mode con- 
tains (2oJp, 4wp). Here we do not see a mixing of the master slow 
spectrum and slaved slow spectrum. However, the interaction 
leaves its signature as a phase difference between the pendulum 
and the beam oscillations. Recall that there is no phase difference 
between the slow master and slaved slow dynamics. 

We have found periodic motions and quasi-periodic motions 
supported by four PO modes for all levels of sufficiently large 

coupling. All motions have spatial and temporal characteristics 
dominated by those of the free slow and fast dynamics of the 
stiff/soft system. Figure 8(a) reveals that the regular motions of the 
physical system are dominated by the same PO modes. Certainly, 
the consistency is remarkable. Figure 8(b) shows the same remark- 
able consistency for the numerical experiments. Figure 8(c) shows 
the POD spectra for regular motions of the physical system, whose 
PO modes are shown in Fig. 8(b), and regular motions, whose PO 
modes are shown in Fig. 8(a), predicted by the equations of motion 
in singular perturbation formulation. The plateau in the spectrum 
of the experimental motions is due to the presense of noise. 

8 Interactions in Chaotic Motions 
When forced at the first natural frequency of the beam, the 

beam/pendulum system can respond with irregular motions, that is, 
chaos. The chaotic attractors do not reside on the underlining slow 
and fast invariant manifolds. Thus, they must involve interactions 
between the slow and fast dynamics. Note that the dynamics 
restricted to the fast invariant manifold are linear and resonant. If 
the system is forced at a frequency of the same order of the natural 
frequency of the pendulum, it undergoes under certain conditions 
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Fig. 8 The first two beam PO modes: (a) experiment, (b) theory. (c) The 
POD spectrum for various regular motions for experiment and theory. 
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chaotic motions residing on a slow invariant manifold if the 
coupling is weak. These chaotic motions involve only pure slow 
dynamics and do not involve any interaction with the fast dynam- 
ics. However, if the coupling is not weak, chaotic motions are not 
restricted to an invariant slow manifold. 

For coupling strength (/z,/3) = (0.175, 0.1), dissipation factors 
(~b, ~p) = (0.005, 0,01), and forcing frequency ~ = ool = 
4.8293, the fast invariant manifold is unstable for P > 40. The 
irregular motions repelled by the unstable regions of the fast and 
slow invariant manifolds exhibit energy transfer between the pen- 
dulum and the continuum. For 40 < P < P~ ~ 100, the 
pendulum librates and experiences complete amplitude modula- 
tions whereas the beam experiences small amplitude modulations. 
A Poincare map reveals that this motion is chaotic and that its 
projection onto the pendulum phase plane ~ - ~2 is restricted 
almost to a line. We call this a weak chaotic attractor. The POD 
analysis of the coupled acceleration field yields three PO modes. 
The first two modes have identical beam components. Most of the 
energy of the dominant mode is contained in the beam substruc- 
ture, Clearly, this is the signature of the underlining slow and fast 
dynamics. However, the third mode, which is the fast mode, differs 
in shape from the third mode supporting interactions during reg- 
ular forced and unforced motions. The frequency spectrum of the 
amplitude of the first PO mode is centered about the natural 
frequency of the beam, which turns out to be about 6tOp. The 
frequency spectrum of the second mode distributed around the 
frequencies: 3o%, 9OOp, and 15o%. The frequency spectrum of the 
third mode is distributed in narrow continuous bands about the 
frequencies: 6top, 12tOp, and 15t%. 

As we increase the forcing, the modulation of the beam dynam- 
ics increases, reflecting the fact that the interaction becomes more 
intense. For instance, at forcing level P = 200, we have a chaotic 
motion with complete energy transfer between the beam and 
pendulum. Now the coupled acceleration field of the chaotic at- 
tractor is supported by six PO modes. The number of  PO modes 
increases in going from chaotic motions with weak beam modu- 
lations to chaotic motions with complete energy transfer between 
the beam and pendulum substructures. The frequency spectrum of 
the amplitude of the first mode is continuous and centered about 
the natural frequency of the coupled beam. The frequency spec- 
trum of the amplitude of the second mode is continuous and 
contains pendulum low frequencies. Here we see that the interac- 
tion leaves signs in both the spatial and temporal distributions of 
the PO modes. 

At some critical forcing the chaotic attractor becomes abruptly 
periodic. This is the periodic attractor we discussed above, char- 
acterized by four PO modes. Over a range (P ,  P,) of forcing 
amplitude, the response is periodic with dramatic reduction in the 
beam amplitude. For P > Pr, the large-amplitude periodic motion 
coexists with a chaotic motion. During such a chaotic motion the 
pendulum rotates and librates irregularly. When the pendulum 
rotates for a long time, the beam dynamics are reduced dramati- 
cally. This attractor is characterized by six PO modes. Again, the 
first two modes bear the spatial signature of the slow and fast 
dynamics. Figure 9(a) shows the spatio-temporal behavior, as 
recorded by the accelerometers, of the acceleration of the beam for 
the system with coupling at ~ = 0.175. This motion is chaotic and 
after 20 minutes of natural time is asymptotically attracted by the 
periodic motion of large amplitude shown in Figure 6(a). Figure 
9(b) through 9(e) shows the time series and spectra of the domi- 
nant mode. Clearly, there is good qualitative and quantitative 
agreement between theory and experiment. 

The periodic motion of large-amplitude loses stability abruptly 
around a critical forcing amplitude P ,  for fixed ~ or near a critical 
frequency I1 c, for fixed P. The resulting motion is chaotic. And the 
transition from regular to chaotic motions is underlined by hyster- 
esis. The abrupt change from periodicity, or quasi-periodicity, 
generates a new frequency in the temporal dynamics. The coupled 
acceleration field of this new chaotic attractor is characterized by 
seven PO modes. This is called a strong hyperchaotic attractor. 
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Fig. 9 (a) Spatlo-temporal behavior of the acceleration field as recorded 
by the accelerometers. The amplitude el: (b) experiment, (c) theory. The 
FFT of al: (d) experiment, (e) theory. 

Contrary to the chaotic attractors we have encountered so far 
where the beam components of the first and second modes have 
similar shapes to the single mode Ye(~) supporing the acceleration 
of the beam during free slow motions, now the second and third 
modes of this new attractor have beam components with shapes 
similar to the beam component of the fast mode supporting inter- 
actions during free motions in the neighborhood of the slow 
invariant manifold. Now the pendulum substructure dominates the 
third mode. All other modes are dominated by the beam substruc- 
ture. So interaction leaves now a new spatial signature in the 
creation of a new fast mode where the pendulum dominates. The 
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creation of the new fast mode is due to the disappearance of the 
slow mode dominated by the pendulum. Furthermore, the high- 
order PO modes bear considerable spatial modulation. This is a 
nonlinear phenomenon and a sign of interaction. 

We observe the same phenomena, though more intense, in the 
coupled system at 2:1 internal resonance. The chaotic motions that 
coexist with regular attractors are characterized by six PO modes. 
The quasi-periodic motion mentioned above loses stability 
abruptly and triggers a chaotic motion of large amplitude during 
which energy is exchanged irregularly between the beam and the 
pendulum. This have been observed both in numerical and phys- 
ical experiments. Figure 10(a) shows the spatio-temporal behavior, 
as recorded with the accelerometers, of the beam acceleration 
during the chaotic motion generated by the abrupt loss of stability 
of the quasi-periodic shown in Figure 7(a). Figures 10(b) through 
10(e) shows the time history and spectra of the amplitude of the 
dominant mode. Clearly, there is good qualitative and quantitative 
agreement between theory and experiment. The chaotic attractor 
predicted by the equations of motion and the one recorded from the 
experiment contain the high frequency. This hyper-chaotic attrac- 
tor is characterized by seven PO modes. 

Figure 1 l(a) shows the shapes of the dominant modes support- 
ing regular and chaotic motions in the physical system. Clearly, the 
consistency is remarkable. The chaotic and regular attractors bear 
the spatial signature of  the free slow and fast dynamics of  the 
stiff/s'oft system. The same remarkable consistency is found also in 
the results from the POD analysis of numerical experiments with 
the equations of motion. Figure 11 (b) shows the POD spectrum of 
chaotic motions predicted by theory and measured in the physical 
system. The equations of motion predict and the experiment ver- 
ifies (Georgiou et al., 1997c) that the change from periodicity to 
chaos is underlined by a strong hysteresis, energy transfer among 
the PO modes, and shape changes in the PO modes. 

9 Conclusions  and Discussion 

Using tools from geometric singular perturbations, invariant 
manifolds, and proper orthogonal projections, we studied the in- 
teraction of fast/slow dynamics in a coupled linear/nonlinear struc- 
ture consisting of a cantilever linear beam coupled to a pendulum. 
The objective of the study was to understand interactions of 
linear/nonlinear dynamics. For sufficiently small coupling between 
the linear and nonlinear substructures, large-amplitude unforced 
slow motions, generated by the slow pendulum, interact with the 
resonant fast dynamics of the linear beam; the result is a substan- 
tial reduction of the fast resonant dynamics. In this case, the 
interacting dynamics are dominated by the slow and fast PO 
(proper orthogonal) modes. The slow and fast PO modes are, 
respectively, nonlinear and linear spatial modes of the coupled 
structure and stem from the slow and fundamental fast invariant 
manifolds of the stiff/soft system. The slow invariant manifold is 
two-dimensional and is the geometric realization of a nonlinear 
normal mode. It is characterized by two PO modes. For higher 
values of coupling, the unforced slow dynamics of the pendulum 
substructure interact with the forced linear dynamics of the beam 
substructure in such a way as to produce periodic, quasi-periodic, 
and chaotic motions. There are periodic and quasi-periodic mo- 
tions characterized by four PO modes, and chaotic motions char- 
acterized by three, six, and seven PO modes. The first three 
dominant modes bear the spatial and temporal signatures of the 
slow and fast tree dynamics of the stiff/soft system. The change 
from periodicity to chaos and vice versa is characterized by a 
hysteresis phenomenon, which is clearly a nonlinear dynamical 
effect. We built a cantilever beam/pendulum system and per- 
formed experiments to validate the theoretical findings. The ex- 
periment verifies the theoretical findings, especially, the abrupt 
transition from periodicity to chaos, and the nonlinear hysteresis. 
Furthermore, the experiment verifies the spatial and temporal 
characteristics of the slow invariant manifold as predicted by 
singular perturbation technique in previous works. 
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Fig. 10 (a) Spatio-temporal behavior of the acceleration field as re- 
corded by the accelerometers. The amplitude al: (b) experiment, (c) 
theory. The FFT of al: (d) experiment, (e) theory. 

The physical system is a perturbation of the ideal system de- 
scribed by the equations of motion. Furthermore, we have to deal 
with the issue of noise. Since the primary objective is to analyze 
numerical and experimental data by applying the POD method and 
relate the dynamics to the dynamics of the soft/stiff system, it is 
satisfactory to find remarkable consistencies separately in the 
numerical and separately in the experimental results and reason- 
able qualitative and quantitative agreement between experiment 
and theory. Clearly, this is the case here. We verified experimen- 
tally the lact that proper orthogonal projections can be used to 
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Fig. 11 (a) The first two beam PO modes supporting regular and chaotic 
motions in the physical system, (b) the POD spectrum of chaotic motions 
predicted by the equations of motion in singular perturbation formula- 
tion and from measurements in the physical system 

identify the modes of coupled structures from spatio-temporal 
data, from measurements and numerics• 

Finally, we mention that there is a previous body of work where 
a flexible beam with a large mass at its tip supports a pendulum 
(Cuvalci and Ertas, 1996)• This study deals with the interaction 
dynamics of 2:1 internal resonance. The heavy mass constrains the 
coupled system to behave as a two-degree-of-freedom system. In 
the general case we consider here, we have shown that the inter- 
action dynamics are due to the interplay between the whole spec- 
trum of normal modes of the linear continuum and the nonlinear 
oscillator. 
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A P P E N D I X  

Approaching the Equations of Motion as a Singular 
Perturbation Problem: A Review 

In this section we formulate the equations of motion as a 
singular perturbation problem. First, we transform the coupled 
PDE/POD equations of motion (2) and the associated boundary 
equations (4) into a set of coupled linear/nonlinear oscillators. A 
method based on modal decomposition to reduce linear PDEs in 
solid mechanics coupled at their boundaries to nonlinear oscilla- 
tors to coupled linear-nonlinear oscillators is given in (Georgiou, 
1993; Georgiou and Schwartz, 199%). For the present beam/ 
pendulum system, this procedure gives 

N 

0 + [1 + ~ ~-1 '''+~'" 1 j rl,, J sin (0) + 2~p0 = 0, 
m= I 

(22a) 

[8m~ + (--1) "+k+2413 COS2(0)]'0k + /xZ/x], + 2g~ /X/X~, 

+ (--1)"+14/3[02 COS (0) -- sin2(0)] = F . , P  cos (Or) ,  (22b) 

where 8.,k denotes the Kronocker delta, and F,,, are coefficients 
from the modal projection of a harmonic in time force applied at 
a point, and m = 1, 2 . . . . .  N --> ~. The modal amplitudes and 
velocities in (22b) stem from the expansion 

N 

w(~, ~ )=  ~ ~q,,,(T)+,,,(~) 
m = 1 

(23) 

where ¢h,.(~) are the spatial natural modes of the uncoupled 
cantilever beam. 
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To analyze the global dynamics of the above coupled oscillators, 
we need to determine invariant manifolds of motion. Invariant 
manifolds of motion are naturally introduced if the above coupled 
oscillators are cast as a singular perturbation problem. The fre- 
quency ratio /x qualifies as a singular perturbation parameter. 
Coupled oscillators (22) can be formulated as follows: 

alx = A(~' ;  N)Z + F ( ~ ,  O; N), (24a) 

O = R e ,  (24b) 

~ 2  = B ( ~ ;  N)Z + G(xP', O; N) (24c) 

where the variables ~ ~ (aI¢l, al~'~) = (0, 0), and O ~ (O~, Oz) = 
(cos (lq,r), sin (1)~')) denote the pendulum state and the harmonic 
forcing, respectively. The variable Z ~ ({Z~, Z2} . . . . .  {Z2m- l ,  

Z,° }), m = 1 . . . . .  N --> % denotes the scaled states of the beam 
modal oscillators. They are given by 

{n,,,, i , . }  = {~m~.z2,, ,- , ,  ~,z2.,}. (25) 

Note that the scaling factors, ~,, --- ~o1/o9,,, = t<~lK~, where t<,, is 
a root of Eq. (3), are the normalized frequencies of the uncoupled 
cantilever beam. Moreover, the various functions in Eq. (24) are 
determined from Eq. (22). 

For a global analysis of the dynamics in phase space, geometry 
in the form of invariant manifolds of motion plays a pivotal role. 
The singular perturbation formulation (24) introduces naturally in 
phase space two fundamental invariant manifolds of motion: a 
slow one containing pure slow dynamics, and a fast one containing 
pure fast dynamics. 

For fixed mass ratio/3, and sufficiently small /x, the dynamics 
evolve on a single slow time scale and multiple fast time scales. In 
particular, whenever l~ = O(1), Eq. (24a) and Eq. (24b) form the 
slow system, and Eq. (24c) forms the fast system. In this case, we 
are forcing the slow pendulum dynamics. The dynamics are non- 
linear and reside in a low-dimensional nonlinear subspace, the so 
called slow invariant manifold ,N'~. The slow manifold is described 
by the graph of a function 

N ,  = {(aI~, O, Z)IZ = H~,(~, @)}. (26) 

The vector-valued function H~ is the solution to the so-called slow 
manifold condition (Georgiou and Schwartz, 1997a, 1999a). 

For the unforced system (P = 0), the slow invariant manifold 
is two-dimensional; it contains all static equilibrium states given 
by 

c - - -  ({q~,, q'2} . . . . .  {22,,,_,, 2~,,,}) 
= ({0, 0} . . . . .  {0, 0}),  (27a) 

s+, ~ ( { ~ , ,  q,~} . . . . .  {22,,,_,, 22,,,}) 

= ( {± r r ,  0} . . . . .  {0, 0}).  (27b) 

They are the discrete analogues of the equilibrium configurations 
(1). 

On the other band, whenever g = O(1//x), Eq. (24b) becomes 
part of the fast system, and we are forcing the beam fast dynamics, 
The pure fast dynamics are linear and reside either on the stable 
infinite-dimensional linear manifold: 

~ ;  = {(ap., O, Z)IxP" = (0, 0)},  (28) 

or the unstable infinite-dimensional linear manifold: 

~ = {(I r, 0 ,  Z)]aI • = (+¢r, 0)}. (29) 

The linear fast manifolds intersect transverserly the slow invariant 
manifold at the static equilibria (27). Therefore, the slow and fast 
invariant manifolds span the entire phase space. By definition, 
there is no interaction between the substructures whenever the 
dynamics reside on the slow or fast invariant manifolds. Interac- 
tions occur as long as the dynamics are not restricted to these 
particular invariant manifolds. 

Regarding the history of development of singular perturbations, 
Mira (1997) traces it back to the early works of Tikhonov (1952) 
and Pontrjagin (1957). The modern geometric development has its 
roots in the works of Fenichel (1979). The latest developments and 
applications are discussed in Jones (1995). 
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A Three-Dimensional Frictional 
Contact Element Whose 
Stiffness Matrix is Symmetric 
A three-dimensional contact element based on the penalty function method has been 
developed for contact frictional problems with sticking, sliding, and separation modes in 
fnite element analysis. A major advantage of this contact element is that its stiffness 
matrix is symmetric, even for frictional contact problems which have extensive sliding. As 
with other conventional finite elements, such as beam and continuum elements, this new 
contact element can be added to an existing finite element program without having to 
modify the main finite element analysis' program. One is therefore able to easily implement 
the element into existing nonlinear finite element analysis codes for static, dynamic, and 
inelastic analyses. This element, which contains one contact node and Jbur target nodes, 
can be used to analyze node-to-surface contact problems including those where the 
contact node slides along one or several target surfaces. 

1 Introduction 

Computationally, the analysis of frictional contact problems is 
extremely difficult, even for static cases involving the simplest 
constitutive relation. Much of the difficulty lies in the fact that the 
contact areas and the friction directions of the bodies under con- 
sideration are unknown a priori and the contacting surfaces change 
in size, shape, and mode (sticking, sliding, or separating) as the 
loading increases. Largely because of the high nonlinearity and 
notwithstanding appreciable amount of prior effort on the topic 
(Chaudhary and Bathe, 1986; Hallquist et al., I985; Kulak, 1989; 
Laursen and Simo, 1993; Malone and Johnson, 1994; Mottershead 
et al., 1992; Parishch, 1989; Peric and Owen, 1992; Paradopoulos 
and Taylor, 1993), development of a reliable and efficient three- 
dimensional frictional contact algorithm in finite element analysis 
remains one of the challenging problems in computational solid 
mechanics. Parishch (1989) and Paradopoulos and Taylor (1993) 
developed a three-dimensional contact algorithm without friction. 
Malone and Johnson (1994) and Kulak (1989) established the 
explicit contact algorithms using a very small time-step length to 
simulate three-dimensional contact problems. Chaudhary and 
Bathe (1986) and Hallquist et al. (1985) used the Lagrange mul- 
tiplier approach to solve the three-dimensional contact problems. 
Mottershead et al. (1992) developed a three-dimensional contact 
algorithm, but no three-dimensional example was included in their 
paper. Laursen and Simo (1993) developed a continuum formula- 
tion for the finite deformation frictional contact between deform- 
able bodies. Peric and Owen (1992) established the contact algo- 
rithms using the penalty method. Only Chaudhary and Bathe 
(1986) included a comparison between theoretical and numerical 
solutions. 

Contact element stiffness matrices are symmetric for frictionless 
contact problems. Unfortunately, problems involving sliding fric- 
tion result in an unsymmetrical stiffness matrix, and this difficulty 
is demonstrated in the above references. Analyses having unsym- 
metrical matrices typically require about twice the amount of 
storage space and twice the amount of calculation time as do those 
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with symmetric matrices. Although the sliding area sometimes 
involves only a relatively small part of total contact area, the 
stiffness matrix is still unsymmetrical. This disadvantage is alle- 
viated here by extending the algorithm of our previous two- 
dimensional contact element (Ju et al., 1995) into a three- 
dimensional frictional contact element, having a symmetric 
stiffness matrix. The amount of both computing time and storage 
needed can be significant concerns when solving engineering 
problems. Ability to reduce these quantities is a major advantage 
of the present method. This paper demonstrates the three- 
dimensional contact element's ability to satisfactorily model fric- 
tional static or dynamic contact problems even when the amount of 
sliding is extensive. 

The present three-dimensional contact element is an extension 
of penalty methods for displacement formulations (Kanto and 
Yogawa, 1990; Mottershead, 1992; Peric and Owen, 1992; Parado- 
poulos, 1993; Ju et al., 1995). It can be implemented into an 
existing nonlinear finite element program without having to mod- 
ify a main finite element program or solution method. This ele- 
ment, which contains one contact node and four target nodes, 
enables one to analyze node-to-surface contact problems such as 
those involving the contact node sliding along one or several target 
surfaces. This element can be used for static or dynamic (involving 
impact and collision) analyses and for a variety of constitutive 
behaviors. 

2 Formulating Stiffness Matrix of Five-Node Contact 
Element 

2.1 Governing Matrix Equation of the Penalty Method. 
With reference to Fig. 1, the governing matrix equation of the 
penalty method at a certain iteration is (Ju et al., 1995) 

(K + K~)dx = Fex t - Fin I - FSi.i (1) 

where 

dx = incremental displacement vector between two successive 
iterations 

K = total tangent stiffness matrix of bodies (i.e., contactor 
and target) 

Ks = total stiffness matrix of all contact elements 
Fex~ = external force vector including the inertia forces of a 

dynamic problem 
F~,,, = internal force vector of contactor and target bodies 
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• ~xt 

Fig. 1 Contact of two bodies 

FS~., = internal normal and frictional force vector of contact 
elements 

Quantities K and Fi,t of Eq. (1) are assembled by using typical 
elements, such as plane-stress, plane-strain, linear, or nonlinear 
elements. The stiffness matrix Ks and internal force vector FS,,  
are discussed below. 

2.2 Stiffness Matrix of the Node-to-Node Element. This 
study uses Coulomb friction: 

F = L - t~f,, (2) 

where f,, and f ,  are the magnitudes of normal and frictional forces 
(they are always both positive) a n d / ,  is the frictional coefficient. 
If F = 0, the element slides. If F < 0, the element sticks rather 
than slides. For node-to-node contact and providing three degrees- 
of-freedom in the local directions, the element stiffness matrix at 
a point can be formulated as 

where 

dj~,J [ dW 3 
(3) 

[Klo¢,,t] = [Kstick] = 0 k for sticking, and (4) 
0 0 

[K=ooj = [K~l~d . . . .  y ...... ic~,,] = 0 k,, for sliding. (5) 
0 0 

Quantity f,t is the internal friction force, dU is the relative dis- 
placements between two successive iterations in the last tangential 
direction (direction of the fiictional stress at the end of last itera- 
tion), dV is the relative displacements due to the change of the 
tangential direction between the present and last iteration (dU is 
perpendicular to direction dV), dW is the relative displacement in 
the normal direction between two successive iterations, k is an 
input large penalty constant, and k, is the penalty constant for dV. 
Since the two triangles of the force and the displacement systems 
are similar (Fig. 2), the following equation can be obtained: 

df,, df, F~ 
k , , -  dV - dU - U"'  (6) 

df sl dV / 
/ F s  n )dfs )' / U n dU 

(a) Forces (b) Displacements 

Fig. 2 Forces and displacements 

J o u r n a l  of  A p p l i e d  M e c h a n i c s  

2 

3 ci !l" 
Point P1 ffi Contact node at last iteration; 
Point P2 = Contact node at current iteration; 
Point C1 = Contact position at last iteration 
Point C2 = Contact position at current iteration 
Point C = Contact position at last time steep, 

s 

2 l 1 

c 5  r I 

3 4 

Fig. 3 Contact analysis during two iterations and natural coordinate 
(r.s) 

where F;' is the friction force of the last or nth iteration, and U" is 
the equivalent displacement of the friction force at this last or nth 
iteration. One can approximate k ~ by the average value of (df,/dU) 
of all the iterations during this force or time-step. Matrix [Kslid ~ 

..... y . . . . . . . .  iell[] is unsymmetrical and can be replaced by a symmetric 
element stiffness matrix Kslid  e a s  follows: 

IX ,or . , ]  = [ K , , , ~ ]  = 0 k~ . (7 )  
/xk 0 

Equation (7) obeys the Mohr-Coulomb friction theory (dfs. = 
/xdf,,); however, the incremental normal force df, contains the 
term p&dU. If this term is omitted from the calculation of the total 
normal force (F,, = kV), the contact analyses from Eqs. (5) and 
(7) will produce a similar result at the convergent state (dU ~ O, 
dV ~ O, and dW -~ 0). Although a symmetric formulation can be 
obtained by using this algorithm, the convergence might be slow 
for problems which involve extensive sliding contact. This sym- 
metric solution scheme is often efficient for contact problems 
having both sticking and sliding modes, since it is as about twice 
as fast as the unsymmetrical solution scheme. The amount of the 
computer memory needed can also be significantly reduced. 

The stiffness matrices discussed above are expressed in local 
coordinates. They can be transformed back into the global coor- 
dinates as follows: 

K = IT] T[K,oc,,.][T ] (8) 

- - N  1 - -b/2  

where [T] = vl v2 v3 = {v}r / • (9) 
w, w2 w~ (w} 7'3 

In this case {u}, {v} and {w}({u} = {v} × {w}) are the unit 
direction vectors parallel to the displacements U, V, and W, 
respectively. The - { u } in Eq. (9) means that the direction of the 
fiictional force is opposite to that of displacement U. 

2.3 Five-Node Node-to-Surface Contact Element. In order 
to solve node-to-surface contact problems, a linear transformation 
matrix is used to transform the two-node (node-to-node) stiffness 
to the five-node (node-to-surface) stiffness (Fig. 3). It can be 
shown that the two-node stiffness matrix is similar to the truss 
element as follows: 

where K is the global stiffness matrix for sticking, separating, or 
sliding modes, respectively, and is evaluated from Eq. (4) or (5). 
From Fig. 3, 

,f3 = N~ fJ;~ or f = H r f .  (l l) 
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where 

N, = (1 + rs)(1 + ss); 

N2 = (l  - rs)(1 + ss); 

N3 = (1 - rs)(1 - ss); 

N4 = (1 + rs)(1 - s5); and (12) 

r5 and s5 are the natural coordinates (r-s-t) of point 5. 
The nodal forces at nodes 1, 2, 3, 4, 5, and c are given byfL, f2, 

f3, f4, f5 and f,., respectively. Nodes c and 5 are the same node and 
it is the contact point in the target surface. One can derive the 
stiffness for the five-node element from Eqs. (10) and (11). These 
can be used for the node-to-surface contact problem as follows: 

K5 = HrK2H 

FNiNi N1N2 NiN3 NiN4 - N i l  
[N2Ni N2N2 N2N3 N2N4 -N2 

= K I N 3 N i  N3N2 NaN3 NaN4 - N  3 . 
INaNi NaN2 NaN3 N4N 4 - -  

N 
L --Ni -N2 -N3 -N4  14 

(13) 

If the current coordinates of Points 1 through 5 (see Fig. 3) and 
the contact modes (sticking, sliding or separating) are known, Eq. 
(13) can be used to provide the tangent stiffness matrix of the 
node-to-surface contact element. The following paragraph will 
discuss how to generate the internal force of the contact element. 
Figure 3 shows the node-to-surface contact model during two 
successive iterations, iteration 1 and iteration 2. All nodes in Fig. 
3 have been updated by adding the displacement of the last 
iteration. The normal direction, w, of plane 1234 is approximated 
as 

13 X 2 4  
w - (14) 

113 X 241 

where 13 means vector 13. The contact positions P j and P2 of last 
and current iterations are known at the end of the current iteration. 
If it is not a separation mode, points P~ and P2 will be inside the 
target body according to the penalty method theory. Location of 
point C2 can be evaluated by solving the equations of surface 1234 
and line C2 - P2,  the latter direction being equal to w. Finally, the 
magnitude (U) and direction (u) of the frictional displacement for 
sticking mode can be found from 

Uu : r e  2 - (CC 2 • w ) w .  (15) 

The direction u of the frictional displacement for sliding mode is 
still calculated from Eq. (15). The normal displacement W is 

W = P2C2" w. (16) 

A negative value for W means that node 5 has separated from the 
four-node target surface (Fig. 3/ and the situation involves the 
separation mode. The direction of displacement V, v, for all modes 
is defined as 

v = w X u. (17) 

Knowing the displacements, one can now evaluate the local 
internal forces, F,, and Fs at node 5 of the contact element. The 
normal force is 

F, = kW. (18) 

The friction force is 

Fs = kU -~ (ul • u)F,t for sticking, and 

Fs = IxF,, for sliding, 

(19) 

(20) 

where k is the penalty constant, F ,  is the internal frictional 
force at the end of the previous increment, and u~ is the unit 
direction vector parallel to the displacements U of the last 
iteration. 

The local internal forces, F,, and F,,  at node 5 can be found from 
the above equations. Global internal forces at nodes 1 to 5 can be 
calculated using the following Eqs. (21) and (22). Adding the 
element internal forces to the global force vector enables one to 
obtain FSi,t in Eq. (1), i.e., 

{ Fx5] 
fys(  .~ [UT 

F~sJ 

= - F x 5  N2 
Fx3 N3 ' 
Fx4 L N4J 

Fy2~ N2 
Fy3/ - G 5  N3 ' 
f y4j L N4J 

r zl IN1N2 
kfz43 LN4J 

(2l) 

(22) 

2.4 Sticking, Sliding, or Separation Mode Determination. 
One first uses Eq. (16) to evaluate whether or not there is separa- 
tion. If W of Eq. (16) is negative, then node 5 has separated from 
the four-node target surface (Fig. 3). Under such condition, the 
penalty constant and internal forces of the contact element are both 
set to zero. If W --> 0, one then checks to see whether sliding or 
sticking occurs. Sticking is first assumed. Thus, if F,  < p,F,,, 
sticking occurs; if Fs -> /xF,,, one has sliding. 

From Eqs. (13), (18), (19), and (20), the current tangent 
stiffness matrix and current contact forces of a node-to-plane 
contact element can be obtained at each iteration, when all the 
coordinates are updated to the present coordinates. These equa- 
tions incorporating the implicit updated Lagrangian method can 
be used to simulate large sliding motions. However, it should be 
noted that the use of excessively large incremental steps should 
be avoided. To do so lead to convergence difficulties in the 
equilibrium iterations because the predicted intermediate state 
is too far from the solution. Another convergence difficulty is 
the frequent change of contact modes, such as sticking to 
sliding or contact to separation. This condition can be found in 
the loading-unloading cases. 

3 Illustrative Examples 

3,1 General Comments. The algorithm of this new three- 
dimensional contact element was programmed into Ju's (1993) 
finite element codes. Five examples were thereby conducted to 
assess the reliability of the current three-dimensional contact 
model. Since few theoretical solutions are available for contact 
problems, results of several of the present cases are compared with 
the previous two-dimensional frictional contact element (Ju et al., 
1995). Units are ignored in these illustrative examples. At each 
force or time-step of these analyses, the convergence ratio is set as 
detailed below: 

• for static analyses 

I ( ~  R EF OR y) /~  TOFOR~I 
i=1 i=1 

--< convergence ratio = 1/300 (23) 

• for dynamic analyses 

I ( ~  d U ~ ) / ~  V~[--< convergence ratio = 1/300 (24) 
i=1 i 1 
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I 
i P/2 

Contact Element 

Fig. 4 Hertz contact problem and finite element mesh (264 eight-node 
brick elements and 30 five-node contact elements; E = le4,  v = 0.3, 
radius R = 2, penalty constant = 5000) 

where 

REFORi: 
TODUi: 

dU: 

U: 

N: 

residual nodal forces; 
incremental nodal forces between two successive 
steps. If it is equal to zero, the program sets it to one; 
incremental displacement between two successive it- 
erations; 
total incremental displacement between two success 
steps; 
total number of degrees-of-freedom. 

3.2 Hertz Contact. The first illustrative example is an infi- 
nitely long, solid elastic cylinder resting on a rigid plane. The 
cylinder is subjected to a downward concentrated load P at point 
A (Fig. 4). This physical situation was modeled here as one 
circular disk with one element layer which is fixed in the 
z-direction (Fig. 4). The half-model of the disk is discretize by 264 
eight-node brick elements. The disk radius R = 2 and it has E = 
le4 and v = 0.3. A fine mesh is used in the contact area to obtain 
reliable results. Friction is ignored between the cylinder and the 
rigid base in the classical Hertz analytical analysis. Figure 5 shows 
the contact normal stress between the elastic cylinder and rigid 
plane at increasing load levels. Results of Fig. 5 using the present 

E 
S 
z 

1200 

800 

400 

0 
0.00 

- -  HERTZ 
> i _ _ i . ~  FEM 

P = 2 0 0  \ P = 4 0 0  P = 6 0 0  P = 8 0 0  
o 

. . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  ) . . . . . . . . .  , . . . . . . . . .  i 
0.05  0 .10  0 .15 0 .20 0 .25  

Distonce f rom center llne / R 

Fig. 5 Comparison of three-dimensional and Hertz results for normal 
contact stress between elastic cylinder and rigid plate of Fig. 4 (E = 1 e4, 
v = 0.3,/~ = 0.3) 
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2000" ~ I ~  
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o.6i~ '6 ' . ' r ig  6.~ iYd.~ gd .k i5  ' 6 .  k5 6 . ~ 6 6  g g  6.,~ o 
Distance from center line / R 

Fig. 6 Comparison of present three-dimensional and previous two- 
dimensional finite element method results (Juet al., 1995) for the contact 
vertical normal and horizontal shear stresses between elastic cylinder 
and rigid plate of Fig. 4 (E = le4 ,  v = 0.3, # = 0.3) 

finite element analysis are in excellent agreement with the classical 
Hertz theory. 

The classical Hertz solution ignores friction. In order to explore 
the effect of friction on the normal contact stress, a uniform body 
force of 200 per unit volume was applied to the cylinder of Fig. 4 
but with the frictional coefficient (/x) equal to 0.0 and 0.2, respec- 
tively. When the contact area (angle) is small, the friction will 
increase the maximum normal stress and further decrease the 
contact area. Figure 6 compares the results using the previous 
two-dimensional contact analysis (Ju et al., 1995) with the present 
three-dimensional algorithm. The mesh is the same as the three- 
dimensional mesh in x-y-plane (Fig. 4). The comparisons shown in 
Fig. 6 again indicate excellent agreement. 

Fifty equal force steps were used in the FEA to reach P = 1000 
of Fig. 5. The uniform body force of 200 of Fig. 6 was achieved 
in 20 equal increments. On average, 2.4 iterations were used per 
load increment. 

Results of Figs. 5 and 6 illustrate the reliability of the present 
frictional contact element for elastic frictional case involving mod- 
erate amounts of clearance, sliding, and fixation. 

3.3 Dynamic Contact With Friction. Consider two elastic 
bodies E = le4,  v = 0.3 and mass density = 1000 on a rigid 
foundation (Fig. 7) and subjected simultaneously to two dynamic 
forces: a downward pressure W on surface (ABCD) of the upper 
body and an in-plane force P applied to the mass center of this 
upper body (Fig. 8). The coefficient of friction at the interfaces 
between the two blocks is 0.8 whereas that between the lower 
block and its foundation is infinite. By assuming no gravity or 
other forces, the body motion can be calculated theoretically using 
kinetics. The finite element mesh of Fig. 7 employs the new 
three-dimensional contact elements between the contacting sur- 
faces (/x = 0.8). Newmark's method was employed in the transient 
finite element analysis with the time interval of 0.5 s and a total of 
200 time-steps. On average, 3.8 iterations were used per load 
increment. 

Figure 9 shows virtually identical displacements by the current 
finite element analysis method and theory. Figure 10 illustrates the 
positions of the two blocks at 0, 75 and 100 s after the start of 
contact. This example demonstrates that the present contact ele- 
ment can also be applied to problems involving large deformation, 
extensive sliding, and transient events. 

3.4 Contacting Cantilever Beams. The two cantilever 
beams (E = 1 e9 and v = 0.2) of Fig. 11, which are clamped at the 
left ends, touch each other but do so without any initial contacting 
force. The frictional coefficient between the beams is p, = 0.2. A 
downward pressure of P = 10.74e5 is then applied to the top 
surface of the upper cantilever beam, and five equal force steps 
were used in the finite element analysis to reach this pressure. The 
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Fig. 7 Model of dynamic contact analysis and finite element mesh (96 eight-node 
brick elements, 720 five-node contact elements, E = le4, v = 0.2, mass density = 
1000, F = 0.8, penalty constant = 7000) 

present three-dimensional algorithm is used to analyze this static 
problem, and 10.2 iterations were used per load increment on 
average. Since we are unaware of any theoretical solution for this 
problem, results of the present three-dimensional contact analysis 
are compared with those using the previous two-dimensional con- 
tact analysis ( J u e t  al., 1995). The two-dimensional and three- 
dimensional finite element meshes are indicated in Fig. 11. The 
good agreement of Fig. 12 for the normal and frictional stresses at 
the contact surface between the three-dimensional and two- 
dimensional contact analyses further demonstrates the reliability of 
this three-dimensional frictional contact algorithm. The deformed 
images of two-dimensional and three-dimensional analyses of Fig. 
13 indicate the extensive amount of sliding involved in this prob- 
lem. The finite element results remain accurate even after the tip of 
the, upper cantilever beam has slid across two dements of the 
lower beam. 

W pressure) 

20 

Fig. 8 
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i 'Time (i12 828 t .......................................................... 
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Time (s 

Force, P, and pressure, W, applied to top block of Fig. 7 

***** FEM solution / 

5 2 L /  
0 20 40 60 80 1 oo 

Time (s ) 

Fig. 9 Time-history displacements of Point E in Fig. 7 by the present 
three-dimensional frictional contact algorithm and theory (E = le4, v = 
0.3, mass density = 1000, /.¢ = 0.8) 

t l l l l r l l l l l l l , , , , ,  

I L I I I I I I I  f f l l l l l l l  

t=0 s t=75 s t=100 s 

Fig. 10 Top view of blocks of Fig. 7 at t = 0, 75, and t00 s, respectively 

3.5 Two Contact ing  Rings. Two contacting elastic rings of 
unit width and inner diameters of D = 30 and d = 18, respec- 
tively, are supported at their respective centers, Fig. 14(a). The 
outside of the larger ring and the inside of the smaller ring are 
modeled by the rigid-body effect with two master nodes at their 
respective centers, points A and B. The center of the larger ring 
(point A) can only rotate in three directions, whereas the center of 
the smaller ring (point B) can move vertically as well as rotate in 
three directions. The smaller ring is subjected to a dynamic force 
P and a dynamic moment M, Fig. 14. Material properties, dimen- 

008 

FRed 
end ~ 1 

r0.1 

(a) 3-D Finite element mesh 

1 

Fixed 0.1 I 

end 0.1 

(b) 2-D Finite elem~t mesh 

Fig. 11 Discrstized model of two contacting cantilever beams (total of 
960 eight-node brick elements, and 1234 five-node contact elements, E = 
le9, v = 0.2, # = 0.2, penalty constant = 3e5) 
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03 
03 ~o.8 

~ 0 . 4  

~ Q 2  
O'3 

0.0 

/I ~ 30, Frictlonol stress 

i , ~  . . . . . .  J . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  i 

0 . 0  0 ,2  0 .4  0 .6  0 . 8  1.0 
Distonce from fixed end 

Fig. 12 Normal and frictional shear stresses between cantilever beams 
of Fig. 11 by present three-dimensional contact algorithm and previous 
two-dimensional finite element method (Ju et al., 1995) 
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Fig. 13 Deformed cantilever beams of Fig. 11 

sions, and mass densities are indicated in Fig. 14(a). The coeffi- 
cient of friction (/~) between the interfaces of the rings is set to 0, 
0.1 and 0.4, respectively, for three separate finite element analyses. 
In the absence of gravity or other forces, the motion of these bodies 
can be calculated theoretically using kinetics. For /z  = 0, friction- 
less sliding occurs between the contacting rings and the outer ring 
deforms but does not rotate; for p, = 0. l, both slipping and fixation 
occurs along the contacting interface between the two tings; and 
for/~ = 0.4 the outer ring is in full rotation. 

The finite element mesh of Fig. 14(b) was modeled by 504 
eight-node elements for the bodies plus 828 five-node three- 
dimensional frictional contact elements between the contacting 
surfaces of the rings. The Newmark method was employed in the 
transient finite element analysis with a time interval of 0.001 s and 
a total of 800 time-steps. On average, 4.8 iterations were used per 
load increment. 

The rotations in the direction of the applied moment of Figs. 15 
and 16 evaluated using the present three-dimensional frictional 
contact elements are virtually identical to those predicted theoret- 

E-I 
v=O v=o 

Contact elements 
(a) Model and finite element mesh (penalty constant=2e3) 

@ 
(b) 3-D view of  the finite element mesh 

I 
03 "rme 

~ "rime ..30 I . . . . . . . . . . . . . . . . . . . . .  i ~, 
0.1 

(C) Applied £or~ and moment 

Fig. 14 Model, mesh, and loading of two contacting elastic rings (504 
eight-node elements, 828 five-node contact elements, penalty constant = 
2000) 
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Fig. 15 Comparison of present finite element method and theoretical 
solutions for resulting rotation at point B of the smaller ring of Fig. 14 

ically, where the theoretical solution was established from the 
basic theory of kinetics of rigid bodies. The rotations in the other 
two directions are not shown here since they are approximately 
zero in the finite element analyses. Since P and M act in the plane 
of Fig. 14(a), the theoretical out-of-plane rotations are exactly 
zero. Figure 17 shows the deformed contact portions of the rings 
at six different times after load initiation. A cut in the images of 
Fig. 17 has been introduced deliberately to show the relative 
displacements of the two rings. These results demonstrate reliabil- 
ity of the present three-dimensional frictional contact algorithm for 
fully sliding, partially sliding, and fully sticking conditions be- 
tween contacting curved surfaces of two elastic bodies subjected to 
loading and unloading. 

3.6 Fo rming  of a Pan.  Consider an initially flat plate 
(E = 1000, v = 0.3, % = 2, H = isotropic hardening ratio -- 
5) which is elastoplastically deep-drawn into a pan by a rigid 
die. Initial dimensions of the plate are 50 x 40 × 1 and those 
of the rigid die are 40 X 30 x 5, Fig. 18. The plate is 
numerically clamped (fixed) along its boundaries (four edges) 
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Fig. 16 Comparison of present finite element method and theoretical 
solutions for resulting rotation at point A of the larger ring of Fig. 14 

t=0-0, l s t=0.3s t=0.4s 

t=0,6s t=0.Ts t=OSs 

Fig. 17 Rings of Fig. 14 at several different times after load initiation 
(#  = 0.1). (Only parts of the rings are shown in the figure, where two 
elements are cut in order to show the relative displacement.) 
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Fig. 18 Finite element model and mesh for elastoplastic forming of a 
pan (500 eight-node elements, 376 five-node contact elements, E = 1000, 
v = 0.3, Fy = 2, H = 5, penalty constant = 300) 
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Fig. 21 Iteration number at the various time-steps of the problem of Fig. 
14 (/~. = 0.1) 

but otherwise unsupported. The coefficient of friction ix = 0.2 
is assumed for all contacts between the plate and the inserting 
die. The displacement-controlled analysis was performed using 
50 displacement steps, while each step was set to 1 unit of 
downward displacement. On average, 6.2 iterations were used 
per displacement increment. Because of symmetry, only one 
fourth of the structure was meshed with 500 eight-node solid 
elements and 376 five-node contact elements, Fig. 18. Some 
successively deformed shapes are contained in Fig. 19, while 
contours of the effective plastic strain of the fully deformed 
plate are shown in Fig. 20. This example indicates that this 
contact element can successt'ully handle nonlinear material 
problems, 

4 Discussion 
The frictional contact element developed herein is versatile 

for node-to-surface contact problems involving eight-node 
brick or four-node plate elements. Several target surfaces can be 
inputted with one contact node; therefore, the contact node can 
be the target contact at any location within these target surfaces. 
This is very usefully for situations involving large deformation 
or clearance. The normal direction of a target surface of this 
three-dimensional contact element is calculated from the cross 
product of the two diagonal vectors of the four-node target 
surface, and only one normal direction is set to a target surface. 

Numerical convergence can be difficult if a contact node slides 
from one target surface to another target surface with a great 
change of the normal direction. However, this difficulty can be 
circumvented by modeling the curved surface with an interpo- 
lation function such as three-dimensional cubic spline, or by 
using a fine mesh such as done here for the contacting rings of 
Figs. 14 through 17. 

For frictional contact, one normally strives to find a large 
penalty constant which can achieve convergence. A very large 
penalty constant usually yields an oscillated numerical solution; 
furthermore, such a solution might converge slowly or sometimes 
not converge at all. A small penalty constant typically results in 
easy convergence, but the numerical results might be less reliable. 
Satisfactory use of the penalty function method is highly depen- 
dent therefore upon using an appropriate value for the penalty 
constant. We previously proposed (Ju et al., 1995) a simple scheme 
for finding a reasonable penalty constant. That scheme can be used 
to select an adequate penalty constant at the beginning of contact 
analyses. For large deformation analyses, a practical way to check 
the adequacy of the penalty constant is to plot the deformed shape. 
If the penetration of the contact element is sufficiently small that it 
cannot be seen, the solution is acceptable. 

The present examples required between two to twelve itera- 
tions to achieve the convergence during a force or time-step. 
Figure 21 shows the number of iterations employed during the 
various time-steps for the problem of Fig. 14 under ix = 0.1. 
The highest peak of Fig. 21 is associated with the application of 
the moment. 

@ @ @  5 Summary and Conclusion 
A three-dimensional contact element having symmetric stiff- 

ness matrix has been developed to analyze frictional contact 

(a) Step 10 (b) Step 30 (c) Step 50 

Fig. 19 Successively deformed pan of Fig. 18 

1 0.00 
~ 2 0.26 

3 0.53 
4 0.80 
5 1.07 
6 1.33 
7 1,60 
8 1.87 

Fig. 20 Contours of the effective plastic strain at final stage of the 
deep-drawn pan of Figs. 18 and 19 

problems. Results demonstrate the element's reliability to ana- 
lyze sliding contact problems using either static or transient 
large displacement finite element analyses, including those in- 
volving extensive sliding and loading plus unloading. Sticking, 
sliding, and clearance can be handled, as can linear, nonlinear, 
and inelastic materials behaviors. 
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A P P E N D I X  

From Fig. 3, the equation of  surface 1234 is 

where 

x = N l x l  + N2x2 ÷ N3x3 ÷ N4x4 

y = N i y ,  + N2y2 ÷ N3Y3 ÷ N4Y4 

z = N~z~ + N2Zz + N3z3 + N4z4 (A1) 

Nl = (1 + r)(1 + s ) ; )  

X~ = (1 - r ) ( l  ÷ s ) ;  

N3 = (1 - r)(1 - s) ;  

N4 = (1 + r)(1 - s) .  

The equation o f  line E2P2 is 

x - Xp2 _ y - Yp2 z - zp2 
- E (A2) 

P~ Py P~ 

where P~ = xe2 - xv2, Py = Ye2 -- Yv2, P~ = Ze2 - -  Zp2 and E 
is a constant.  Rearrange Eqs. (A1) and (A2) give 

I 
X I --  x2 --  X 3 + X 4 

Yl - Y2 - Y3 + Y4 
Zl --  Z2 --  Z3 @ Z4 

Xl + X2 -- X3 -- x4 

Yl  + Y 2 - - Y 3 - - Y 4  

Zl ÷ Z2 -- Z3 -- Z4 

Xi --  X2 + X 3 -- X4 

YJ - Y2 + Y3 - Y4 
Zl --  Z2 + Z3 --  Z4 

4 xl{i }  4x,,2_ +x2+x3+x4 / 
- 4 P y |  = / 4 y p 2  ( y , + y 2 + y 3 + y 4 ) } .  

- 4 P z . J  k 4zl,2 (Zl + z2 + z3 + z4) J 
(A3) 

Peric, D., and Owen, D. R. J., 1992, "Computational Model for 3-D Contact 
Problems with Friction Based on the Penalty Method," International Journal for 
Numerical Methods in Engineering, Vol. 35, pp. 1289-1309. 

The three unknowns, r, s, and E in equation (A3) can be 
so lved  directly using the Newton-Rapshon method or a direct 
method. 
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Analysis of Interaction 
of Multiple Cracks in a 
Direct Current Field and 
Nondestructive Evaluation 
A method of analysis is proposed for nondestructive evaluation of multiple cracks by 
means of the d.c. (direct current) potential drop technique. Two and three-dimensional 
multiple cracks are treated. A methodology for considering interaction of cracks based on 
the equation for an isolated crack is given to calculate the potential drop between both 
sides of  a crack in multiple cracking in a plate. The inverse problem to evaluate the crack 
depth is analyzed by comparing the potential drop calculated in this way with the 
measurement. It is shown that the evaluated crack depth is in good agreement with the 
actual one. 

1 Introduct ion 

Nondestructive evaluation of cracks is needed for integrity 
assessment of structures based on fracture mechanics. So far many 
investigations have been carried out concerning nondestructive 
evaluation of an isolated crack. Contrary to this, nondestructive 
evaluation of multiple cracks is a subject less explored. 

Multiple cracks are known to initiate by the combined action of 
stress and aggressive environment such as high temperature, chem- 
ical interaction, and oxidation on the surface of structural compo- 
nents. For example, multiple cracks have been observed on the 
tiebolt-hole segment of a jet-engine turbine disk (Beissner et al., 
1981). According to Parkins and Singh (1990) service failures by 
stress corrosion cracking are almost invariably characterized by 
multiple cracking. To predict service lives of structures containing 
multiple cracks and to prevent catastrophic fracture, it is necessary 
to use suitable methods to evaluate the cracks quantitatively. 
Ultrasonic testing is not applicable for nondestructive evaluation 
of multiple cracks, because the distance between cracks is some- 
times much smaller than the probe diameter. Even in the case of 
surface Rayleigh waves, nondestructive evaluation of three- 
dimensional multiple cracks with semielliptical or semicircular 
shapes arbitrarily located on the surface of a material is a difficult 
proposition. 
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MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS. 

Discussion on the paper should be addressed to the Technical Editor, Professor 
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cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS. 

Manuscript received by the ASME Applied Mechanics Division, Apr, 3, 1997; final 
revision, Aug. 13, 1998. Associate Technical Editor: M. Taya. 

A method for nondestructive evaluation of two-dimensional 
multiple cracks has been developed (Ghajarieh et al., 1994, 1995), 
where the distance between cracks has been assumed to be known 
in advance based on observation from the side of the cracked 
surface by using the penetrant method, for example. This method 
was based on the numerical analysis of inverse problem concerned 
with the d.c. potential drop technique. In the case of multiple 
cracks, both the crack depth and the distance between cracks affect 
the potential drop. Namely the electric field perturbations due to 
the cracks interact. We call this phenomenon interaction of cracks. 
So one cannot determine the depths of cracks by using evaluation 
equation for an isolated crack. The interaction of cracks has well 
been considered by using the finite element method for multiple 
cracks using the method of Ghajarieh et al. and the depths of 
cracks have been determined. 

However, in order to evaluate multiple cracks through the anal- 
ysis of inverse problem by using the finite element method, a 
comparatively powerful computational tool is needed and perform- 
ing the analysis is time-consuming. In addition, three-dimensional 
multiple cracks occur more frequently in worksites, compared with 
the problem of two-dimensional multiple cracks. 

It is stated that in order to evaluate an isolated crack in the 
welding zone using the d.c. potential drop technique, Ab6 and 
Kanoh (1990) have proposed a method which has considered the 
interaction between the crack and the weld being the electrical 
inhomogeneity, The present paper is based on their method to 
analyze the interaction in the problem of multiple cracks. In the 
present paper, the potential drop for multiple cracks is calculated 
by successively adding the terms of interaction effects of the 
multiple cracks, where the calculation is based on the evaluation 
equation for an isolated crack. Then the crack depths are evaluated 
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Cm'rent ~ \ Crack 

Fig. 1 An isolated two-dimensional crack 

by analyzing the inverse problem. This method is verified with the 
experimental results. 

2 Evaluat ion Equation of  d.c. Potential  Drop 

2.1 Case of a Two-Dimensional Isolated Surface Crack. 
First, consider the problem of isolated crack as the basis of 
multiple cracks. For a two-dimensional crack located in the middle 
of two points A and B measuring potential drop V*(a) as shown 
in Fig. 1, Johnson (1965) has obtained the analytical solution given 
by 

(cosh  -h,:2r 1 
V*(a) c°sh--I \ cos ~ra/2T / 
V*(a0) = (cosh 7rh,/2T~ (1) 

cosh -~ \ G ~  G o / / 2 ~ :  

where a is the crack depth, ao a reference crack depth, T the 
thickness of the plate, and h ~ the distance of the crack from A and 
B. Crack surfaces are assumed to be insulated electrically. 

For the crack which is not in the middle of two measuring 
points, Eq. (1) is not applicable. Ghajarieh et al. (1994) have 
modified the Johnson's equation to the potential drop V¢(a) be- 
tween two points B and C where a crack lies at a distance h ~ and 
h2 from the points as shown in Fig. 1. It is given by 

2TV0[ cosh ' (c°-sh'rrh'/2TI 
Vt(a) = ~ -  \ cos wal2T ] 

+ cosh ' (c°sh "rrh2/2T] ] 
cos wa/2T J ]  (2) 

where V0 is the potential drop for a l-mm distance in the direction 
of current flow in an uncracked part of the plate. 

According to Eqs. (1) and (2), we can get the following evalu- 
ation equation of the potential drop V,(a) between two measuring 
points A and C beside the crack as shown in Fig. 1: 

[ cosh--' (c°shvrhll2TI 2TV,, ~os ~ - T  J Vii(a) 

_ cosh -L (cosh 7rhfl2T I ] 
- ~  ~ / 3 (3) 

2.2 Calibration Equation of Potential Drop for a Semiel- 
liptical Surface Crack in an Infinite Plate. The problem of 
current flow in a material is governed by the Laplace equation as 

V 2 6 = 0 (4) 

where qb is the electrical potential and V 2 is the three-dimensional 
Laplace operator. Equation (4) can readily be solved by using the 
finite element method. 

Consider a semielliptical surface crack which is perpendicular to 
the surface of an infinite plate as shown in Fig. 2. As far as we 
know, there is no literature treated the analytic solution in a closed 

Z, 

/ / / / I I I I I  

f c:x2,y,,,T).------_~, -~-------.D f J 

X p 

Fig. 2 

Detail of Crack 

Infinite plate containing a semiellipUcal surface crack 

form for the problem of Fig. 2. Hence the numerical calculation is 
carried out. The maximum depth of the crack is a (<T)  and its 
half-length on the surface of the plate is c(-> a). A constant current 
is introduced far from the crack. The crack surface is at an angle 
to the direction of the current far from the crack. A Cartesian 
coordinates system (X, Y, Z) is introduced as shown in Fig. 2, 
where the Z-axis is perpendicular to the surface of the plate and the 
origin O is located on the bottom surface of the plate below the 
deepest point of the crack. The angle of skew between the normal 
to the crack surface and the positive direction of the X-axis is 
denoted by 0(101 -< qr/2) and its positive direction is defined as in 
a counterwise direction. Consider a point A existing at X = x t and 
Y = y: on the surface of the plate and its symmetric point B about 
the Z-axis. The potential drop between A and B, Va~(0), is found 
empirically to be approximated by the following equation from the 
numerical results obtained by the finite element analysis: 

[ cosh_, I cosh(~-x,/2T) ] 
VAB( O) _ f(x,) COS { ~Ta/2T ~ ~ T  + c)} 
VOAB 7rlxt [/2 T 

X COS 2 0 '4- s in  2 0 

+ 
{4"n'aT/(c + T/2)2} cos 0 

+ I x l l  
c°sh ( ~ f 2 )  { 1 (2c ~ a) } exp( Ix'. + l y l l ) c  

,) (cosh 1 [ cosh(~xJ2T) ] 
_ cos { T r a / 2 r ~ T  + c)} 

"rrlx~l/2T 

xcos2  /exp  2  -y,i I 
/ /  

alsin 01 cos 0 

+ (ix ,+y,  tanOi) (5) 
Ixll exp c 

where Voa, is the potential drop between A and B in the case that 
no crack exists. The quantity VOAU is given by 2V01x~l. Moreover 

l x # 0 (6a) 
f(x) = 0 x = 0 .  (6b) 

It is noted that Eq. (5) is valid except for on the intersection of the 
crack surface to the plate surface and covers Eq. (1). An example 
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Comparison of Eq. (5) with the finite element method calculation Fig. 3 
for an infinite plate containing a sernielllptlcal surface crack, where c = 
5mm, a = 4 m m ,  T=7 .5mm,  andO= ¢d36 

of the comparison between Eq. (5) and the finite element method 
calculation results is shown in Fig. 3. Although Fig. 3 shows only 
an example, the calibration equation has been confirmed for many 
cases to agree well with the results of the finite element method. 

Similarly, by considering a point C existing at X = x2 and Y = 
Yz and its symmetric point D about the Z-axis, the potential drop 
between C and D, Vco(O), is obtained. 

The potential drop between A and D, which are on both sides of 
the crack, Vao(O), and the potential drop between A and C, which 
are beside the crack, Vac(O), are calculated by using VAB(O) and 
VcD(O) as 

VAD( O ) ~- ½ {VAB( O ) -}- VCD( O)} (7 )  

and 

VAc(O) = ½ tYzB(O) -- V~AO)l. (s) 

The demonstration of Eqs. (7) and (8) is given in the Appendix. 
The increment of the potential drop between A and D, A V[(0), and 
that between A and C, avn(o), are calculated by 

aVl(0) = VAD(O) - VOA, (9) 

and 

AVii(0 ) = VAc(O ) --  VOA C (10) 

where VoAo and VOAC are the potential drop in the cases where no 
crack exists. 

2.3 Calibration Equation of Potential Drop for a Semiel. 
liptical Surface Crack in a Finite Plate. Next, derive the eval- 
uation equation of the potential drop for an isolated crack in a finite 
plate. For a semielliptical surface crack, which is perpendicular to 
the surface of a plate having the width W as shown in Fig. 4, the 
calibration equations of the potential drop between points A and D, 

Y 

h 1 

rc .C r ~ h . ~ 3  

Cr; 

Fig. 4 

470 / Vol, 

~2 

tckL D~D "tI0 , X / ~~W~ 

Finite plate containing a semielliptical surface crack 

66, J U N E  1999 

5.0 I I I I j I 1 I I 
+ FEM -- Eq.(ll) Yl=0'00mm 
= F E~I, yl=2.75mm 

\ ..... Eq.tll ) 

a"m"-....,,m,,.~ ~ x ,  .......... +-~-~ ........ +~ 

t t I t I I t t 0.5 
4xl / W 

Fig. 5 Comparison of Eq. (11) with the finite element method calculation 
for a finite plate containing a semielliptical surface crack, where c = 5 
mm, a = 2 m m ,  W = 3 0 m m ,  t = S m m ,  T = 7 . 5 m m ,  a n d O =  ¢r/36 

VAo(O), and of the potential drop between points A and C, VAC ( 0 ), 
are proposed as follows. The potential drop Vzo(O) is based on the 
results of the finite element method and expressed empirically by 
the sum of the potential drop between A and D in the case without 
a crack, the increment of the potential drop AVE(O) due to a crack 
which is calculated by Eq. (9), assuming the crack is in an infinite 
plate, and the effect of side walls and crack interaction, AV,~[(0), 
as 

VAo(O) = VOAD + av~ (0) (] ]a) 
aV' I (0) = AWl(0 ) "q- ~Vwl(0 ) (1 lb) 

(aW- S) { h, h2 } 
~VwI(O) -- f f  (W + rA) 2 "-~ (W ~ FD) ~ 

X 2 W + t  V0cos 0 ( l l c )  

where A V'~(O) represents the increment of the potential drop due to 
the crack in a finite plate. The area of the crack is denoted by S, 
and h~, h2, rA, ro and t are the distances shown in Fig. 4. In the 
case of a crack passing through the plate width, the effect of the 
walls is disregarded, because it is small. 

An example of the comparison between Eq. (11) and the finite 
element method calculation results is shown in Fig. 5, where D is 
symmetric to A about the center of the crack. In the same way as 
Fig. 5, Eq. (11) has been confirmed for many cases to agree well 
with the results of the finite element method. 

Similarly, the potential drop Vac(O) is obtained by 

'VAc(O ) = VOA C + aVtli(0) 12a) 
AV'I,(O) = AV,~(O) + AVwn(O) 12b) 

( a W -  S) h, ~h~rc~5 AVon(O) - -~ (W + rA) 2 (W 

× W + t  V0cos 0 12c) 

where AV'~(O), AV,(O), and AVw~[(O) are the increment of the 
potential drop due to the crack in a finite plate; the increment of the 
potential drop due to the crack which is calculated by Eq. (10), 
assuming the crack in an infinite plate; and the effect of side walls 
and crack interaction, respectively. The quantities h3 and rc are the 
distances shown in Fig. 4. 

2.4 Case of a Finite Plate Containing Multiple Cracks, 
Three-dimensional multiple cracks as shown in Fig. 6, which are 
semielliptical and perpendicular to the surface of a plate, are 
treated. A constant current is introduced far from the cracks. The 
maximum depth of the ith crack (i = 1, 2 . . . . .  n) and the 
half-length on the surface of the plate are denoted by ai and c ,  
respectively, where n is the total number of cracks. The normal of 
the surfaces of the cracks is at an angle to the direction of current 
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Fig. 6 Modeling of three-dimensional multiple crneks 

flow far from the cracks by angles 0~(10J < zr/2). Consider 
calculating the potential drop VIi, between points A~ and B ,  which 
are on both sides of the ith crack (see Fig. 6). First as the simplest 
case of multiple cracks, a plate containing two cracks is consid- 
ered. Then evaluate the potential drop VIi between points A~ and 
B~, which are on the surface of the material, simply by 

"'<'> av[~> + Vii = Vol q- AVl 1) + ~Vwl + A V ~  I 

{ a V l  I) -~ a|d(I)lJA|/(2)--wi Jt ='II + /~ Vl,!]I} 

+ AVol (13) 

where V0t is the potential drop between A~ and B t in the case 
without crack, A VI ° is the increment of the potential drop between 
A~ and BL for an assumed infinite plate only containing the first 
crack, A V~,!~ ) is the effect of interaction between the side walls and 
the first crack, ,5 VIi ) is the increment of the potential drop between 
A~ and B t for an assumed infinite plate only containing the second 
crack, m~z(z> is the effect of interaction between the side walls and rwl  I 
the second crack, and A is an unknown coefficient. The sixth term 
on the right-hand side of Eq. (13) expresses the interaction be- 
tween the first and second cracks. In the case where no crack 
exists, Eq. (13) is equal to V0t. For an assumed finite plate only 
containing the first crack, VIi in Eq. (13) is equal to V01 + AVI ~> 
+ AVC,!~ ), which is the evaluation equation for a finite plate 
containing an isolated crack. Also for an assumed finite plate only 

• .,(2) containing the second crack, VIi is equal to V0~ + AVIS ) + Av.,.. 
In this case two measuring points At and B~ are beside the second 
crack. For its general case as shown in Fig. 7, ~AvU).,,,. ( j  = 1, 
2 . . . . .  i -- 1, i + 1 . . . . .  n) is approximated similarly to Eq. 
(1 2c) by 

,5 V~i, - ( a jW_-  Sj) hjA hjn 
"tr ( W  + rjA) 2 ( W  -t- rjn) 2 

X W + ( j  V0cos Oj (14) 

where S~ (=  7rajcJ2)  is the area of thejth crack, and hja, hin, rjA. 
rj~, and tj are the distances shown in Fig. 7. 

Next Eq. (13) is extended to the case of a plate containing three 
cracks. First consider the interaction between the second and third 
cracks. The increment of the potential drop AV~ for an assumed 
finite plate containing the second and third cracks and without the 
first crack is evaluated by 

a v ~  = av[~  > + A v ~  + aV[~> + m~3> VwI l  ~ ~wlI 

A V.,,,}{AV. + 
+ (15) 

AVo~ 

Then consider another interaction of the first crack. The potential 
drop Vii between points A~ and B~ is evaluated by 

vii = Vo, + a v l  >> + avl2 

q- a V ~ l  @ 
{ a v l  ') + a v l # } a v t ,  

A G ,  
(16) 

The methodology is extended successively to calculate the po- 
tential drop Vii, between points A~ and Bi, which are on both sides 
of the ith crack (see Fig. 6). It is given by 

VIi, = Voi + AVI  ~) + a v o )  ~ V w I  

+ AVit + 
{ a v l  '> + av[ i{}avl ,  

A Voi 
(17) 

The potential drop AVI,!I is approximated similarly to Eq. (11 c) by 

--(i) ( a i W -  Si) I hil 
AV"I  -- 77" ~ ( W  + riA) 2 + 

hi2 } 
( W  + riB) -~ 

") 
Vo cos 0i (18) X 2 W + t i  

where hi~, hlz, riA, r~n, and tj are the distances shown in Fig. 6. The 
increment of the potential drop AVii between A~ and B~ obtained 
for an assumed finite plate without the ith crack as shown in Fig. 
7 is calculated by considering successively the interaction of 
respective cracks. 

3 Characterist ic  o f  Coeff icient A 

The unknown coefficients which have appeared in the de- 
nominator in the fifth term on the right-hand side of Eq. (17) 
and been contained in A Vii implicitly, have been expressed by 
the same symbol A. In order to show that this dealing is 
appropriate, consider a model with three cracks, and evaluate 
the potential drop VIi between two points which are on both 
sides of the first crack. 

By paying attention to the first crack, let us consider the 
interactions of the second and third cracks. First assume a plate 
only containing the first and second cracks, where A is written 
as A ~, and the sum of the effects of the first and second cracks, 
side walls, and the interaction of side walls and cracks, AVI '> + 
a " " > +  a v l ? > +  ""~> { a v l  '> avl..',>}{aW>+ av. . , ,}/  cwI '~-,~ VwlI ~'- + (2> 
(A ,Vo) )  is calculated. Then if another interaction of the third 
crack is considered by writing A as A:,  the potential drop VIi is 
evaluated by 

." 2141 "'I'i-- l I 

Fig. 7 Plate containing three-dimensional multiple cracks without the 
ith crack 
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A i T ( i ) ] ( A w ( 2  ) ) 
~ V w l / k ~ V l [  

V i i  = Vo, @ ~ V I  1) n- A1/(1) + z~Vl~ ) + Z V  (2) + ( ~ V l [ )  "+ + z~V},~,]) 

( ~ V w [  ~ Vwll -- A 1 g01 
+ AzVo, = v01 -t- AVi1)  ~ - A V I i  2) 

V w I  ) \ ~  v i i  ~ V w l I )  ~ V w [  ] \ ~  ~ I I  ~ VwI I )  A l l ( l )  A I / (  2 ) A Iz(3) + a v l ~  ) +  ~-w~ + + + ~- ~ - - w l l  ~ V w l l  AiVol A2V~i 
( a V } ~ )  + AI / (2 ) ]{AIT(3 )  + AW(3)]  ( a v ( l l )  + A i i ( I ) ' ~ [ A i i ( 2 ) +  A 1 7 ( 2 ) ] ( A i T ( 3 )  (3) - - - - w l I ) \ ~ - - l I  ~Vwl I )  t,-~¥wI)K/-~v 11 ~ V w l I ] \ ~ - - l l  -~ AVwl i )  + + 

A2Vi, A~A~V~i (19) 

Next, change the order of the cracks considered. First assume a 
plate containing only the second and third cracks, where A is 
written as A3, and the sum of the effects of the second and third 
cracks, side walls, and the interaction of side walls and cracks, 
AVIi  2) + ~v, , .n - r -  AVIS ) + ----w,, + + z ~ v w n , { A V l i  ~) + 

A V}3iI}/(A 3 Vow), is calculated. Then if another interaction of the 
first crack is considered by writing A as A4, the potential drop VIi 
is evaluated by 

• i 0 Vl ,, 
- - - - > 0 .  
Oai 

According to Eq. (17), we can get 

OVIi,oai - O{AVl° +Oai A~iU)~.~,,,, ( 1 + AVoi/~ViIt 

(22) 

(23) 

( A  1/(2) + (2) A 1/(3)~ \ zx v w,,)(zx vl~ ~ + . . . .  ,i, 
VI i  = Vo, + AVI~ ~ + zxv,,,H + + 2xVl"  + Av,v,  

a V w i  I -- A3Vo 1 

( ( ~ V I i 2 )  + A I / ( 2 ) ' ( A I / ( 3 )  + v wily \ ~ --  II 
avl~)  + A,,(~) + av}~) + • , , ~  + ( a v }  '~ + avl,l?) 

V w l l  ~ Vwl I  A 3 V o  [ 

+ A4Vo, = Vo, + AVI')+ A V } [  ) 

( A V I ~ )  + A W ( 2 ) ' ~ ( A W  TM + AW(3)~ ( A V I ~ )  + A w ( 2 ) ~ ( A w  (1) + AW(I)'~ 
V ~vl[ / \ ~  v i i  ~ V wll] ~.a V wli] k ~ v I ~ V wl ] 

+ AV[i ~) + AVwi + + --wll 
A 3 V o l  A4Vol  

( A V I i  3) + ~A v(3) ]  (A  17(I)--wil./,,~ -- i  + A VI~!i )) ( A V I  D + a Vl l [ ' ) (  ~ |7(2)vII + --A w(2)] (A  ' 7 ( 3 ) ' , v i i i  \ ~,,,a v I I  -~- ~A'ZZ(3)]Vwii) 
+ + 

A4Vol A 3A4 V~i (20) 

Since Eq. (19) should be equal to Eq. (20), coefficients A~ to A 4  

must satisfy the next conditions. 

A i  = A4,  A2 = A4,  A2  = A3 ,  A1A2 = A 3 A 4  (21) 

According to Eq. (21), it can be found thatA~ = A 2 = A3  = A4, 
which means that our dealing concerned with A is appropriate. It 
can easily be verified in the same way as the above that A takes 
only one value in the case of arbitrary n cracks. 

4 Range of Coefficient A 
When the depths of cracks except for the ith crack are assumed 

to be fixed, VI, ~, increases due to an increase of the depth a~ of the 
ith crack. Therefore 

By substituting Eq. (23) into Eq. (22) and considering 0 { AVI ° + 
AVl~l}/Oai > 0, we can get 

Avi~ 
A > - -  (24) 

f o i " 

It is noted that AV'u contains A implicitly, and A must satisfy Eq. 
(24). 

5 Simplified Evaluation Method 

For both two and three-dimensional multiple cracks, consider 
a procedure to evaluate the depths of cracks by means of the 
above-mentioned analysis of crack interactions and by consult- 
ing the nondestructive evaluation method for two-dimensional 
multiple cracks (Ghajarieh et al., 1994). The distances between 
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Fig. 8 Relation between function Fand coefficient A in the case of the 
coefficient o~ = 0.5 and a~AIT = 0.5 in specimen SP1, where N is the 
repeated number of calculation, o~ is defined in Eq. (27), and SP1 is 
shown in Fig. 9 

cracks and the lengths of cracks on the material surface are 
assumed to be known in advance based on observation from the 
side of the cracked surface by using the penetrant method, for 
example. However, the crack depths are unknown. The proce- 
dure to determine the depths is proposed as follows: 

1 Introduce a constant d.c. current to the material. Measure the 
potential drop between two points on the cracked surface, where 
the points are on both sides of the ith crack, and denote the 
potential drop by Vy and define F by 

" ( r y e  vtl,) 2 
F = ~ V0i / 

i = ] 

(25) 

2 Assume any value aiA for the depth of the ith crack. 
3 We have confirmed as illustrated in Fig. 8 that in the range 

of Eq. (24), a value of A, which gives the minimum value o fF ,  can 
be obtained uniquely. Therefore, give different values for A step 
by step. Compare the values of F calculated. Then determine the 
value of A giving the minimum value of F. 

4 Based on steps 2 and 3, calculate the value of VI(, by using 
Eq. (17), then calculate F. 

5 If F takes a value less than an infinitesimal value E, the depth 
of the ith crack is evaluated as a~A. Otherwise the assumption of 
the crack depth is modified by 

alA = aiA + AOiA (26) 

where 

A a i A  = 

v~  - vJl, 
c~ V ~  ( T - - a i A )  (when V~>VI' , , )  (27a) 

v ~ -  vll, 
O~ Vii, aiA (when V~<V[ i , )  (27b) 

The coefficient c~ takes a value in the range 0 < c~ -< 1. Set 
a,A = a'~a and repeat step 3. 

6 E x p e r i m e n t  
The specimens n]ade of austenitic stainless steel AISI304 

were used and named SPI and SP2, respectively. The thickness 

1 5 9 13 17 21 25 

'lll'll'l 'tJ  Jl I 

(~) 

5ram 
i I 

4 

 t1117 
5 ram  

(b) 

Fig. 9 Specimens used for experiment, (a) specimen SP1 containing 
two-dimensional multiple cracks and (b) specimen SP2 containing three- 
dimensional multiple cracks 

T, the width W, and the length L of SPI containing two- 
dimensional multiple cracks were 5, 25, and 300 mm as shown 
in Fig. 9(a), and those values of SP2 containing three- 
dimensional multiple cracks were 7.5, 30, and 300 mm as 
shown in Fig. 9(b), respectively. Multiple cracks were modeled 
by electric-discharge machined notches having a width of 0.1 
mm for SP1, and 0.15 mm for SP2. 

A schematic diagram of the experiment is shown in Fig. 10. A 
constant d.c. current of 17A was introduced on both sides of the 
specimen. The left probe was fixed at a distance of 70 mm for SP1, 
and 80 mm for SP2 from the center of the first crack on the surface 
while the right probe was moved along the line crossing the center 
of the crack in the direction of current flow far from cracks. 
Potential measuring points are shown in Fig. 10. The potential 
drop between two points on the cracked surface, where the points 
are on both sides of the ith crack, was measured by using a digital 
microvoltmeter. 

7 Resul t  and Discuss ion  

The comparisons between the final values of the crack depths 
calculated by the present method and the actual crack depths are 
shown in Figs. 11 and 12 for specimens SPI and SP2, respectively. 
In SPI, the value of E used w a s  10 -4. In SP2, E was 10 3. 
According to Fig. I l, the final values of calculated crack depths 
are independent of the initially assumed crack depths. The crack 
depths evaluated by the present method agree well with the actual 
depths (see Figs. 11 and 12). 

Also, as an example, the comparisons between the crack 
depths evaluated by using Eq. (7) for all isolated crack without 
considering the interaction of multiple cracks and the actual 
crack depths are shown in Fig. 13 for specimen SP2. It can be 
observed from Fig. 13 that the successive interactions of cracks 
and side walls must be considered additionally to the evaluation 
equation for an isolated crack as done in the present paper, 
because the difference between the evaluated and actual values 
is quite large. 

Finally, it is stated that the present method evaluated the depths 
of the cracks with a personal computer (i486SX) or a workstation 
(R4000SC) in a short time. As an example, in the case of c~ = 0.5 
and aiA/T = 0.5 in SPI, the calculation time was 28 seconds by 
using a personal computer. 
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Fig. 10 Schematic diagram of experiment 

"~ I Actual a#T I 
o Initially Assumed aiA/T = 0.25 I 

"~1.0 [] =o,501 
0.8 " = 0.75] 

• ,~ 0.6 s I 1 [TT 0.2 

t~ 0.0 2 4 6 8 10 12 14 16 18 20 22 24 
Crack No. 

Fig. 11 Comparison between the final values of the calculated crack 
depths obtained by using 0.25, 0.5, and 0,75Tfor initially assumed crack 
depth with a of 0.5 and the actual crack depths in SP1 
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Fig. 12 Comparison between the final values of the calculated crack 
depths obtained by using O.15Tfor initially assumed crack depth with 
of 0.15 and the actual crack depths in SP2 

8 Conclusion 
A method of nondestructive evaluation of two and three- 

dimensional surface multiple cracks was proposed, which was 
based on the d.c. potential drop technique and analyzing simply the 
interaction of multiple cracks. It was shown by the experiment and 
calculat ion that the present  me t hod  is valid. 

1.0 

~ 0.8 

0.6 

I 0.2 

0.0 

I I Actual ai/T I 0 Evaluated aia/T 

2 6 

Crack No. 

Fig, 13 Comparison between the value of crack depth evaluated by Eq. 
(7) and the actual crack depth 
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A P P E N D I X  

Demonstration of the Equation of the Potential Drop 
Between Measuring Points on the Surface of an Infinite 
Plate Containing an Isolated Crack 

In the text, the equations of the potential drop between two 
measuring points on the cracked surface were given by Eqs. (7) 
and (8). Let us derive these equations. 

First denote the electrical potential at A, B, C, and D in Fig. 2 
by 49A, 49~, 49C, and 49o, respectively, and at the origin O by 490. 
Since point A is symmetric about the Z-axis to B and C is to D, 
respectively, we have 

Then 

49a - 490 = 490 - 49~ ( A l a )  
49c 490 = 490 - 49> (Alb )  

{ 49B = 2490 - 49A (A2a) 
49c 2490-  490 (A2b) 

Based on the above, the derivation of Eqs. (7) and (8) is as follows: 
For the case of 49A > 49C > 49O > 49Z) > 49~ as an example, 

GB(0) + Vco(O) = 149A - 49,~1 + 1 4 9 c -  4,ol 

= 'hA -- 49B + +c -- 490 

= 4 9 A  - -  2490 + 49A + 2490 -- 490 -- 49o 

= 2(49A -- 49~) 

= 2 V A . ( O )  (A3) 

and 

I v ~ , ~ ( o )  - v c , ( o ) i  = I IG - 4,91- I + ~ -  0oil 

= 149A - -  49~ - -  49~ + 4 9 d  

= IOa -- 2490 + 49A - -  49C q- 2490 -- 49cl 

= 2(49A - -  49c) 

= 2 V A c ( O  ) . 

In this way, Eqs. (7) and (8) are proven. 

(A4) 
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Dynamic Buckling and Post- 
buckling of Imperfect 
Orthotropic Cylindrical Shells 
Under Mechanical and Thermal 
Loads, Based on the Three- 
Dimensional Theory of Elasticity 
The three-dimensional theory of  elasticity in curvilinear coordinates is employed to 
investigate the dynamic buckling of an imperfect orthotropic circular cylindrical shell 
under mechanical and thermal loads. Accurate form of the strain expressions of  imperfect 
cylindrical shells is established through employing the general Green's strain tensor for 
large deformations and the equations of motion are derived in terms of the second 
Piola-Kirchhoff stress tensor. Then, the governing equations are properly formulated and 
solved by means of an efficient and relatively accurate solution procedure proposed to 
solve the highly nonlinear equations resulting from the above analysis. The proposed 
formulation is very general as it can include the influence of the initial imperfections, 
temperature distribution, and temperature dependency of the mechanical properties of  
materials, effect of various end conditions, possibility of  large-defbrmation occurrence 
and application of any combination of mechanical and thermal loadings. No simplifica- 
tions are done when solving the resulting equations. Furthermore, in contrast to the 
displacement-based layer-wi'se theories and the three-dimensional approaches proposed 
so far, the stress, force and moment boundary conditions as well as the displacement type 
ones, can be incorporated accurately in these formulations'. Finally, a few examples of 
mechanical and thermal buckling of some orthotropic cylindrical shells are considered 
and results of  the present three-dimensional elasticity approach are compared with the 
buckling loads" predicated by the Donnell's equations, some single-layer theories, some 
available results of  the layer-wise theory and the recently published three-dimensional 
approaches and the accuracy of the later methods are discussed based on the exact 
method presented in this paper. 

Introduction 

Because of their large strength-to-weight ratio of fiber- 
reinforced composite materials, they have found many applications 
in aerospace, aeronautic, marine, automobile, and other industries. 
Behavior of the composite components differs from that of metal- 
lic counterparts in that the former are heterogeneous, anisotropic, 
and considerably more shear deformable than the latter. In these 
materials, transverse shear and normal stress effects may be sig- 
nificant, even in thin composite shells. Disregarding such effects 
can lead to approximately as much as 120 percent or more errors 
in predication of the critical buckling loads (Kardomateas and 
Philobos, 1995). Complete analysis of the buckling of composite 
cylindrical shells requires that the directional properties of the 
materials, possibility of large-deformation occurrence, end condi- 
tions, temperature distribution effects (thermal loading), tempera- 
ture dependency of the mechanical properties, initial imperfec- 
tions, and inelastic deformations to be considered. For this reason, 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS. 

Discussion on the paper should be addressed to the Technical Editor, Professor 
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, 
Houston, TX 77204-4792, and will be accepted until four months after final publi- 
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS. 

Manuscript received by the ASME Applied Mechanics Division, Jan. 8, 1998; final 
revision, Sept. 14, 1998. Associate Technical Editor: J. N. Reddy. 

even the static buckling phenomenon of a composite cylindrical 
shell is not clarified well, yet. 

The classical shell theory suggested by Donnell (1976) have 
formed the basis for dynamic stability analysis of many works in 
the literature. The transverse shear and normal stress and strains 
are disregarded in this approach. Some of these studies are done by 
Saigal et al. (1987), Liaw and Yang (1991), Argento and Scott 
(1993), and Kasagi and Sridharan (1995). 

In many references, effect of the transverse normal and shear 
stresses and strains are accounted for by means of higher-order 
strain-displacement expressions (Zukas, 1974; Reddy and Liu, 
1985; Stein, 1986; Dennis and Palazotto, 1989; Simitses and 
Anastasiadis, 1992; Barbero et al., 1990). Recently a high-order 
shear-deformation theory was proposed by Eslami and Shariyat 
(1998) which is most suitable for incorporation of stress and 
displacement edge conditions. 

To improve the accuracy of the usual two-dimensional formu- 
lations, through consideration of the transverse shear and normal 
stresses, some displacement-based layer-wise theories are pro- 
posed by some authors (for example, Reddy and Savoia (1992) and 
Robbins and Reddy (1993)) which can produce much more accu- 
rate results but suffer from the point that the boundary conditions 
(for example, the simply supported end condition) cannot be 
exactly incorporated in these formulations. Recently, the authors 
have proposed a new general layer-wise theory which can over- 
come this problem (Eslami and Shariyat, 1998). 
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More recently, efforts for introducing a three-dimensional elas- 
ticity solution for the static buckling of perfect, single-layered 
thick composite cylindrical shells under mechanical loads alone, 
were done by Kardomateas (1993a, b, 1995b), Kardomateas and 
Chung (1994), and Radhamohan and Venkataramana (1975). In 
the formulations of Kardomateas (1993a, b, 1995b), Kardomateas 
and Chung (1994), and Radhamohan and Venkataramana (1975) 
the transverse shear deformability and normal stress are automat- 
ically incorporated and the dependency on a particular shell theory 
is eliminated. The proposed formulations are rather simple, linear, 
static, and disregard the initial imperfections and temperature 
effects and are suitable for single-layer thick composite shells. 
Besides, one of the Fourier triple series terms is adopted in the 
solution (which can justified for thick shells only) and the bound- 
ary conditions are only satisfied geometrically. Thus, the problem 
is reduced to a standard eigenvalue problem that is solved by 
discretizing the shell thickness and using the finite difference 
method in this direction. 

in contrast to the study of shell buckling under mechanical 
loads, studies of thermal buckling of composite shells are more 
restricted. Generally, these investigations are based on static buck- 
ling consideration and belong to the equivalent single-layer theo- 
ries (for example, Radhamohan and Venkataramana (1975) and 
Thangaratnam et al. (1990)). A paper review by Thornton (1993) 
summarizes thermal buckling of plates and shells research. 

In the present paper, the three-dimensional theory of elasticity in 
curvilinear coordinates is employed to investigate the dynamic 
buckling of an imperfect orthotropic circular cylindrical shell 
under mechanical and thermal loading. Mechanical loads may be 
composed of axial compression, external pressure, torsion, or a 
combination of them. For this purpose, instead of employing the 
conventional infinitesimal displacements or using the Von Karman 
assumptions, first the Green's strain tensor for large deflections in 
curvilinear coordinates is used, and the strain expressions of an 
imperfect circular cylindrical shell are derived. Then, the govern- 
ing equations are properly formulated and an efficient and rela- 
tively accurate solution algorithm for treatment of the highly 
nonlinear equations resulting from this approach are introduced. 
This method can be used to assist the dynamic behavior as well as 
the stability of the cylindrical shells. The proposed formulation is 
very general and no simplifications are made in solving the result- 
ing equations. To employ the presented procedure for solution, the 
shell is discretized into a three-dimensional mesh of grid points 
and the derivative expressions with respect to the spacial coordi- 
nates are substituted by a fourth-order finite difference approxi- 
mation and the resulted equations are solved by means of the 
fourth-order Runge-Kutta method for time marching. It can be 
noted that the solution of a cylindrical shell under mechanical 
loads is boundary conditions driven whereas it is constitutive 
equation driven in the case of thermal loading. Finally, few exam- 
ples of cylindrical shells under mechanical and thermal loads of 
the well-known references that are treated by other theories are 
reconsidered for comparison purposes and the efficiency and ac- 
curacy of the presented formulations are proved. 

F o r m u l a t i o n  

Strain-Displacement and Stress-Strain Expressions. As it 
will be explained later, the response of the cylindrical shell under 
a time-varying load is investigated to find the buckling point. 
Then, this approach requires that behavior of the shell slightly 
beyond the buckling point (post-buckling) be studied, too. For this 
reason, in this paper, a general formulation based on considering 
the possibility of large-deflection occurrence is adopted. 

The position vector of a point before deformation is given by 

R (°) = R(°)(o~ 1, o~ 2, o~ 3) (1) 

where (a~, a2, a3) are the curvilinear coordinates of the point. 
After deformation, the point moves to a new position, the position 
vector to which is denoted by 

R = R ( ~  I, a2, ~3). (2) 

If the covariant base vectors associated with the initial configura- 
tion and after deformation are denoted by g~ and Gx, respectively, 
then we have 

g x = R l ~  ) G x =  R a. (3) 

Defining the displacement vector, u(a  1, a:,  a 3) by 

R = R ( ° ) + u ,  (4) 

we have 

OX k 
6~ = ~ g~ = (8~ + u~)g~ (5) 

where x and 2 are the coordinate systems corresponding to initial 
a n d  final configurations, respectively, 8 is the Kronecker symbol, 
and the symbol ";" stands for the covariant derivative. Since the 
initial dimensions are considered in calculations, Green's strain 
tensor for large deformations is used in its general form which can 
be written in curvilinear coordinates as (Washizu, 1982) 

fij = ½ (G~j - go) (6) 

where g~j and G~j are the Euclidian metric tensors defined as 

go = gi" gJ G O = Gi"  Gj. (7) 

Substituting Eq. (5) into Eq. (6), the following expressions of the 
strain in terms of the displacement components are obtained. After 
rearrangement, 

f i j  = ½ (ui j  + uj;i + u,;iu~). (8) 

The tensorial and physical components of the displacements and 
strains can be related through the following expressions (Flugge, 
1972): 

f,~ 
e u - ~ ~ (9) 

where gO are the associated metric tensors. Expansion of Eq. (8) 
leads to the strain-displacement relations of a perfect circular 
cylindrical shell. These equations, after rearrangement and em- 
ploying Eq. (9), are 

~,, = w,, + ½[(w, )  ~ + (v,~) ~ + (u~)  2] 

1 1 
~oo = r (vo, + w )  + ~ [(Vo, + w )  ~ + ( w o  - v )  ~ + (u,0) ~] 

1 2 ~x, = v,x + ~[(w,~) + ( v 3  2 + (ux )  2] 

1 
E,o = 2 r  [ r V ,  + ( W o  - g ) ( w . ,  + 1) + (Vo  + W)V, .  + U,rU,o ] 

~,., = } [ w , . , ( 1  + w.~) + ~,,. + v ~ v ,  + u,,.u,.] 

,( , ) ,  
exo = ~ V ,. + - r + ~ [ V x( V . 

+ W ) +  U o U ~ +  W x ( W o -  V)] (10) 

where U, V, and W are the displacement components in the axial, 
circumferential and radial directions, respectively. For an imper- 
fect shell, some initial strains exist due to the initial deformations 
of the shell. These imperfections are practically in the radial 
direction (considering the presence of initial axial and circumfer- 
ential imperfections does not alter the generality of the present 
discussion). So, the initial strains %0 ~ eijo(Wo), where W0 is the 
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initial radial imperfection. Expressions of these strains can be 
obtained from Eq. (10) by substituting U, V = 0 and W = Wo. 
Thus, strains due to loading are derived by substracting the initial 
strains from the final strains: 

eu = e u -  e~o. (11) 

6j --- ~j(U, V, W + W0) are the final strains. Therefore, referring 
to Eqs. (10) and (11), the strain-displacement relations for imper- 
fect shells become 

Err= WRY._ I 2 , ~[(W,r) + 2 W r W o ,  r q- (V,r) 2 + (U,.) 2] 

1 1 
~o,, = -r (Vo, + w)  + ~ { (Vo  + w + Wo) ~ 

+ [ (w  + Wo) o - v ]  ~ + (u,o) ~ - w g  - (w0,0) ~} 

e~ = U,~ + ½ [(W,~) 2 + 2W,~Wo,x + (V,~) 2 + (U,.,) 2] 

1 1 
t~ro = ~ V,r ~- ~ [(W,o - V)(W,r q- 1) -- VWo,r "~ W,rWo,o 

+ W oWo,, + (Yo + W + Wo)V, + U,U,o] 

~,~ = ½(Wx(l + w r) + Wo.xW~ + Wo.,W.~ 

--~ U,r--~ V,,.Vx-~- U rU,x ) 

l( , ) 1  
e~o=~  V~+-U,o, r + ~ [ V ~ ( V ° + W + W ° ) +  UoU~ . . . .  

+ (W + Wo) ,x (Wo-  V) + W.xWo,o]. (12) 

The stress-strain relation of an orthotropic body in the orthot- 
ropy axes can be expressed as 

{o-*} = [O]{e~} (13) 

where {or*} and { e~} are the stress components and mechanical 
strain components and [Q] is the stiffness matrix. In the orthotropy 
axes 

and 

[Q] = [S] ' (14) 

[S] = 

l - -  /221 - -  / ) 3 1  
0 0 0 

El E2 E3 
- -  V [ 2  l - -  I ) 3 2  

0 0 0 
El Ez E3 

- -  / ) 1 3  - -  / ) 2 3  l 
0 0 0 

El E2 E3 
1 

0 0 0 0 0 
2G12 

1 
0 0 0 0 0 

2Gt3 
1 

0 0 0 0 0 
2G23 

(15) 

Equations (13) to (15) are valid for all orthogonal coordinate 
systems, including the cylindrical coordinate system (Vinson and 
Sierakowski, 1987). 

In the general case 

{e~} = {e~ - a~AT} (16) 

and 

{ i f*}  = [ Q ] I e ~ -  a~AT}. (17) 

In these equations, a~ are the coefficients of the thermal ex- 
pansion tensor in the orthotropy axes. Transformation of the stress 

and strain tensors from the orthotropy coordinate of the orthotropic 
shell to the geometrical coordinates yields the relation between the 
stress and strain components in these coordinates as 

{e} = [T]{~*} {~} = [T]{o-*} (18) 

or, regarding Eqs, (13) to (18), 

{or} = [ ( 2 ] { % -  aoAr}, (19) 

where the transformed stiffness and coefficients of thermal expan- 
sion matrices in geometrical coordinates, [Q] and {c%}, are 

[O]: F][e][r]-' 

{ ~ }  = [~]{o~,}. (20) 

[T] is the transformation matrix which is defined as 

0 0 1 0 0 0 
sin 2 0 cos 2 0 0 sin 20 0 0 
cos 2 0 sin 2 0 0 -sin 20 0 0 

IT] = 0 0 0 0 sin 0 cos 0 
0 0 0 0 cos 0 -sin 0 

0.5 sin 20 -0.5 sin 20 0 cos 20 0 0 

(21) 

where 0 is the ply angle. 
Since fiber orientation varies during the buckling, the stress and 

strain components correspond to the deformed shape of the ele- 
ment and must be incorporated in the constitutive Eq. (19). For this 
purpose, strain components of the cylindrical coordinates must be 
transformed using the following equation: 

Ox k Ox t 
eij(x) = f~, 02~'~xjxj = fkt" (6~ + u ;~) • (6~ + u~). (22) 

E q u a t i o n s  o f  M o t i o n  

Following the manner described in Washizu (1982), the equa- 
tions of motion for large deflections are 

d2R 
( ,/g ~k),k + P "fg = P dt z • (23) 

R is the position vector and P is the body force vector defined per 
unit volume of the body before deformation and g = Ig~jI. The 
traction vector ~" can be resolved in the direction of the base and 
lattice vectors g ,  and (G,) to obtain the first and second Piola- 
Kirchhoff stress tensors (¢~") and (l-k'), respectively, as 

'r k=  'rk~G~ = 'tk~g~. (24) 

Then, from Eqs. (5) and (24) it is immediately concluded that 

-?~ = ~'k'(8~ + u~) .  (25) 

The following expression holds in the curvilinear coordinates: 

A 
g " g ~ =  { ~ v } g  ~ (26) 

where the notation {(A/~v)} is the Christoffel three-index symbol 
of the second kind. Therefore, Eq. (23) can be expressed in a scalar 
form by resolving it in the direction of the base vectors gx, such as 

{ ) k  k d2Rk 

( k =  1 , 2 , 3 )  (27) 

or  
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d2t, t k 
= p ~ (k=  1, 2, 3) (28) 

where the suffix g in P~ denotes that the components are taken in 
the direction of the base vectors. In the absence of body forces, Eq. 
(28) becomes 

{ k }  d2u k 

( k=  1 , 2 , 3 )  (29) 

and its counterpart in infinitesimal deformations is 

d21u i 
~ ' i } = P ~ -  ( i =  1 ,2 ,3 ) .  (30) 

The above equations can be written in terms of the physical 
components of the stress through using the following relation: 

. . . .  /ggjj 
or': = "r 'J. ~ g , .  (31) 

The boundary conditions are satisfied by means of the following 
equation: 

F = (gk" v) 'rk (32) 

where F is the boundary traction vector and v is the unit normal 
vector on the boundary surface before deformation, 

t, = ukg ~'. (33) 

It can be noted that resolution of F in the directions of the base 
vectors reads 

F = "r~"vx(6~ + (34) 

Numerical Solution and Buckling Criteria 
Since in the resulting equations of motion the stress terms and 

their derivatives are coupled and are nonlinear functions of the 
displacement components, they are highly nonlinear equations of 
displacements. Nonlinear problems of mechanics are often solved 
by adopting an incremental formulation. By the incremental solu- 
tion procedure, the real time-variant system is approximated in a 
step-by-step way assuming time-invariance within each time step. 

Equation (28), in terms of the physical components, can be 
rewritten in the following form: 

f,(o'~j) = ~¢ 

¢i(~g = f" 

A(o.) = tO (35)  

so that the following perturbed equations hold for the time interval 
At (Eslami and Shariyat, 1998a, b; Shariyat et al., 1996): 

f l ( ~  "ij) = ~ /  

fz(a 'j) = A 9  

f3(6 ° )  = AU (36) 

in which the incremented terms are demonstrated by a tilde sym- 
bol. The displacements have to satisfy the initial conditions, for 
(x = 0, L and 0 = 0, 27r), during each time step, 

A u = 0  A v = 0  A w = 0  
Au=t~  A/J= ¢, AvO=v9, (37) 

Journal of Applied Mechanics 

furthermore, the continuity of (o',, o,0, and ~r,x) and (e., E0, and 
e0.~) must be considered in the numerical solution. 

The numerical solution procedure i s accomplished through the 
following steps: 

1 The numerical solution begins with discretizing the cylin- 
drical shell into m × n X k grid points in the axial, circumferential 
and radial directions, respectively. 

2 The initial deviations of the shell at the grid points are 
defined and the initial values of the displacement components (u, 
v, w) are set to zero. 

3 Time is incremented. 
4 Corresponding increments of the mechanical and thermal 

loads are found. 
5 According to the temperature distribution described in the 

previous step, the mechanical properties in geometrical coordi- 
nates of the shell are related through Eqs. (20) and (21) to those in 
the orthotropy directions of the materials. In this way, the depen- 
dency of E~, E2, v~2, and a* coefficients on temperature can be 
expressed as prescribed functions. 

6 Derivative terms of u, v, and w, with respect to the spatial 
coordinates that appealed in Eq. (12), are approximated by a 
second-order finite difference method (the central difference 
method) and the strain components along the geometrical coordi- 
nates are computed in each grid point. 

7 The tensorial strain components are computed from their 
physical components calculated at the previous step by means of 
Eq. (9) and are related to those of the lattice coordinates through 
Eq. (22). The physical components of the latter strains are com- 
puted from Eq. (9) by substituting go by G 0. 

8 Based on the constitutive Eq. (19) the physical components 
of the second Piola-Kirchhoff stress tensor and, therefore, the 
corresponding tensorial components at each grid point are calcu- 
lated. 

9 Derivatives of the stress terms of Eq. (28) are approximated 
by a second-order finite difference method and derivatives involv- 
ing multiplications of the radial distance of the points in the 
stresses are substituted by a fourth-order finite difference approx- 
imation. 

While kinematic and stress boundary conditions may be directly 
incorporated in the formulations, force and moment boundary 
conditions are satisfied through relating axial or circumferential 
stresses of the grid points of the longitudinal edges by means of a 
numerical integrating method, such as Simpson's method. Thus, in 
contrast to the governing equations between the force/moment and 
displacement of the grid points, stresses at the longitudinal edges 
are related through linear equations to the applied loads. Therefore, 
even the force/moment boundary conditions are incorporated in a 
numerically exact procedure. 

10 In the process of solution, time-invariance for terms ap- 
peared in the first sides of Eq. (36) is assumed during each time 
step. Thus, a set of second-order differential equations are derived 
that can be solved by employing the fourth-order Runge-Kutta 
method subjected to the initial (Eq. (37)) and boundary conditions. 
To improve the convergence of the proposed procedure, it is 
advisable to complete steps 6 to 10 for each individual point, 
before proceeding to the remaining points instead of considering 
all the points simultaneously. 

11 When all equations in each iterative step of the cun'ent time 
interval are solved, the maximum value of the lateral displace- 
ments (w,,,,) is determined. 

12 In each grid point, the displacement increments (Au, Av, 
and Aw) are added to displacement components obtained at the 
end of the previous time interval. To improve the results, solution 
is continued by using more iterations starting from step 6, until 
difference of the successive values of w ..... of the same time 
interval becomes negligible. 

13 The corrected values of u, v, w, u, r), and ~> obtained in 
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this manner are considered as initial values for the next time 
interval. 

14 Beginning from step 4, results corresponding to the next 
time increments are obtained. 

15 Possibility of dynamic buckling occurrence is checked. For 
this purpose, variations of wn,0x versus time or versus applied load 
(external pressure, axial load, temperature gradient, etc.) are plot- 
ted. 

16 In the case of no buckling point occurrence, amplitude of 
the applied loads are increased and calculations are continued 
starting from step 2. 

Buckling load can be determined using one of the two equiva- 
lent stability criteria stated below: 

1 The generalized concept of dynamic buckling proposed by 
Budiansky (1974). This concept is associated with dynamic buck- 
ling of a structure where small changes in the magnitude of loading 
lead to large changes in the structure response. According to this 
criterion, abrupt reduction in slope of the maximum lateral dis- 
placement versus load curve (minimum slope) indicates a dynamic 
buckling state. 

2 Large increase of the displacements amplitude with time. 
Qualitatively, if the time histories of the maximum lateral defor- 
mation or other modes of deformation are given for several am- 
plitudes of the applied load, the critical buckling load can simply 
be defined as the load at which large increase in the amplitude of 
the deformations is seen to occur (Saigal et al., 1987). 

Calculat ions and Results  

Results are presented for pure mechanical or pure thermal loads 
and the interaction between these loads is not considered here. 
Dynamic behavior of the shells, except where mentioned, is in- 
vestigated under step loads. To ensure incorporation of the higher 
buckling modes effect, the mesh is chosen sufficiently fine and 
time interval is adopted small enough. Therefore, the improvement 
in the results due to increasing the mesh density or decreasing time 
step is negligibly small. For this purpose, in the following results, 
a mesh composed of approximately 150,000 three-dimensional 
grid points is chosen. To avoid round-off errors, the calculations 
are carried out in the double-precision mode. For example, the 
improvement noticed in the displacement component values by 
increasing this number of grid points to 200,000 in the first 
example, is of the order of 10 -L2. To reduce influence of the 
solution procedure on the accuracy of the final results, fourth-order 
approximations with respect to both spatial variables and time is 
employed, and integrating time interval of the order of 10 _6 is 
adopted. 

Buckling Under Mechanical Loads. As a first example, 
static buckling results of the present accurate three-dimensional 
elasticity formulation are compared with those of the latest three- 
dimensional analysis proposed by Kardomateas and Philobos 
(1995a) and the modified Donnell 's equations. Formulations of the 
above reference are suitable for static buckling of thick perfect 
single-layer circular cylindrical shells under mechanical loads and 
are based on infinitesimal strains assumption (linear strain- 
displacement expressions). 

Furthermore, in deriving the final results, one of the triple 
Fourier series is chosen (which means separation of variables in all 
coordinate directions and neglecting the coupling of the buckling 
modes which usually occurs), boundary conditions are satisfied in 
average and the results are obtained using a finite difference 
method. Therefore, the results are less accurate than the layer-wise 
theories, especially that proposed previously by the authors (Es- 
lami and Shariyat, 1998) which assumes independency of the 
variables in the radial direction only. None of the above simplifi- 
cations are made in the present analysis. 

For comparison purposes, boron/epoxy cylindrical shells are 
considered for two fiber orientations: circumferential reinforce- 

Table 1 Comparison of various theories results for cylindri- 
cal shells under combined external pressure and axial load. 
For each case, the first row gives ~ )  and the second row gives 
(e). 

Present, Present, 
b/a Donnell P3D Static Dynamic 

Load interaction 
parameter, S = 1 

1.03 ,4134 .3899 .3927 .3142 
,1880 .1773 .1788 .1432 

1.05 .3090 .2834 .2905 .2334 
.2319 .2127 .2180 .1752 

1.1 .2793 .2352 .2569 .2046 
.4092 .3446 .3765 .2998 

1.15 .2880 .2140 .2346 .1846 
.6183 .4593 .4869 .3872 

Load interaction 
paramemr, S = 5 

1.03 .2845 .2511 .2617 .2083 
.6467 .5708 .5949 .4739 

1.05 .2137 .1826 .1945 .1546 
.8019 .6852 .7297 .5817 

1.1 .1519 .1125 .1321 .1046 
1.1125 .8245 .9367 .7478 

1.15 .1092 .0754 .0906 .0715 
1.1719 .8089 .9611 .7628 

ment (E2 > Et, E3) and axial reinforcement (E3 > E~, E2) .  The 
geometric and mechanical properties of the shells (for the axial 
reinforcement case) are 

El = E2 = 18.6159 (GPa) E 3 = 206.844 (GPa) 

Gi2 = 2.55107 (GPa) Gi3 = G23 = 4.48162 (GPa) 

v21 = 0 . 4 5  v~t = u32=0 . 3  

b=-I  (m) l / b = 5  

where b is the external radius of the shells. 
The critical loads are defined by normalizing the external pres- 

sure and the axial load (/5 and P) as 

p b  3 P "  b 

fi - E z h 3  f i  - ~ E 3 h ( b  2 _ a2 ) (38) 

where a is the internal radius of the shell and the load interaction 
parameter, S, is defined as 

P 
- - =  ° ° 2~" S p b 2. (39) 

Table 1 shows the static critical loads as predicted by the 
modified Donnell's equations, preliminary three-dimensional the- 
ory approach of Kardomateas and Philobos (1995a) as well as the 
results of the present accurate approach for static and dynamic 
buckling (step loading). Results of the preliminary three- 
dimensional analysis is denoted by (P3D). 

Table 2 gives a comparison of the predicted critical loads for a 
very long shell, under external pressure based on static buckling 
results of a first-order shear-deformation shell theory (Simitses et 
al., 1993) (FOSD), a higher-order shear-deformation equivalent- 
layer theory (Simitses et al., 1993) (HOSD), the preliminary three- 
dimensional theory approach (Kardomateas and Philobos, 1995a), 
the general layer-wise theory of the authors (Eslami and Shariyat, 
1998) (GLW), and the static and dynamic buckling analysis of the 
present theory. The critical pressures are normalized with respect 
to the classical theory (Donnell's shell theory) results. 

In the next example, buckling of a four-ply laminated imperfect 
cylindrical shell under uniform axial compression of Shienman et 
al. (1983) and Liaw and Yang (1990) is reexamined. The cylinder 
is considered to be simply supported with radius R = 19.0 (cm) 
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Table 2 Comparison of various theories results for cylindrical shells under external pressure 

Present,  Present, 
Geomet ry  FOSD H O S D  P3D G L W  Static Dynamic  

Circumferential reinforcement 

h - 6.35 (ram), 
h/R :: 0.03, L/R = 100 0.9668 0.9637 0.9694 0.9608 0.9613 .7698 

h = 12.7 (ram), 
h/R = 0.07, L/R = 100 0.9050 (/.8933 0.9148 0.8892 0.894 .7352 

Axial reiflforcement 

h = 6.35 (ram), 
h/R = 0.03, L/R = 100 0.9822 0.9822 0,9817 0.9816 0.9812 .7792 

h = 12.7 (ram), 
h/R = 0.07, L/R = 100 0.9588 0.9556 (/.9605 0.9528 0.9534 .7589 

and L/R = 2. Thickness of each layer is .0135 (cm) and the 
laminate construction is [0°/30°/60°/90°]. The material of each 
lamina is assumed as boron/epoxy, AVCO 550 with the lbllowing 
properties: 

E, = 207 (GPa), Eo = Ex = 18.6 (GPa) 
G 0 ~ = 4 . 4 8  (GPa) u~o= u ~ =  u ~ 0 = . 2 l .  

The initial geometric imperl'ections of the shell are defined as 

wo(x, 0) = W 0 h ' s i n ( L  x) . c o s ( 8 0 )  (40) 

where Wa is the amplitude of imperfection and h is the total 
thickness o1' the shell. 

Results of static and dynamic buckling analysis performed by 
Shienman et al. (1983) and Liaw and Yang (1990) as well as the 
present results are illustrated in Fig. 1. In the emlier results, an 
equivalent layer approach is adopted and Von Karman-type expres- 
sions of strains are chosen. Results of Shienman et al. (1983) are 
based on Hoff-Simitses criterion (the total potential energy approach) 
that is explained in detail in Simitses (1990), so that the static and 
dynamic loads for W0 = 0 are identical. In Liaw and Yang (1990), 
Love-Kirchhoff assumptions are employed and the nonlinear equa- 
tions of motion are lineafized and solved using an incremental method 
previously described in Saigal et al. (1987). As seen from this figule, 
the reduction in buckling loads is diminished as imperfection ampli- 
tude increases. In other words, imperfection sensitivity is more no- 

ticeable in small-imperfection amplitudes. In comparison with the 
other results, the present formulation gives smaller critical loads. This 
is due to incorporation of the exact strain-displacement relations of the 
imperfect shell in the exact nonlinear three-dimensional elasticity 
analysis presented here. 

In Fig. 2, comparison among the predictions of the more accu- 
rate approaches, recently proposed by the authors, namely, a 
higher-order shear deformation equivalent-layer theory 
(HOSDEL) (Eslami and Shariyat, 1998a), a general layer-wise 
theory (GLW) (Eslami and Shariyat, 1998b) and the present ap- 
proach is presented. As it may be noticed from this figure, the 
present results are more conservative. 

Figure 3 reveals the effect of vm'ious impulsive loads (rectan- 
gular, triangular, and parabolic impulsive loads) and their time 
duration on the predicted critical loads. For this purpose, the 
following nondimensional time is used: 

÷ 
t* = = (41) 

'T o 

where ¥ is the pulse duration and ¥o is the free-vibration period of 
the shell. In Fig. 3, P,, is the static buckling load. These results 
indicate that shell stiffness increases for the short duration of 
loading (especially if the pulse duration is comparable to the hoop 
breathing mode). For short time durations, the dynamic buckling 
loads are larger than the static buckling load. It is believed that this 
phenomenon is due to the inertia wave re-vibration between the 
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Fig. 1 Effect of imperfection amplitude on the dynamic buckling load 
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Fig. 2 Comparison of the results of the higher-order shear-deformation 
equivalent-layer theory, general layer-wise theory, and the present three- 
dimensional theory of approach 
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Fig. 3 Effect of different types of impulsive loads and various loading 
durations on the buckling load of the cylindrical shell 

impacted and fixed ends of the shell (Lindberg, 1987, 1989; 
Zimcik and Tennyson, 1980; Ganapathi and Varadan, 1995). For a 
given amplitude, the step load has a maximum curve area. Thus, as 
it may be expected, this type of loading has the worst influence on 
the strength of the shell. The critical loads corresponding to the 
triangular impulsive loads is the largest. 

In order to investigate the large deflection behavior of imperfect 
multilayered cylindrical shells, a post-buckling analysis is carried 
out for three-layered cross-ply (0°90°0 ° ) shells with the following 
properties: 

E ~ = 2 0 9 . 5  (GPa) E z = E 3 = 7  (GPa) 

G12 = G~3--- 3.5 (GPa) G23 = 1.4 (GPa) 

P 1 2  = l e t3  = /"'23 = 0 . 3  

0.8- 
3 

. . " 4  

0 . 6 -  " '  1 / ' "  

b 
~ 0 . 4 -  
(3- 

0.2- ., ' 
/ /  

0 I I - - l  

0 0 . 0 2  0 . 0 4  0 . 0 6  0 . 0 8  0.1 0 . 1 2  

Normalized axial deflection (u/h) 

[ ~Wmn = 0.001,Thin Shel ~2-Wmn = O.01,Thin Shell 

-3-Wren =O.O01,Thick Shel 4-Wrnn O.01,Thick Shell 

Fig. 4 Comparison of the static post-buckling analysis results of the 
thin shells. The illustrated results correspond to the internal surface at 
(x = 1). 

maria (1975) are reexamined. Though the material properties are 
functions of temperature, as a first approximation, the assumed 
properties are representative in the temperature range under con- 
sideration. These properties are 

El = 13.17 (GN/m 2) E2 = E 3  = 34.61 (GN/m 2) 

Gl2 = Gi3 = G23 = 5,17 (GN/m 2) vl2 = 1113 = 1323 = 0.25. 

The shell is subjected to uniform temperature rise throughout. 
Results of static thermal buckling of Radhamohan and Venkatara- 
mana (1975), which are based on the parametric differentiation 

h i =  h/3 R = 9 1 4  (ram) L = 2 5 4 0  (ram). 

Two sets are considered: thin shells with total thickness of h = 
2.54 (ram) and moderately thick shells with h = 25.4 (ram). The 
initial imperfection is assumed to have the form 

M N 

m - I  n -O 

where m and n are the numbers of axial and circumferential 
half-waves, respectively. 

Static axial load versus axial deflection curves of the thin and 
thick shells are shown simultaneously in Fig. 4 for two different 
amplitude imperfections. As stated before, points where abrupt 
change in displacement modes (such as axial deflection) due to 
small increase in the applied loads is noticed, and indicate buckling 
occurrence. In Fig. 4, the axial load is normalized with respect to 
the classical static buckling loads. The deformed shape and buck- 
ling modes of the thin and thick shells are illustrated in Figs. 5 and 
6, respectively. It may be easily seen that the imperfection sensi- 
tivity is higher for thinner shells. Comparison of Figs. 5 and 6 
reveals that in thick cylindrical shells, in contrast to thin shells, 
lower buckling modes are dominant, so that very thick shells 
buckle in an axisymmetric manner. In Fig. 7 the dynamic post- 
buckling response of the aforementioned cylindrical shells is com- 
pared with the static response. 

Thermal Buckling, Numerical results for materially ortho- 
tropic clamped cylindrical shells of Radhamohan and Venkatara- Fig. 5 Buckling modes of a thin laminated cylindrical shell 
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Fig. 8 Variation of critical temperature with curvature as predicted by 
the present approach and the conventional approaches. - -  Radhamohan 
and Venkataramana, (1975); - -  present, static; . . .  present, dynamic. 

Fig. 6 Buckling modes of a thick laminated cylindrical shell 

technique (with temperature as a parameter), is depicted along with 
the static and dynamic thermal buckling of the present formulation 
in Fig. 8. In this figure, the thermal buckling parameter ~zT,., 
chosen in Radhamohan and Venkataramana (1975) is shown for 
various curvature parameters Z = /:/{R.h.X/] - - v~u2}. As it 
may be expected, the static results of the present study are lower. 

As a second example, thermal buckling analysis of shells con- 
structed from materials with the following mechanical and thermal 
properties are considered: 

Etl = 1.5 × 105(N/era 2) E22 = E33 = 0.1 Elt 

Gt2 = Gl3 = G23 = 0.5 E22 Pl: = 1 1 1 3  = / 2 2 3  = 0.25 

oq = a ~ =  c~3= 1 0 - 6 ( ° C - I  ) L2/Rh = 4 0 0 .  

0.8 
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Fig. 7 A comparison between the dynamic and the static buckling 
results of the thin and the thick shells. The illustrated results correspond 
to the internal surface at (x = 1) and (Win, = 0.01). 

In Thangaramam et al. (1990), static thermal buckling analysis 
of composite cylindrical shells with the above properties is accom- 
plished through extending the linear Semiloof shell element for- 
mulated by Irons, which is based on the classical assumptions and 
infinitesimal strains. The results were obtained using one term of 
the double Fourier series. It is proved that a large number of modes 
are amplified during the buckling, so that this form of solution can 
cause notable errors. The shells are considered to undergo uniform 
temperature rise. The predicted static critical temperature (T,,r) 
proposed by Thangaratnam et al. (1990) for angle-ply cylindrical 
shells undergoing axisymmetric buckling modes, along with the 
results of the static and dynamic buckling analysis developed in 
the current paper, are illustrated in Fig. 9. For this purpose, two 
staking sequences ([qb/- ~b/4~] and [qS/-d)14~l -- qb/qb]) are used. As 
it can be seen, the critical temperature is considerably dependent 
on the inclination angle of the fibers (qb), which is measured from 
the cylinder cross section. Its maximum is attained in q5 = 90 deg, 
where the least axial strength of the shell is obtained. Indeed, in the 
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5 6 
- -  Present, Dynamic (n=3) - -  Present, Dynamic (n=5) 

Fig. 9 Comparison of classical and present critical temperatures of 
symmetric angle-ply cylindrical shells 

J o u r n a l  o f  A p p l i e d  M e c h a n i c s  J U N E  1999,  Vol. 66  / 4 8 3  

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



100 f ""~ eg"," % 3 

,0 \ 

10 20 30 40 50 60 70 80 90 

Inclination angle 

2_ Classic, Static (n=2) 2_ Classic, Static (n=4) 

3_ Classic, Static (n=6) 4--Present, Dynamic (n=2) 
6 

Present, Dynamic (n=4) --  Present, Dynamic (n=6) 

Fig. 10 Comparison of classical and present critical temperatures of 
antisymmetric angle-ply cylindrical shells 

cylindrical shells, the predominant stress is the axial one and 
circumferential stress is developed mainly in the axial edges. It is 
shown (for example, in Liaw and Yang (1990) that in the case of 
mechanical buckling, the critical loads vary symmetrically about 
4' = 45 deg. As is shown in Fig. 10, effect of the nonlinearity of 
the strain-displacement relations in critical thermal loads of the 
antisymmetric shells is larger. Thus, the differences between 
curves corresponding to these two approaches is larger in this case. 
In Fig. 10, staking sequences are taken to be [qb/ -qb], [4~/ -45/q b/ 
- + ]  and [4a/ -+/~b/ -qb/qb/ - + ] .  Figures 9 and 10 indicate that 
increasing number of the layers, while fixing the overall thickness 
of the shell, leads to a higher strength for the shell. This variation 
is more pronounced for the two-layer shell. This conclusion is in 
agreement with the report of Zimcik and Tennyson (1980) for 
mechanical buckling. Linear analysis done by Eslami et al. (1996) 
reveals that the critical buckling temperatures for isotropic mate- 
rials are independent of modulus of elasticity and are inversely 
proportional to the coefficient of thermal expansion. Whereas in 
the nonlinear analysis introduced in this paper, all of the mechan- 
ical properties are coupled together. Hence, the critical load is a 
function of all of the mechanical and thermal properties of the 
materials. 

Conclus ion 
The presented results indicate that as the orthotropy degree 

GJEi increases, the discrepancy between results of the classical 
and the more accurate theories (the equivalent-layer high-order 
shear-deformation theory, layer-wise theory, and the present ap- 
proach) increases. Antisymmetric staking sequences amplify this 
discrepancy. 

Comparison of the above numerical examples verify that the 
predictions of the present approach are more conservative. Regard- 
ing the numerical computations, though the accuracy of the three- 
dimensional approach formulation is higher, convergency of the 
conventional equivalent single-layer and layer-wise theories, 
whose equations of motion can be considered as integral equations 
in term of stress components (in the radial direction), is higher. 
Thus, the relaxation techniques are recommended for three- 
dimensional elasticity approaches. 
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Response of Finite Cracks in 
0rthotropic Materials due to 
Concentrated Impact Shear 
Loads 
The elastodynamic response of  an infinite orthotropic material with a finite crack under 
concentrated in-plane shear loads is examined. A solution for the stress intensity factor 
history around the crack tips is found. Laplace and Fourier transforms are employed to 
solve the equations of  motion leading to a Fredholm integral equation on the Laplace 
transform domain. The dynamic stress intensity factor history can be computed by 
numerical Laplace transform inversion of  the solution of the Fredholm equation. Numer- 
ical values of  the dynamic stress intensity factor history for several example materials are 
obtained. The results differ from mode I in that there is heavy dependence upon the 
material constants'. This solution can be used as a Green's function to solve dynamic 
problems involving finite cracks and in-plane shear loading. 

1 Introduction 

The use of composite materials is becoming more common in 
many engineering applications. The dynamic behavior of cracked 
bodies in such materials is a subject of many theoretical and 
experimental works. Both stationary and propagating cracks under 
dynamic loads in isotropic materials have been analyzed exten- 
sively (Freund, 1990; Parton and Boriskovsky, "1989; Chert and 
Sih, 1977). However, for orthotropic materials the available solu- 
tions are few (Kassir and Bandyopadhyay, 1983; Shindo and 
Nozaki, 1986; Rubio-Gonzalez and Mason, 1999), this is due in 
part to the mathematical complexity of such problems. Recently 
Rubio-Gonzalez and Mason (1999) presented the solution for a 
finite crack in orthotropic materials subjected to concentrated 
impact loads in mode I. Their solution was able to predict the 
singularities and discontinuities in the stress intensity factor his- 
tory associated with the arrival of shear, dilatational, and Rayleigh 
stress waves at the crack tips. One conclusion of that work is that 
crack-face displacements due to the dilatational wave are small 
and have little effect on the results. Thus the ratio of the Rayleigh 
wave speed to the shear wave speed, cR/c,, determines most of the 
behavior of Ks(t) including the time of the singularities and jumps 
in this function. However, as will be seen here, the behavior for 
in-plane shear loading is very different. The arrival of the dilata- 
tional wave at the crack tip causes a jump in K,(t)  which is 
significant in the overall shape of the stress intensity factor history, 
especially for fiber-reinforced composites with fibers aligned with 
the plane of the crack. 

Shear loading of cracks in composite systems is drawing the 
attention of investigators as an important factor in dynamic failure 
of composites and debonding of bimaterials. The theoretical anal- 
ysis of Liu et al. (1995) predicts that the near-tip deformation field 
for transonic interfacial crack growth is predominantly of a shear 
nature. Experimental observations of Lambros and Rosakis (1995) 
and Shukla et al. (1998) support that prediction. Lambros and 
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Rosakis (1995) were able to measure cracks propagating at 1.5 
times the lower Rayleigh wave speed of the constituents in a 
bimaterial plate. More recent work by Rosakis and co-workers 
(1998) has demonstrated that shear loaded stationary cracks in 
unidirectional composites can accelerate to supersonic speeds, 
speeds above the Rayleigh wave speed for that material and 
orientation. Finally in quasi-static tests, shear-dominated loading 
can often lead to unstable crack growth (Shivakumar and Crews, 
1998). Consequently, it seems that dynamic shear loading of 
cracks may be of primary importance in the impact failure of 
composites. 

In the present work, the problem of an infinite orthotropic body 
with a finite crack subjected to suddenly applied shear line loads 
on its faces is examined. The crack lies on the principal axes of the 
material. The Green's function presented here, the solution related 
to the geometry shown schematically in Fig. 1, has not been 
reported to date although the quasi-static solution is presented by 
Isida (1972) as 

K1(t oo) 
x/qra - X~o ~ a + Xo/ 

where Xo, q, and a are defined in the figure. The quasi-static 
solution for tangent opposite loads on a semi-infinite crack will be 
used as a normalization parameter in this study, however, and it is 
given by 

K0 = q (a - ,go) ' (2) 

It is worth noting that, while the dynamic stress intensity factor for 
normal opposite line loads on a semi-infinite crack has been 
published for isotropic materials (Freund, 1974), it appears that the 
dynamic stress intensity factor for tangent opposite line loads in 
semi-infinite cracks is not available. However, a solution tbr 
tangent line loads pointing in the same direction on semi-infinite 
cracks is given by Abou-Sayed et al. 0980). 

Integral transform methods are usually the techniques employed 
to solve problems involving cracked orthotropic bodies subjected 
to impact loads (Kassir and Bandyopadhyay, 1983; Shindo and 
Nozaki, 1986). This approach leads to a Fredholm integral equa- 
tion on tile Laplace trans~'brm domain, rather than a Weiner-Hopf 
equation (Freund, 1990) as is found for isotropic materials. The 
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Schematic of the finite crack geometry with concentrated shear 

dynamic stress intensity factor on the time domain is recovered, in 
the most difficult step of the analysis, by numerical inversion of the 
solution of the Fredholm equation. This process can be numeri- 
cally challenging and computationally intensive. Rubio-Gonzalez 
and Mason (1999) have shown that with the appropriate numerical 
methods to solve the Fredholm integral equation and to perform 
the Laplace inversion, excellent results may be found in the solu- 
tion of dynamic crack problems by integral transform methods. In 
this work the method of Honig and Hirdes (1984) is used for the 
inversion of the Laplace transform. 

2 Governing Equations 
Consider the plane problem of an infinite orthotropic medium 

containing a finite crack (Fig. 1). Let E~, ~ j ,  and/1~j (i, j = 1, 2, 
3) he the engineering elastic constants of the material where the 
indices 1, 2, and 3 correspond to the directions (X, "0, z) of a 
system of Cartesian coordinates chosen to coincide with the axes 
of material orthotropy. The crack plane is '0 = 0 and the origin of 
the x~-axes is the midpoint of the distance between the crack tips. 
The normalized coordinates x = x/a and y = ~/a are introduced 
such that the crack tips are located at x = ± 1 and the loads at x = 
±xo. The normalized time t is introduced in the form t = c o-/a 
where c, = "k//~ J p  with p being the mass density. Concentrated 
shear forces of magnitude q are applied as shown. 

The problem under consideration is restricted to two dimensions 
with wave propagation in the x - y  plane only. By setting all the 
derivatives with respect to z to be zero, it is readily shown that the 
displacement equations of motion (Nayfeh, 1995) in the normal- 
ized coordinates reduce to 

02u 02u 02v OZu 
c .  ~ - ~ - +  - -  + (1  + c~2) - -  = - -  (3 )  

Oy 2 OxOy Ot 2 ' 

OZv 02v ~2u O2v 
OX 2 + C22 0 ~  + ( l  + C12 ) 3xOy Ot 2 , (4) 

where u and v are the x and y components of the normalized 
displacement vector and c11, c~2, and c22 are nondimensional 
parameters related to the elastic constants by the relations 

E1 

c22 = (EJEi)cl i ,  (5) 

C12 ~ Pl2C22 : I. '2ICii, 

for generalized plane stress, and by 

E~ 
Cl l  - -  ]J~12~ (1 - -  /1231232), 

E2 
c 2 : -  ~ ,2A (1 - v13v3,), 

E, ( E2 ) 
c12 = ~ ~21 + ~ /113~32 , 

A ~- | --  1/12//21 --  /1231..,32 - -  /131/113 - -  /1121323/131 --  /113/)21/132, (6) 

for plane strain. In the orthotropic solid, c, represents the velocity 
of the in-plane shear wave propagating along the principal material 
axes. The stresses are related to the displacements by the equations 

~x Ou Ov 
~,2 c11~x + c12-~y , 

o'y Ou O v 
/~12 el2 ~ + c22 Oy ' (7) 

"rxy c3 u 0 v 
- + 

tzl2 Oy Ox " 

The corresponding boundary conditions are 

~y(X, 0, t ) = 0  for Ix I < ~ ,  

~'xy(X, O, t) = - - T ( x ) H ( t )  for Ixl < 1, (8) 

u ( x , O , t )  = 0  for Ix I >  1, 

in addition to the condition of zero displacements at infinity and 
zero initial conditions. The traction z(x) is a known function of x 
and H(t) is the Heaviside step function. 

Equations (3), (4), and (8) constitute a mathematical statement 
of the problem. For the moment ~'(x) represents a general load on 
the crack faces, later it will be substituted by a function represent- 
ing the line loads. 

3 Method of Solution 
The method of solution of the governing equations presented 

here follows that of Kassir and Bandyopadhyay (1983) and Sned- 
don (1966). In Eqs. (3) and (4), the time variable may be removed 
by application of the Laplace transform 

y: f * (p )  = f(t)e-Ptdt, f ( t )  = ~ i  f*(P)ePtdt' (9) 
r 

where Br denotes the Bromwich path of integration which is a line 
parallel to the imaginary axis in the p-plane. Applying relations (9) 
to Eqs. (3) and (4) and assuming zero initial conditions for the 
displacements and velocities, the transformed field equations be- 
come 

f~ 2U~ 0 2U:~ 0 2V * 
ell - - 0 X  2 -~- --Oy 2 + (1 + el2) 0 ~  -- p2u* = 0, (10) 

O'2V* 02V* C32U * 
OX ~ + C22 Oy--~ + (1 + e~2) 0 ~  -- p % *  = 0, (11) 

where the transformed displacement components, u* and v*, are 
now functions of the variables x, y, and p. The application of the 
Laplace transform to the boundary conditions (8) gives 

cr~(x,O, t) = 0  for Ix[<o% 

T~xy(X, O, t) = --'C(x)/p for 0 < Ix[ < 1, (12) 

u*(x,O,  t) = 0  for I x l>  1. 

To obtain a solution of the differential Eqs. (10) and (11) subject to 
conditions (12), we exploit the symmetry of the problem by letting 

J: u*(x, y, p) = A(s, y, p) cos (sx)ds, (13) 
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v*(x, y, p) = - B(s, y, p) sin (sx)ds, (14) 

where A and B are the Fourier cosine and sine transforms of the 
Laplace transform of the displacements, u* and v*, respectively, 
and are yet to be determined. Substituting these transforms into 
Eqs. (10) and (11), the functions A and B are found to satisfy the 
simultaneous ordinary differential equations 

d2A dB 
(c,ts 2 + p2)a - ~ + (1 + c~2)s d~ = 0, (15) 

d 2B dA 
(s 2 + pR)B - c22 dy---~- - (1 + c~2)s ~ 7  = 0. (16) 

The solution of these equations which vanishes for [Yl ~ oo is 

A(s, y, p) = A~(s, p)e--Tly "J7 A2(S , p)e -r~Y, 

O~ 2 
B(s, y, p) = oq A~(s, p)e  -~'y + - - A s ( s ,  p )e -wy  (17) 

S S ' 

where A ~ and Az are arbitrary functions and %(s, p) stands for the 
functions 

c~s ~ + p ~ -  72 
o~(s, p) = (1 + c~R)7~ ' j = 1, 2 (18) 

with 3'~ and 3 '2 being two distinct roots of the quadratic equation 

C22"~ 4 q- [(C~2 q- 2C12 -- CllC22)S 2 -- (1 + C2R)p213" 2 

+ (Cl~S 2 + p a ) ( s  2 + p 2 )  = 0 .  (19) 

It can be shown that for many materials the roots 3'~ and 3'2 are real 
and positive and the expressions for the displacements in the 
Laplace transform domain become 

f o  ~ 
u* = (Ale-~'Y + ARe-v~) cos (sx)ds, (20) 

f0 ~ sin (sx) v* = - (cxlAle ray + aRA2e-V2Y) _ _  ds, 
S 

* is given by and using (7) the corresponding expression for ~ry 

I; O'y* = --]&12 [(C12 S2 - -  o/1%c22)A1 e - t r y  

sin (sx) ds. 

(21) 

+ (cl2s 2 -  a:~y2c22)A2e-~,2y] (22) 
S 

Applying the first condition of (12) to Eq. (22) yields 

A2(s, p) = - ~ A , ( s ,  p),  

C12 $2 -- C220/1'~1 
= (23) 

13 c l 2 s  2 - -  C2RC~RT2 ' 

Therefore, the expressions for the transformed components of 
displacement become 

u*(x, y, p) = (e ~'Y - ~e-V2Y)A,(s, p) cos (sx)ds, (24) 

v*(x,  y, p)  

f 0  ~ 

= -- (oLle-VlY -- 13o~2e-3'2y) - -  Ai(s,  p) sin (sx)ds, 
S 

(25) 

and the associated stress components are given by 

o-~ = -/x12 [(CljS 2 -  oqy~ClR)e -w=y 

- ( c ~ l s  R - a 2 y 2 C l R ) [ 3 e - ~ ' ]  - -  Aj(s,  p) sin (sx)ds, (26) 
S 

f o  ~ 
O'y*= -/-~12 (cl2s R - ~13"tc22)(e -~''y -- e-'y2y) 

Ai(s, p) 
× - -  sin (sx)ds, (27) 

S 

fo ,rxy = /x,2 [ _ ( %  + T l ) e - w y +  /3(o~2 + 3'2)e-v2y] 

X Al(s,  p) cos (sx)ds. (28) 

Introducing the functions 

S(s, p) = (1 - 13)A.(s, p), (29) 

- ( ,~ ,  + v,)  + 13(c~2 + 3'2) 
G ( s ,  p)  = s(1 - / 3 ) 7  ' (30) 

1 

~l = cRRN~N2( 1 + c~2)(N~ + NR) 

× {(c~2 + c12 - cl.cR2)(ci2NjN2 - cll) 

2 2 - c2R[Cl2XrU2 + ci,(N~ + N~NR + U2)]}, (31) 

1 
N~.2 = ~ {c',~c2z - C~2 - 2C,2 

-+ [(c,,C2R -- C~2 -- 2C,2) R -- 4C,,CRR]~'2}, (32) 

and in view of the second and third boundary conditions in (12), 
Eqs. (24) and (28) yield the following pair of dual integral equa- 
tions for the determination of the function S(s, p):  

f o ~ sG(s, p)S(s ,  p) (sx)ds - "r(x) COS 
/z~2~p 

0 < x <  1, (33) 

fo  ~ S ( s , p )  c o s ( s x ) d s = O  x >  1, (34) 

where ~'(x) is the distributed load along the crack faces. The 
constant ~ in (30) has been chosen such that for large s, the 
function G(s, p) becomes 

G(s, p) = 1 + O(1/s). 

Using cos (sx) = ~ J - ~ 2 ( s x )  and defining S(s, p) = 
s~/2S(s, p) and rds,  p) = G(s, p) - 1, these last equations can 
be written as 

fo  ®s[r l (s ,p)  + 1 ] S ( s , p ) J _ , / 2 ( s x ) d s = g ( x )  O < x  < 1, 
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where 

f o ~ ~'(S, p)J-iI2(sx)ds = 0 x > l ,  

~ ~-(x) 
g(x) = - (35) 

/.* Wrlp 

Following the procedure given by Sneddon (1966), the function 
S(s, p) of the original integral Eqs. (34) and (33) can be found in 
terms of another unknown function, ®(r, p), in the form 

S(s, p) q ( - w 1/2® (w, p)Jo(sw)dw (36) ~alx=2"Op 
L ) 

where ®(r, p) satisfies the following Fredholm integral equation 

i0 ®(r, p) + ®(u, p)K(r, u, p)du = S2(r),  (37) 

with symmetrical kernel 

K(r, u, p) 

fO m = (ru)'12 w[G(w, p) -- 1]Jo(rw)Jo(uw)dw , 

and free term 

(38) 

2a ,ff f '  r(w) 
H2(r) = - - ~  , ] ~ Z ~ 7  dw. (39) 

~0 

For the case of concentrated loads as illustrated in Fig. 1, we have 
r(x) = (q/a)8(x - xo) where the denominator appears due to the 
normalization of x, such that the free term becomes 

2 , j7  tbr x o < r  
H2(r) = ~j72 Z-Tv~ (40) 

0 for x0 > r. 

Note that the free term is discontinuous in r. Integrating S(s, p) by 
parts in Eq. (36), gives 

S(s, p) q I O( l ,  p)J~(s) 
1ratz12~ps 

-- WJI(SW) d w  [W-112®(W' p ) ] d w  (41) 

From Eq. (28) we know that in the Laplace transform domain 
fir is 

r*).(x, O, p) = tzl2~ sG(s, p)S(s, p) cos (sx)ds 

and substituting (41) it is found that 

1 r*xy(X, O, p) = - q~ ®( P) G(s, p)J,(s) cos (sx)ds 
'rga 

1rap G(s, p) cos (sx)ds 

X wJ,(sw) dww [w-'/20(w, p)]dw (42) 

As stated by Kassir and Bandyopadhyay (1983), the stress 
intensity factor extracted from (42) is 

where £-~ denotes the inverse of the Laplace transform. 

4 Numerical  Results 

4.1 Quasi-static Solution. We can show that the dynamic 
formulation is consistent with the quasi-static solution; that is, we 
recover Eq. (1) exactly when t --+ co. To do this we invoke the final 
value theorem for Laplace transforms (Debnath, 1995), which 
states that if K,(t) is given by (43), then 

0 
K,i(~) = lira K,(t) = lira /_7 O(1, p). 

t ~  p--,0 gTra 

Noting that by construction G(s, p) ~ I when p ~ 0, therefore 
the kernel, Eq. (38), vanishes and Eq. (37) gives ®(r, p) = H2(r) 
for p ~ 0, in particular ®(1, p) = H2(1), and hence 

q 2a 
Ki,(~)- \/g, ~ , _  x~' 

which is exactly the expression (1). In the plots to follow, Figs, 
2-5, it can be shown by careful numerical Laplace transform 
inversion that the results decay to the quasi-static solution as t ---> 
co. For that reason interest is focused on the early time, transient 
response. 

4.2 Transient Response, The Fredholm integral equation, 
(37), was solved numerically using the Nystrom method (Atkin- 
son, 1997) to find ®(r, p). The values of ®(1, p) were then 
extracted. This method requires the application of an approximate 
quadrature rule to the Fredholm integral Eq, (37) and then the 
evaluation of the resulting equation at the quadrature points re to 
get 

N 

®(ri, p) + ~ wjK(ri, u;, p)®(ui, p) = H2(ri), (44) 
j I 

where w~ are the weights of the quadrature rule, while the N points 
r~ are the abscissas. This is a set of N linear algebraic equations in 
N unknowns. For this problem N = 200 quadrature points were 
selected in order to get good accuracy and the trapezoidal quadra- 
ture rule was chosen because of the complex behavior of ® and the 
discontinuous nature of the free term H2. 

Numerical inversion of the Laplace transform was performed 
using the method of Honig and Hirdes (1985) to find K,(t) 
according to Eq. (43). In this method the choice of the Bromwich 
path is made automatically using a straightforward convergence 
criterion. 

The numerical results presented correspond to is®tropic and 
orthotropic cases. Properties of transversely is®tropic materials 
with fibers parallel and perpendicular to the x-axis are considered 
in the second case. The properties used are taken from Schwartz 
(1997) and are given in Table 1. 

Figure 2 shows the stress intensity factor history for an is®tropic 
material in plane stress with concentrated loads located at x,, = 
0.6. Note that the isotropic material is a degenerate case of the 
governing Eqs. (3) and (4). For the isotropic material C~l = c22 = 
2/(1 - v) and ct2 = 2v/(1 - v). Hence 'Yl - ~ -  ~}/2 for p = 0 
leading to /3 = 1 and G(s, p) not defined. Consequently, the 
isotropic case presented here was obtained fi'om the orthotropic 
formulation letting EL = E, E2 = (1 - e)E, v~2 = v23 = v and 
>J2 = (E~ + E2)/(4(1 + v)) where E and v correspond to the 
isotropic properties and e is a small quantity with E .~ 1. Note that 
the stress intensity factor is indeed discontinuous and that the 
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T a b l e  1 M e c h a n i c a l  p r o p e r t i e s  used  for  the ana lys i s  

Graphite E-Glass Boron Isotropic 
Epoxy Epoxy Epoxy material 

El (GPa) 156.75 45 207 200 
E2 (GPa) 10.41 12 19 199.8 
v~2 0.31 0.19 0.21 0.3 
v23 0.49 0.19 0.21 0.3 
/zt2 (GPa) 7.07 5.5 6.4 76.92 
t9 (Kg/m3) 1580 2100 1990 7840 

numerical inversion technique captures the discontinuity quite 
well. It is worth noting that the presence of the singularity of K,(t) 
when the Rayleigh wave arrives is also captured in the numerical 

2 

1.5 

Finite Crack, shear loads, Xo=0.6, Isotropic matedal 

"~ 0, 

,-o. 

i l PI ~R1 

0,5 1 

P2 

I , , i  i i . . . . .  I 
1 4~ 

C s '~ - x  

82 R,. 

4 . 5  

Fig. 2 Stress intensity factor history for a finite crack with concentrated 
shear loads in an Isotropic material. The normalization factor Is given by 
Eq. (2). The labels PI, $1, and R1 correspond to the arrival at the crack tip 
x = +1 of the dllataUonal, shear, and Raylelgh waves at the crack tip x = 
+1 generated by the load at x = +x0, respectively. Similarly, P2, $2, and 
R2 correspond to the arrival of the dilatatlonal, shear, and Rayleigh 
waves at the crack tip x = +1 as generated by the load at x = -x0. 

results. The singularity in KH(t) at t = 1.08 (label R,) is similar 
to that found in the surface displacements in the calculated solution 
of Lamb's problem, where a concentrated shear load is applied on 
a half-space (Chao, 1960). 

The stress intensity factor is zero until the arrival at the tip x = 
+ 1 at the normalized time t = 0.59 (label P~) of the dilatational 
wave originated by the load at x = x0; at this time a jump in Kn(t) 
is observed. Before this time, a slight increase that is a numerical 
artifact is seen. Obviously the dilatational wave has an important 
effect in the dynamic response unlike in mode I loading where that 
wave had a minimum effect in Ks(t) (Rubio-Gonzalez and Mason, 
1999). When the Rayleigh wave arrives, K,(t) experiences a 
singularity and a jump followed by a stable value given by Eq. (2). 
This cycle is repeated when a second dilatational wave arrives 
from the further point load at t = 2.36 (label P2) but with 
decaying amplitude due to the increased distance between point 
load and crack tip. 

The oscillations observed near the discontinuity in Kn(t) are due 
to the convergence of the method employed to invert the Laplace 
transform. These oscillations are quite similar to Gibb's phenom- 
enon as seen in the Fourier transform or Fourier series represen- 
tation of a discontinuous function (Papoulis, 1962). 

The results forx0 4= 0.6 are very similar. However, if x0 is very 
close to 1, then numerical difficulties arise in the solution of the 
Fredholm equation. Due the discontinuity in the free term H2(r) in 
(40), the discrete representation H2(r~) in Eq. (44) becomes a 
vector with mostly zero components as x0 ~ 1 -. Consequently, 
more quadrature points are needed. 

Figure 3 shows the results for the orthotropic material in plane 
stress with concentrated shear loads also at x0 = 0.6. Figure 3(a) 
corresponds to the case of fibers parallel to the x-axis while 3(b) to 
fibers parallel to the y-axis. Note a clear difference in the behavior, 
this is due to the fact that cd has an important effect in K,(t), and 
in this case the difference is more noticeable since cd is quite 
different in each case, see Table 2. Figure 3(b) is more similar to 
Fig. 2, i.e., two separated cycles are observed, corresponding to the 
arrival of waves generated by the load at x = +x0 and then the 
waves generated by the load at x = -Xo. This happens because 
Xo/CR < (1 + xo)/c,~. That is the Rayleigh wave from +x0 arrives 
before the dilatational wave from -Xo. However, in Fig. 3(a) 
where Xo/CR > (1 + Xo)/C,~ the dilatational waves caused by both 
loads arrive at the tip x = + 1 before any other wave, thus their 
effects are added and as a result Kn(t) reaches the maximum 

o 

Finite Crack, shear loads, x0=0.6. Graphite-Epoxy 
2 

1.0 

1 

~C 
0.£ 

0 

-0.5 

Finite Crack, shear loads, Xo=0.6, Graphite-Epoxy Ey>Ex 

l t , r , , i i i i i 
,5 3 315 4 415 015 1 115 .5 3'S 4 0.s , ,!s ~s ¢ / ~(l_Xo) ) ~ .t/~a(1_xo)I 4.s 

(b) 
Fig. 3 Stress Intensity factor history for a finite crack with concentrated shear loads in an orthotropic material. The normalization factor is given by 
Eq. (2). The material properties correspond to a graphite-epoxy composite with the fibers (a) parallel to the x-axis, and (b) fibers parallel to y-axis. 
Labels Pj, $1, and Ri are defined in Fig. 2. 
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Table 2 Wave speeds for the different materials. The com- 
posite materials are considered with fibers and wave propaga- 
tion parallel to x-axis, except in graphite-epoxy y where wave 
propagation is considered along the y-axis. 

Velocity Graphite Graphite Boron E Glass Isotropic 
(m/s) Epoxy x Epoxy y Epoxy x Epoxy x material 

c~ 10086 2974 10251 4685 5860 
c~ I-~ 9992 2574 10219 4651 5294 
c, 2115 2115 1793 1618 3132 
c~ ~-~ 2083 2037 1783 1572 2869 

dynamic overshoot sooner. The three main jumps in Fig. 3(a) 
occur at t = 0.2 l (arrival of the dilatational wave from +x0, mark 
P~), t = 0.84 (arrival of the dilatational wave from -x0 ,  mark 
P2) and t = 1.01 (arrival of the Rayleigh wave from +x0, mark 
Rt). Note that in Fig. 3(b) the numerical solution captures quite 
well the singularities and jumps when the Rayleigh waves arrive at 
t = 1.03 and t = 4.15, but for long times the solution shows rapid 
oscillations, this is due to the insufficient accuracy in the numerical 
Laplace inversion technique and can be remedied with more com- 
putational effort. Looking at Figs. 2 and 3(b) we note that the 
plateaus are independent of the elastic constants c j l, c~2, and c2~ as 
expected from Eq. (2). A small error is observed in Figs. 2 and 3 
since the stress intensity factor should be zero until the dilatational 
wave arrives, and these figures show a value slightly different from 
zero. This is due to the approximate numerical methods used to 
solve the Fredholm integral equation and to invert the Laplace 
transform. 

Figures 4 and 5 show the stress intensity factor K,( t )  for 
boron-epoxy and E glass-epoxy composites, respectively. In both 
cases the fibers are considered along the x-axis. For fibers along 
the y-axis the results are quite similar to Figs. 2 and 3(b); two 
similar cycles of discontinuity at the arrival of the dilatational 
wave and singularity at the arrival of the Rayleigh wave are 
observed. We note a similar behavior in Fig. 4 to that illustrated in 
3(a) for the graphite-epoxy material. The difference is in the times 
when the jumps occur, that is, the times of the arrival of the 
dilatational waves, marks P~ and P2. For Fig. 3(a) the jumps occur 
at t = 0.2 and t = 0.84, while in Fig. 4 they occur at t = 0.17 
and t = 0.70. For the E glass-epoxy composite, Fig. 5, even 
though the fibers are along the x-axis, we observe the two cycles 
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Z 1 I ...... 
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_,  I 
0',5 

Finite Crack, shear loads, Xo=0.6, Boron-Epoxy 
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TP~ SIIR1 

1 ~15 ~ 215 C s x / (a(1 -xo) ) 

Fig. 4 Stress intensity factor history for s finite crack with concentrated 
shear loads in an orthotropic material. The normalization factor is given 
by Eq. (2). The material properties correspond to boron-epoxy composite 
with the fibers parallel to the x-axis. Labels P, $1, and Ri are defined in 
Fig. 2. 

Finite Crack, shear loads, x0=0.6, Eglass-Epoxy 
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~" 0, 
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-0,5 
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Fig. 5 Stress intensity factor history for a finite crack with concentrated 
shear loads In orthotropic material. The normalization factor is given by 
Eq. (2). The material properties correspond to E glass-epoxy composite 
with the fibers parallel to the x-axis. Labels Pi, $1, and R~ are defined in 
Fig. 2. 

typical of the case when the fibers are along the y-axis. This is due 
to the fact that for this material in this orientation xo/cr~ < (1 + 
Xo)/C,. Clearly, there is a strong dependence of K,( t )  on the elastic 
constants in these figures. 

It should be noted that for wave propagation along the material 
principal axes wave pure modes are obtained (Nayfeh, 1995), i.e., 
the polarization vector is directed either along or normal to the 
propagation direction. Hence, we can distinguish dilatational and 
shear waves without ambiguity for this case of a crack lying on the 
principal axes of the material. Also, for some materials the singu- 
larity when the Rayleigh wave arrives is difficult to capture. This 
is because the singularity occurs at times between the arrival of the 
shear wave and the arrival of the Rayleigh wave. As c,/cR ~ l, 
the duration of this period approaches 0 making it hard to numer- 
ically capture the singularity. (See Figs. 3(a) and 4 where c.,/c, = 
1.015 and 1.006, respectively.) 

The method outlined here can easily be applied to solve the 
problem of a finite crack with a single pair of impact concentrated 
shear loads (Fig. 6(a)). As illustrated in Fig. 6, this problem can be 
treated by a superposition of the two problems shown, that is, one 
with a symmetric (Fig. 6(b)) and the other with an antisymmetric 
(Fig. 6(c)) displacement field. The symmetric part is just the 
problem solved above with a load of magnitude q/2 instead of q. 
To solve the antisymmetric part we follow a similar procedure, the 
only difference would be the proposed displacement fields, Eqs. 
(13) and (14), it would require sine and cosine transforms instead 
of cosine and sine for u* and v*, respectively, due to the new 
symmetry. Application of Laplace and Fourier transforms leads to 
a reduction of the governing equations to a system of dual integral 
equation. The stress intensity factor in the Laplace domain is 
obtained for each problem, and then they are superimposed in this 
domain. Finally, the Laplace inversion is performed on the sum to 
obtain K,( t )  for the original problem. This method of superposi- 
tion was successfully used by Rubio-Gonzalez and Mason (1999) 
to find Kl(t) for a single pair of normal loads in a finite crack. 

5 Conclusions  

The dynamic response of a finite crack in orthotropic materials 
subjected to concentrated in-plane impact shear loads has been 
presented. The quasi-static solution can be extracted exactly from 
the dynamic formulation when t ~ ~. The transient response 
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Fig. 6 Schematic of the finite crack geometry with a single pair of concentrated shear loads, (a) Original problem which may be 
solved by a superpositlon of (b) a symmetric problem and (c) an antisymmetric problem. 

shows a strong dependence on the material properties. Some 
important points follow from this analysis: 

1 The arrival of the dilatational wave at the crack tip makes an 
important contribution to the dynamic stress intensity factor K,(t), 
unlike in mode I loading where that wave had a minimum effect in 
Kt(t). 

2 The condition if xo/c~ is greater or less than (1 + Xo)/Cd, 
where x0 = 0.6 for this analysis, determines the main features of 
the dynamic stress intensity factor K,(t). When the greater sign 
holds, the dilatational waves caused by both loads arrive at the tip 
x = + 1 before any other waves, thus their effects are added and 
as a result K,(t) reaches the maximum dynamic overshoot sooner; 
this behavior is illustrated in Figs. 3(a) and 4 corresponding to 
graphite-epoxy and boron-epoxy composites, respectively, with 
fibers along the x-axis in both cases. When the lesser sign holds, 
two separated and similar cycles in Ktt(t) occur; each one corre- 
sponding to the arrival of stress waves at the crack tip generated by 
the two load pairs. This behavior is illustrated in Figs. 2, 3(b), and 
5. 

3 When Xo/CR < (1 + xo)/c~t, Figs. 2, 3(b), and 5, a plateau 
is observed between the two cycles (between R~ and P2). On this 
plateau K,(t)/Ko = 1 regardless of the value of the elastic 
constants. 
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Analysis of the Driving Forces 
for Multiple Cracks in an 
Infinite Nonhomogeneous Plate, 
Part I: Theoretical Analysis 
A general methodology is constructed for the fundamental solution of an arbitrarily 
oriented crack embedded in an infinite nonhomogeneous plate in which the shear modulus 
varies exponentially with one coordinate. The stress is evaluated as a summation of  two 
states of  stresses; one is associated with a local coordinate system in an infinite plate, 
while the other is associated with the boundaries of a finite plate defined in a structural 
coordinate system. The fundamental solution is used to generate stress intensity factors" 
and strain energy release rates for fully interactive multiple crack p~vblems. Part I of this 
paper focuses on the analytical development of the solution. In Part II, the numerical 
technique used in solving singular integral equations obtained in Part I is presented, 
along with a parametric study. 

Introduction 

One of the disadvantages of composites is the mismatch of the 
thermal expansion coefficients between its constituents. This mis- 
match produces residual stresses, which may initiate debonding, 
delamination, and microcracks. For example, the application of a 
ceramic layer as a thermal barrier coating for a metal substrate 
often produces debonding at the interface after a small number of 
thermomechanical load cycles. In order to minimize the mismatch 
between the ceramic layer and metal substrate, a new technology 
was recently developed. This technology allows fully tailored 
processing of materials and interfacial zones with predetermined 
continuously varying mechanical properties that are known as 
functionally graded materials (see Asish et al. (1997) and Holt et 
al. (1993)). 

Functionally graded materials can be described as two-phase 
particulate composites, wherein the volume fraction of its constit- 
uents differs continuously in the thickness direction (see Niino and 
Maeda, 1990; Hirano and Yamada, 1988; Hirano et al., 1988; 
Kawasaki and Watanabe R., 1990; Pindera et al., 1994, 1995, 
1997; Needleman and Suresh, 1996). This implies that the com- 
position profile can be tailored to give appropriate thermomechani- 
cal properties. 

A number of authors have investigated cracks in inhomoge- 
neous or functionally graded materials. For instance, Delale and 
Erdogan (1983) solved the crack problem for the nonhomogeneous 
plane. The authors considered the plane elasticity problem, in 
which the material is isotropic, has a constant Poisson's ratio (v), 
and the Young's modulus (E) is of an exponential form varying in 
the x-direction, namely, 

E(x) = Eoe ox (1) 

where /3 is a nonhomogeneity constant and Eo is the Young 
modulus of the homogeneous material. They found that Poisson's 
ratio did not have much effect on the resulting stress intensity 
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factors. They also found that the strain-energy release rate at the 
crack embedded in the portion of the medium with higher stiffness 
is lower than that corresponding to the crack tip on the less stiff 
side of the material. Hence, the crack grows in the direction of the 
less stiff material. 

Also, Delale and Erdogan (1988) solved the collinear crack 
problem for two dissimilar homogeneous elastic half-planes 
bonded to a very thin nonhomogeneous layer. The elastic proper- 
ties of the interracial material varied continuously between those 
of the two semi-infinite planes. The Airy stress function was used 
in their formulation of the solution. They assumed that the stress 
function is composed of two functions; one is associated with an 
infinite plane containing the crack on the x-axis, while the second 
is an uncracked strip. Their results showed that if the crack 
approaches the less stiff material, the strain energy release rate 
increases. Crack growth due to fatigue, creep, and corrosion was 
considered in Erdogan (1995), and crack growth due to thermal 
stresses was considered in Erdogan and Wu (1996). 

However, the problem of multiple oriented cracks embedded in 
a nonhomogeneous infinite plate has not yet been addressed. Thus, 
the present paper deals with the general solution to a single and 
multiple oriented cracks embedded in a nonhomogeneous infinite 
plate. It is assumed that the funcfionally graded materials have a 
constant Poisson's ratio and the shear modulus is of an exponential 
form. The solution is valid for both plane stress and plane strain. 

General Problem Formulation 
The solution of the mixed boundary value problem for the stress 

intensity factors or strain energy release rates at a crack tip is 
obtained fi'om the perturbation part of the problem (see Fig. 1). 
Before any particular problem is addressed, the general strategy of 
solution is discussed in this section. 

Assume that there are two states of stresses, o'~) ) and ~2~ ~rsj . The 
stress ~r~ ~ is associated with a local coordinate system (x~-y~) in 
an infinite plate, while the stress crl~ ~ is associated with the bound- 
aries of a finite plate defined in a structural coordinate system 
(x-y). In the case of infinite plate problems, only the first state of 
stress exists, but for the general problem the total stresses in the 
local coordinate system are expressed as 

o-~,y~(X,, YL) = ~(l~ (~ Yl) + (2~ 'x , y,) U Y l y l \ ~ l '  O'ylylk t 

l"yr, y,(Xl, Yl) = "~l~,(x,, Y,) + "y,y,'~',~(2> (~ y,) (2) 
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~.~ ~ij 

(~) " ~  ~ij (c) 

Fig. 1 Methodology of solution for the fundamental problem; (a) mixed 
boundary value problem for the functionally graded materials, (b) infinite 
functionally graded materials plate without crack, (c) perturbation prob- 
lem of a crack loaded by surface tractions 

where 

o'~l~,(x,, y,) = sin 2 (O)o'~Ax, y) + cos 2 (O)~rry(X, y) 

- 2 sin (0) cos (O)%y(X, y) 

~'~,(xt,  Yt) = - s i n  (0) cos (0)o'er(x, y) 

+ sin (0) cos (O)%y(x, y) + (cos 2 (0) - sin 2 (O))%y(X, y) 

x = xl cos (0) - Yt sin (0) 

y = xt sin (0) + Yl cos (0) 

and o-~, ~ryy, and ~'~y denote global stresses and 0 is the angle 
between the local crack direction x~ and global x-axis. The stress 
boundary conditions obtained from the perturbation problem are 

-Pi(Xl) = lim r O'ylyl(Xl' Yl) 
y 1 ---.-.~0 

-p2(xl) = lim Yl)  (3) TTiyi(Xl, 
yl ---~0 

where pm(x0 and p2(x~) are the normal and shear tractions at the 
inner crack surfaces. 

Upon substitution of Eq. (2) into Eq. (3), the boundary condi- 
tions become 

-p l (Xl )  = lim o'~l~,(x,, y,) + lim ,,),~,~,~1,~(2)(~ y,) 
yl--~0 yl--~O 

-p2(xl) = lira r~tl.,(xi, y~) + lira z~2t~,(Xl, yi) (4) 
yl~O yl~0 

Notice that the principal part is produced from the first part of 
Eq. (4). The stresses are expressed in the most general form as 
follows: 

(r~ ~ (x,, y,) = ~~ KI})(x1, y,, t)~(t)dt 

Journal of Applied Mechanics 

¢~]~(x,, y,) = 2~ ),, K~})(x" y'' t)fj(t)dt 

' ff = z(2)l~ t)fj(t)dt cr~2~.,(xi, Yl) 9f~ , - , j  t~,, Yl, 

_(2), 1 . I  b 
= rz(:)l"~ t)f~(t)dt V~,y,tX. Yl) ~ " ' 2 j  ~ l .  Yl, 

~ a  

for a < ( x ,  t ) < b  (5) 

where thefj are so-called auxiliary functions defined as derivatives 
with respect to x~ of the crack-opening displacement along the 
crack. The kernels are expressed as 

K}])(xl, Yl, t) = f ~ x}J'(c~, y~)e~i(~'-')dc~ 

K(2)~ t) 6 ~1, Yl, 

= f ; x}~)(a, Xl COS O - yl sin O)e"i(~'sin°+y'c°s°-t)do~. (6) 

The explicit forms of X}J ) and X}~ ) depend on the stress and 
displacement continuity of the problem. If X}} ~ does not vanish as 
Io4 approaches infinity, then an asymptotic analysis is performed to 
separate the singular part from the regular part. Consequently, Eq. 
(6) can be integrated numerically. To emphasize the behavior as lal 
approaches infinity, Eq. (6) can be written in the form 

K}))(x,, y,, t) = f_i x}))(a)e-I°'Y'+~"~'-t)do~ 

K})l(x,, y,, t) 

f ~  (2) H(x,sinO+y,cosO)+ca( . . . . .  0-y,sin0 t) = X u ( a )e  ' da .  (7) 

Substituting Eq. (7) into (5), the following stress representations 
are obtained: 

xmt..~l, ~-~ X~J)(a)e-""ly'+i~(x'-t)da ¢)(t)dt (8) 

o.(2) (~ y~) ylytk~D 

~_ ~ X~)(Ol)e-Iotl(xlsinO+ytcosO)+ia( . . . . .  o-ylsino-t)do L f / t ) d t  

r(2) ¢~ 1 f f~ v(2~ xtylk~l' Y0 = ~ "'2j 

× (a)e-I~l(~'~in°+Y~°~°)÷i~( ..... o-y,~ino-t)da ~(t)dt. (9) 

a 

To simplify further, substitute Eq. (8) into the first terms of Eq. 
(4) to obtain 
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°ytyl lima t 

] = lim ~-~ f j ( t ) d t  (10) yt-~0 -m 

Assume that the leading order term of Yg!) has the asymptotic 
form 

(1) + idI)) as a ~ +¢¢ (11) x l ) ) ( o e )  - ~  c ,j - _ . 

Define N as 

N = ~-~ (12) 

This integral must be analyzed asymptotically. Splitting N into 
two parts (c~ < 0 and oe > 0) and combining them together by 
letting oe ~ - a  for oe < 0, we obtain 

N = ~ {[X~ll(oe) + X~]~)(oe) - 2c}) )] cos (ot(t - x,)) 

+ [Xl)~)(oe) - X}))(a)  + 2idl))]i sin (oe(t - x , ) ) ldoe  

I' ] + lira ~ SIP °) (13) yl~0 
where X}]2(a) is the complex conjugate of X~)(a) and the singular 
integral part (SIP% of the equation is 

SIP (l) = 2e-c~yI{C})) COS (ol(t -- X0) 

+ d}) ) sin (o~(t - x,))}do~. (14) 

The following integral identities are used to evaluate Eq. (14) 
(Abramowitz and Stegun, 1964): 

L~ n 
e -"" cos (moe)da = n2 + m2 

L~ m 
e-~" sin ( m ~ ) d a  - n2 + m2.  (15) 

Hence, it can be shown that (14) becomes 

c}))y l  d } ) ) ( t  - x~) 
SIP ( u = 2  ( t - x 0  2 + y ~  F 2  ( t - x l )  2 + y { '  (16) 

whereupon letting Yl ~ 0 and substituting the result into (13), the 
following expression is obtained: 

N = ~-~ {[X}J ) + X~]] - 2c~ I)] cos (oe(t - x,)) 

1 dl) )  
+ [X~) - ~(l> + 2id}])]i sin ( a ( t  - x 0 ) I d a  + --  - - .  

"-0 ~ t -- Xl 

. (17) 

To compute this integral, the infinite interval and the oscillation 
in the integrand must be dealt with. To this end, introduce the 
second-order asymptotic terms: 

((' 5) X}) ) -~  (c~ 1)+-id}¢ 1) + e ° - - + i  as o~ ---> +c~. (18) 
G 

Introducing these terms yields 

'I0: +" N = y 4  { [x}))(,~)x,+c(oe) - 

X c o s ( o ~ ( t - x , ) )  + X0~(oe ) - X S ) ) ( a )  + 2i dS) ) +  

× i sin (oe(t - x j ) ) d a  + - - - -  
1 d ~ )  ) 

7r t - -  x l  

1 l = 2el) ) cos ( a ( t  - x0)  doe 
+~44 a Oo 

fO~ - (1) 
1 ~Lgij sin (c~(t - Xl)) 

27r c~ 
doe. (19) 

To evaluate the last two terms of Eq. (19), the following iden- 
tities are used (Abramowitz and Stegun, 1964): 

f ]  1 ~" (t - x,) - sin ( a ( t  - x , ) ) d c ~  - 
oe 2 it - x,( 

f v  ~I  -- cos ( a ( t  - Xl) )doe = - C i (  U(t  - xO ) 
Ol 

- Co + log IU(t - x l ) l  + 13 d13 
~0 

(20) 

where Ci denotes the cosine integral, Co is the Euler constant, and 
U is arbitrary; it is chosen large enough to insure the numerical 
convergence of the integral. The following expression replaces Eq. 
(19): 

'L{ 
+ 2i(d ,~  ) 

lf[  +Y4 

.+ ~ X}))(OL) + (1) 

g~') (t - x,)  

2 I t -  x,I 

[ xi,!/(.) - xl))(oe) 

!:)~ l j, si . o(t- x.>>},o 

{[XIJ/(c0 + X}),!(a) - 2clJ )] cos ( a ( t -  x , ) )}da  

1 d ~  I) 

~ t - - x l  

e})) C i ( U ( t  - xO) .  
qr 

(21) 

Using the above results, the first terms on the right in (4) can be 
expressed as 
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f , '  1 (~' lira "~ (x Yl) = 1 l dl}[t)(t) dt + - -  kl}}(xl t)J)(t)dt 
O ' y l y , ,  l '  [ : X l  ' ,. -~o w 2 w J . 

+ g ,j e U Ci(U(t  - Xl) ) ¢](t)dt 
2 I1 x,I ~" 

t 

(22) 

(1) lim r,.,y,(Xl, Yl) = 
y i - ~ 0  

1 £ [  ' 0) l i b  da'~(t) dt + k ( ' '  t)f~(t)dt 
1 

" g~}) (t - x,) e2; Ci(U(t  - x,)) f j ( t)dt  
+ 2 It x,I w (23) 

where 

k,))(x,, t) = f [ { [ xl},!(a) - x})')(~) 

+ 2i(d'Tl) + g ~ )  ]i  sin ( a ( t -  x , ) ) ] d a  

+ {[xl)~(~) + x~',!(oO 

- 2 e l f ]  cos (~( t  - x,))Id,~ 

+ f [ {[X,)'(c~) + X,,:?(,~) 

(7 )  - 2 c}) ) + cos ( a ( t  - x , ) )da.  (24) 

A similar procedure is applied to the second terms on the right 
in Eq. (4), by inserting the asymptotic expansions 

X(2)= (a(2)+ ibl)2))a + (c}})+ idlj2)) as a ~ + ~  (25) 
i /  - i j  - - "  - -  - -  

into Eq. (9). Simplifications can be made with the use of the 
integral identities (Abramowitz and Stegun. 1964): 

f 0  ~ /~2 __ m 2 ae -~" cos ( m a ) d a  = (n 2 -t- m2) 2 

f 0  ~ 2 r im ae .... sin ( m a ) d a  - (n 2 + m 2 ) 2 .  

Hence, the second terms on the right in Eq. (4) become 

(26) 

lim (23, ~ I [ ' [ a { ~ ) ( x { s i ~  O - c O s 2 0 ( t - x ' ) 2 )  
,.,*00-y,>,x,, y,) = [ (x~ sin 2 0 +cos~5-0(T:-&j2Y ~ 

2bl~)xl(t - x,) sin 0 cos 0 

+ (x~ sin 2 0 + cos 20( t  - x l )2 )  2 

+ 
(21¢ 2dl~ ) cos O(t - x,) c u ~ sin 0 + 

(x~ sin 2 0 + ; o ~ s  2 0~727t )2 i  y-fa(t)dt 

l fal'l~(2)(~ t ) f / t )d t  (27) + 2"~ n'lJ t"~l' 

1 (h Fa~2)(x2 sin 2 0 - COS 2 0 ( t  - -  XI) 2) 

lim .qy,,~,,~{2)(~ y,) = ~ J ,  / " " [  ( x T ~ l g  0 + c o 7 5 2 0 ( 7 : 7 ~ j 5  ~- 
)u~0 t 

__~  crij 

Fig. 2 Radial multiple cracks embedded in the infinite functionally 
graded materials plate 

2b[~xl(t - xl) sin 0 cos 0 
(x~ sin 2 0 + cos 20( t  - &)2)2 

c~)x, sin 0 + 2dis ) cos O(t - x , ) .  
(.r~ sin 2 0 + cos 20( t  - x,)2) 2 f)(t)dt  

1 ~ tA2), t)fj(t)dt ÷ 2~" ~2j tXl, 
. t  

(28) 

where 

C'(x,, t) : ;J[ {[xl~l(~) - xl~'(~) 

(2) -- atlshl0 ' 121 + dij )e • It sin (a( t  - x~))}da + 2i(abl) 

fB ~ V(2)I " -- 2(o~a~2/ + {[xlg(oO + ~,jcvo~) 

+ cl~))e .... i.0] cos ( a ( t  - &))]doe. (29) 

It should be noted that (27) and (28) do not contain any singu- 
larities and the asymptotic expansion is applied only for compu- 
tational efficiency. 

F u n d a m e n t a l  S o l u t i o n  

The formulation in the previous section is used to solve the 
problem of radial multiple cracks in an infinite isotropic function- 
ally graded materials, as depicted in Fig. 2. When dealing with an 
infinite plate, only Eqs. (22), (23), and (24) are used. Before doing 
so, the fundamental solution for a single crack is required. Konda 
and Erdogan (1994) solved the single crack problem using the 
Navier equations. In this work, the same problem is solved using 
the Airy stress function. The shear modulus/~ varies exponentially 
with y. 

The shear modulus is defined as follows: 

/x(y) = ptoe vy 

/X(Xl, y j) = IZo el3x'+ay' 

8 = y cos (0) 

/3=  7 s i n ( O )  (30) 
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where % 8, and/3 are real constants and represent the coefficients 
of nonhomogeneity. 

The Airy stress function U(Xl, y~) is defined by 
,gzu 

~,.l(Xl, Y0 = 0)~ 

,92U 
cry,,~(x~, Yl) = Ox~ 

,9 2U 
TxlyI(XI '  Y~) = - Ox~Oy-------~" (31) 

The stresses and strains are related through 

,gu 1 1 
e,,~,(x~, yl) = 'gx~ 8~Z(X1,  y~) [(~ + 1)o" .... + (K - 3)O'y,r,] 

,g v~ 1 
t~ytyi(Xl, YO 'gym - 8~(xl,  y~) [(K -- 3)o" .... + (K + 1)o"y~yl] 

+ 

1 ( ,9. ,  / 1 
ex~y~(X~' Y~) = 2 \ ,gy~ + ,gx~] = 2/x(x~, y~) ~'~,r, (32) 1 

lq 4 -.~. ~ - 
where u t and v~ are horizontal and vertical displacements, and ~ is 
defined as 

= 3 - 4 v for plane strain 

K = - - i  + v  for plane stress. (33) 

Using the above definitions for stresses together with the strain- 
stress relations in the compatibility equation, 

2Exlxl '9 2Eyly I '9 2Exly I 
,gx~ + ,gy~ 2 ,gx~,gy~ = 0. (34) 

We obtain the fourth-order governing equation for U(x~, y t): 
,9 

V4U(x,, y,) - 26 ~ (V2U(x~, yl)) 

,9 813~ ,92U(x. y~) 
- 2/3 ~xl ( ~ 7 2 U ( x I '  Yl)) -1- 1 + K 'gXl'gy I 

2(K -- g '92U(xl, Yl) '92U(xl, Yl).) 
+ /3 i ~ ,9yl a + 'gx~ 

+ ~2( '92U(x'' Y,) K - 3 ' 9 2 U ( x , ,  Y , ) )  
,gy~ + i - T ~  ,gx~ - = 0  ( 3 5 )  

where 

`92 `92 ) 
V =  ~x~ + ~  ' (36) 

Defining the Fourier transform of U(x~, y~) as 

V(a,  Yl) = U(Xl, yl)e-i~X'dxl (37) 

and applying Eqs. (37) to (35), the following characteristic equa- 
tion is obtained for the coefficient n in the assumed solution V(a, 
Yl) = B(a)e  "yl: 

n ¢ - 2 8 n 3 +  ( / 3 2 t ~ - 3  82 ) n  2 + - 20(i/3 + a) 

~ +  / 3 ( 2 i a -  /3) = 0  (38) 

which has complex roots 

1 (  3 - K  

1 (  3 - K  

+ 4(o2+ 

1 3 - K  2 

1(  3 - K  

3 - -  K 

2 3 - - K  

1 / ~  3 - K  2 3 --  K 

(39) 

Therefore, the solution to the Fourier-transformed compatibility 
Eq. (35) is written as 

V(ot, YO = Bl(a)  en'y' + B2(a) e'2y' 

+ B3(a)e "3y, + B4(ot)e "4x' 

so that 

(40) 

U(xt, y,) = ~-~ [B, (a)e  "y' + B2(a)e "m 

+ B3(a)e "3y, + B4(a)e",Y,]ei*~'~dol. (41) 

A bounded form of Eq. (41) can be obtained upon examination 
of the roots of the characteristic equations. The real parts of n ~ and 
n~ are negative while those of n3 and n4 are positive as a ap- 
proaches infinity. Hence U is defined for positive and negative y~ 
a s  

U(xl, Yl) = ~ (Bl e"'y' + B2en2Y~) eix'~da for Yl > 0 

U(xl, Yl) = ~-~ (B3 en3yl + B4en4yl)eiXtC'dot for Yl < 0 .  

(42) 

Normal and shear stresses must be continuous at y~ = 0. The 
continuity conditions can be represented by Eq. (31) as 

,gU(x~, 0 +) ,gU(xl, 0 - )  

,gyl ,9yl 

U(x~, 0 +) = U(x,, 0 - )  (43) 

where 0 ÷ is fory~ > 0 and 0-  is fory~ < 0. Conditions (43) can 
be used to eliminate B3 and B4, 
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B3 n4 -- ~1 n4 -- /22 
- - - B ~  + -  B~ 

n 4 -- n3 n 4 -- n3 

B4 nl -- n3 /22 - 13 
- - -  B t + - B 2 .  (44)  

n 4  --  n3  /24 - -  n3  

The remaining two unknowns B~ and B~ can be expressed in 
terms of the auxiliary functions 

0 
f ' ( x l )  = ~x~ [ U l ( X I '  0 +) - -  b/l(Xi, 0 - ) ]  

0 
f2(xl)  = ~x~ [v,(x,, 0 +) - vl(x, ,  0- ) ] .  (45) 

The final expressions for the stresses are obtained using (31) and 
Hooke's law, 

lf~[ F1(s)h22-F2(o~)h12 
O~l~,(x~. Y ~) = ~ n~ h~lh2~ h~2h2~ 

-oo 

eniY~ 

- F , ( o t ) h 2 1  + F2(s)hll ] 
+ n~ h ~ h ~  Z -h,~2 ~ e.,~y, e i*, .ds  

1 f~= a 2 [ F l ( s ) h 2 2  - F2(s)hl2 e n'y' 

(46) 

-F l ( s )h21  + F2(s)hl ,  ] 
"q- ~ ~.__-- h12~21 e"2Y' e i . , .da (47) 

s nl ~ h l z h 2 ~  e ttlyl 
i 

TxIyI(X', Y ?) = - 

where 

- F l ( a ) h 2 !  + F2(s)hl l  ] i*'"da 
+ n2 -~-7~- 7-h--77~77 e "~'' e (48) 

i s  - /3 
h21 - _ _  

8~o 

i s  - /3 
h22 - _ _  

8~o 

K + I  
hit - 8 ~  ° (hi -- n3)(na - n4) 

K + I  
h,2 = ~ (n2 - n3)(n2 - n4) 

(82(1 + K) - 62(~ - 3)) 

× [ ( 8  (n, - ,~ ) (n ,  - n4) 
Z 7/IY(~ 7 g V g  : n4) ] 

(o~z(1 + K) - 32(K - 3 ) )  

(n2  - n 3 ) ( n 2  - n4)  

f a  h Fj ( s )  = f~(t)e(t3-i"~'dt for j = 1, 2. (49) 

The singular integral equations can be solved for the auxiliary 
functions using the boundary conditions 

-P,(Xl) = l im ~ry,y,(Xl, y , ) ,  a < x l  < b 
yl~0 

--P2(Xl) = lim %.,y,(xl, Yl) ,  a < x l  < b.  (50)  
yt~0 

Equations (47) and (48) are rearranged as follows: 

l f= 2[hzze",r,-h21e,,Zy, 
¢ry,yl(xl, Y?) = - -~~ s ~ h12h2, F,(S) 

hllen2yl - -  hl2e"JY~ 1 
+ hHh22 h12h21 F2(s)  ei*'"da (51) 

f• I " 112Yl i nlh22 e"ty~- n2h21e 
TxlyI(XI' Y~) - 2 ~  s hllh2= -- h12h21 E l ( s )  

+ n2hl'e"2Y' - nlhl2e'"r' F2(s)  ] ei~'~ds. (52) 
hllh22 - hl2h2j 

As a goes to infinity, n, ~- nz, so a comparison of Eqs. (51) and 
(52) to (8) motivates the following definitions: 

Lhllh22 h,2h21.J X 1 2 = - s  [ h i , / ~  hlah2tJ 

' [ n l h 2 2 - n 2 h ~ ]  -ioz[ n 2 h l l -  nlh12.] 
X21 = -'SLh~ - -  h12h21J X22 -~ hllh22 h12h21 j " 

(53) 
The leading order behavior of X~j is determined to be 

8 
Xl l ( s )  ~ as s --+ _+~ 

-+~(1 + K) 

±2 i  /3 
a12( s )  ~ ( 1 + ~ )  F ± s ( i + K )  as s ---~ ±o~ 

±2i  /3 
X21(s) --+ (1 + K------) + ± s ( 1  + K) as a ~ ±oz 

- 8  
X=(c~) ~ as ~ --~ ±o~ _T.s(1 + K) (54) 

d(I) (U (l) (1) indicating that the analogues to ~,j , e 0 , c~j and go described 
earlier in Eqs. (12) and (18) become 

2 
dl12 = d~l -- I + K  

8 
ell  = - e ~ 2 -  1 + K 

e l 2 = e ~ , -  1 + 

c l ,  = c',2 = 4 ,  = c~2 = d l ,  = d h  

= g l ,  = g12 = g L  = g~2 = o. (55) 

Now substituting (53) and (55) into (22) and (23). the final 
singular integral equations are reached: 

~ + 1  l fo~ f2(t) a fo,, 2~-(~.-0) p , (x , )  = -- - -  dt + -- kl2(x,, t ) f2(t)dt  
~"  t - - X l  7 r  

rr ~ C i (U( t  - x , ) ) ] f2( t )d t  + -- k , , (x , ,  t ) f , ( t )d t  37" 

1 f h3  
~r ~ C i (U( t  - x , ) ) J f , ( t )d t  (56) 
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+ 1 1 f+ fl(t) 1 f [  
2 f ( x i ,  0) p~(x,) = ~ 7~ t - x---7 dt  + --  k2,(xi, t ) f l ( t )d t  7r 

'rr C i ( V ( t  - x t ) ) ] f , ( t ) d t  + -- k22(xl, t)f~(t)dt 
'77" 

+ -- C i (U( t  - x , ) ) I A ( t ) d t  

where 

k,~(Xl, t) = ~ {[Xi~¢ - X,~]i sin (c~(t - x i ) )}da  

f0 U + {[x, ,  + x , , A  cos (~( t  - x,))}do~ 

+ XiI + X ~ l c -  2 o~(1 + ~----) 

×cos (oe(t- x,))}dc~} 

K+l{f[{ I 4i l k , d x , ,  t) : - 4 - -  X,2~. - X~2 + 

× i sin (oe(t - x , ) ) d a  

f; + {[X,2 + X,2,.] cos (a( t  - x~))}da 

(57) 

(58) 

+ Xi, + X ~  - 2 oe(1 + ~¢- - - - -  ~- 

k~l(xl, t) = -  

x cos (c~(t - xO)d~ 

4 X2I~" - X21 + 

X i sin (ee(t - x~))de~ 

f; + {[x~, + x~,2  cos (~(~ - x ,))}d~ 

(59) 

+ X~ + X2~,. - 2 oe(l + K-------- ---)  

X COS ( a ( t  - x l ) )}do~  

k22(xl,  l) = ~ {[X22c - X22]i sin (o~(t - x,))}doz 

f; + {Ix=  + x=,,] cos (c~(t - x,))}do~ 

(60) 

+ X22 + X~z~. + 2 c~ (1 + ~--)- 

× c o s ( a ( t - x , ) ) } d a } .  (61) 

Since there are no boundaries considered in this problem, the 
analogues to equations (27) and (28) do not appear here. 

The definitions for the stress intensity factors and the strain 
energy release rate can be found in Part II, along with the numer- 
ical technique used in solving the system of singular integral Eqs. 
(56) and (57). 

Multiple Crack Formulation 
To formulate the multiple crack problem, the total stresses of the 

• system need to be determined. Each crack is located along its local 
&-axis, oriented at angle 01. The cracks are ordered so that 0i+~ 
0~. The local coordinates are related by 

Xi = Xi+ 1 COS ( 0 i +  I - -  Oi ) --  Yi+I sin (0~+j - 0~) 

Yi = xi+t sin (Oi+l - 0~) + Yi+l cos (0i.j  - 0~) 

xi+l = xi cos (Oi+ L - Oi) + Yi sin (0ibj - Oi) 

y~+~ = -x~ sin (Oi+~ - 0~) + y~ cos (G+J - 0s) (62) 

and the stresses are related through the transformation: 

 }im2 . . . . .  O'yi),i ~- tl 2 

TXO, i m n  

O'xi+ tx,4 1 [ 

O'Yi ~. lyi+ 1 

Txi+ lyi+ = - -  m n  

m = cos (0~+, - 0,,); 

The material constants are 

1112 - 2 m n  l 
m 2 2mn ~rv,, ,s,, 

- r a n  m 2 n z 
- -  'l" r/+ f)'i ~ r 

m 2 n e 2mn 1 { 0", .... 
n 2 m 2 - 2 m n  %,~, 

mn m 2 - n 2  %,y, 

n = sin (0i+ I - Oi). 

O'xi~lxi+ t 

(63) 

13~ = Y sin (0i) 

8j = 3, cos (01). (64) 

The stresses for each coordinate system are expressed for pos- 
itive ),i > 0 and negative y~ < 0, denoted as y [  and y ; ,  
respectively: 

- 0 /  (i) (i) (i) (i) (i) 
1 f *  n21h22 e ' ' ' y ' -  nZzh21e "2y, (il 

hllh22 - hj2h2j 

(i) (i) (i) (i) (i) (i) ] 

n~htle "~y'- n~hl2e "o'~ ( i )  i"ada 
+ - T b - I ~ -  /i)t~) -F2 ( °e ) Je  (65) 

hllh22 -- h12hzl 

[ ~i) (i) (i) (i) 
l lh22e '<v,-  

O') 'Y(Yi '  Y?) -- 2 ~  °~2 / ~ (,) (s) FI(°e)  
[ htlh22 h12h21 

(1) li) (i) (i) 
h l l e  ~2y' - hl2e ''o'~ (i) l 

+ -233-5g (0 (o F2(oe) ei~'"da (66) 
hjjh22 - hl2hel 
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F (i) (i) (i) (i) (i) (-i) 
i f ~ / nlh2se"°' i  -- n2h21en2yi (i) 

%V' (x ' '  Y [ )  = - ~ a I - T g T g  (0 (1) F , ( a )  ) -~ L hllh22 hl2h21 
(i) (i) (0  ( i )  (i) (i) _ ( i )  ] 
n2h 1 te tl2yi --  n lh  tze "lyi I 

+ (i) (i) (4 (0 P2(oO e~*'"dct J h~h22 huh2~ 

(i) (i) (i) (i) (i) (i) 
l f ~  n~Nsse my' 2 n4yi -- n 4N21 e (i) 

o%,,(xi, y 7 )  = ~ ; _ ~  (i) (i) (i) (i) E l ( a )  
Ni~Nzs - NizN2~ 

(i) (i) (i) (i) (i) (i) 1 
n ] N t  te ,,4yi _ _  n ~N~se"~Y' (i) , [ 

+ (i) (i) (4 (i) F 2 ( a ) l e ~ X ~ d a  
N~N2~ N,sN21 

[" ( i)  ( i )  (i) (i) 
l 2[N22e" 'Y ' -N2 ,e"4Y '  (i) 

O'YiY'(Xi' Y ? )  = - 2 ~  oz I--~--~-- ('~ ") F~(ot) 
L N, ,N2~ - N~sN2~ 

( i)  ( i)  (i) ( i)  "1 
Ni l  en4y~- N12 en3y~ (i) | 

+ (5 (i) (i) (i) Fs ( ° t ) ]  eix~d°t 
N ~ N 2 2  NnN2~  

(i) ( i) (i) (i) (i) (i) 
i l o~ n3N22 e'a'* --  n4N21 en4yi (i) 

%,y,(Xi ' y T) = - ~-~ j c~ (0 (i) (i) (i) F i ( a )  
- ~  N~iN2~ - Ni2N2i 

(i) (i) (i) (i) (i) (i) 1 
n4g l l  en4y~- n3N12 en3ys (0 I 

+ (i) (i) (i) (i) F2(°~)[ ei:''"da 
N1,N22 - N ~ N ~ i  J 

where  

(67) 

(68) 

(69) 

(70) 

(i) i a  - /3 

N ~  = 81Xo 

N~2 -- 8/.t, 0 

(i) / (  ÷ 1 (i) (i) (i) (i) 

O ~ o  

(i) / (  ÷ l (i) (i) (i) (i) 

N~2 = --6-.7-- (n4  --  n 2 ) ( n ,  --  n4)  
o p , 0  

- - ( a 2 ( 1  + ~2) - 3 ~ ( ~  - 3 ) )  

(i) (i) ( i) (i) ] 
(n~ -- n3)(n  3 - -  n2) 

X - ~ ) - -  -- -- ~3--  -- - (i) 
( a , -  < ) ( a , -  , O ( a , -  n~)d 

(as(~ + ,O - a?(~ - 3)) 

(i) (i) (i) (i) ] 

X ( _ n ~ :  n s ) ( i _ ~ - . n 4  - ) ,n (71)  

(ai - n 2 ) ( 8 , -  n ~ ) ( 6 i -  n4).l 

and ho ' s  are defined as in (49) for the i th crack. Assume  that there 
are n cracks present,  so the stresses for the i th crack can be 
expressed as 

n 
T i 

O'yiyi(Xi' Yi) ÷ iO'ylyi(Xi, y,) = ~ o%,[x~(xi,  y,), y;(xi, Yi)] 
j = i + l  

n 
T i 

i~yiyi(Xi' Y') Y,) + ~ = "rym(xi, r,~y,[Xj(xi, y,) ,  yj(xi ,  Yi)] (72) 
j=i+l 

• where  o" o) r (2 are found  us ing  (63);  they are eva lua ted  
a sympto t i ca l ly  as in (9) and  (10),  respec t ive ly .  Thus ,  the final 
s ingular  in tegra l  equa t ion  for  the i th c rack  can be  expressed  as 

K + 1 (i) 1 b~ 

71" I i - -  X i 
h i 

1 f b, , , ,  , , ,  + - -  kl2(Xi, t ,) f2(ti)dti  
7/" 

al 

rr , ~-  C i (U i ( t ,  - x i ) ) J f s ( t i ) d t i  

1 f a  b~ (i) (i) 
+ -  kll(Xi,  t i ) f l ( t i )dt j  7r 

i 

1 f,[" 8i ] (s) ; ~- C i ( V ( 6  xi) ) f , ( t , ) d t ,  

i 

{Sa/ 1 6 a(J)(~2u t~i  sin2 AOi - (tj - xi cos z~0i) 2) 

+ E ~ (Xy sin 2 AO i + (tj - X, c o s  A 0 i )  2) 2 
j = i + l  

c U ) ~  sin A0/( ( t j  - xi cos A01) 2 + x ~  s in  s A 0 , )  l l ~ i  + 
(x~ sin 2 a 0 i  + (t  i - x / c o s  A 0 ~ ) 2 )  2 

2bO)~l~i sin AO~(tj - xi cos AOi) 

+ (x~ sin 2 A0i + cos s AOi(t  - X l ) 2 )  2 

q 
(tj - x¢ cos A a  ~.~(;)r~2~u.~t ~ ¢  sins A0~ + (tj - x~ cos A 0 3 2 ) [  

+ (x/z sin 2 AOi + (t i -- xi c o s  A 0 1 ) 2 )  2 ] 
IJ) 1 f .f (J) (J) X f~( t j )d  0 + - -  k , , (x , ,  t j ) f , ( t j )d t j  

+ - -  
7r 

Ij 

r'(J)/~2 sin 2 AO i - (tj - x~ cos k 0 3  2) 12 k ~ i  

(x 2 sin 2 A0i + (tj - xi  cos A0i)2) z 

c ( ; ~  sin kOi(( t ;  - xi cos AOi) 2 + x~ sin 2 AO~) 12a i  

+ (X~ sin 2 AOi + (tj -- xi cos AOi)2) s 

2~(J)~ sin AOi(t j  - x~ cos A0~) u 12a /  

+ (x~ sin 2 AOi + cos 2 AOi( t  - xi)2) 2 

q 
+ ~,2v'j'4(J)¢" -- X i COS AOi)(X 2 sin 2 AO i + (tj -- xi cos A0i)2).[  

(x 2 sin 2 A0i + (tj - xi cos A0i)s)  2 

(J) 1 I a  bj (J) (J) 
xA(t)dcj  + .~ kMx. t)A(Odtj 

J 

(i) 

i 2~ (x / ,  -0) P2(Xi)J = ~ .~ ,  ~ dh  

l I t  bi (i) (i) + -- k21(x i, t~)fi(ti)dti "11" 

(73)  
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- ~ T Ci (U~( t~-  x~))Jf~(t,)dt~ 

1 f a, u) u) + -  k22(xi,  t l ) f e ( t i )d t i  

- -  X .  (i) 
~- ~ Ci (U( t ,  ,)) fe(t,)dt~ 

a~ 

Io' (,, Xi COS ~ 0 i )  2 ) +i~,+, ~ 1 ,~[ (xps inZ±O,+( t j_x i cod~O0~_  ~ 

c~J/. sin AOi((tj - xi cos AOi) 2 + x~ sin e z~Oi) 21 ~i 

+ (x~ s in  e AO i + (t j  -- X i COS a 0 i )  2) 2 

b,(J)v s in  AOi ( t  j -- X i COS AOi) 21 ~i 

+ (x} sin 2 AOi + cos 2 AOi(t - xi)2) 2 

(tj - xi cos AOi)d~)(x~ sin 2 AOi + (tj - x, cos A0i) 2) 

+ (x~ sin 2 AOi + (tj  -- X i COS a O i )  2) 2 

(// 1 fbi (J/ ~j/ 
xf~(Odt j + ~ ) k2,(x, t)A(Odtj 

- aj 

1 I~ b' [a~l(x~ sin e A O i -  (tj - xi cos A0/) e) 

c ~ x i  sin AOi((tj - xi cos AOi) 2 + x~ sin 2 AOi) 

+ (x~ sin 2 aOi + (tj - xi cos A0i)2) 2 

2k( J )~  sin AOi(tj - X i COS AOi) ~22~i  

+ (x~ sin 2 A0i + cos 2 AOi(t - xi)e) 2 

d•J/¢, cos A0i)(x/2 sin 2 A0i + (tj xi cos a0i)  2) 22 \~j -- Xi + 
(x~ sin 2 aOi + (ti -- xi cos a0i)2)  2 

(J) 1 f bj (j) (j) × fe(lj)dtj  + --  k22(xi, t/)fe(tj)dtj 
71" 

aj 

(74) 

where the constants a,~l, b~l, c2,  d~l, and k(,~)n can be found 
either in Shbeeb (19981 or in Shbeeb, Binienda, and Kreider 

01 
(1998). The kernels k,,nare defined as in Eqs. (58) through (61) 
using Eq. (62) and A0~ = 0~+1 - 0,. 

The companion paper, Part II (Shbeeb et al., 1999), presents 
numerical technique of solution, validation of the results, and 
parametric studies. In particular, Eqs. (56) and (57), which include 
spatially varying material properties, are used to examine the 
influence of geometrical and material parameters on the magni- 
tudes of the stress intensity factors and strain energy release rates. 

C o n c l u s i o n s  

The general solution to the mixed boundary value problem for 
crack analysis in a functionally graded material is obtained by a 
new semianalytic methodology in Fourier transform space. The 
stress intensity factors and strain energy release rates are com- 
puted. The solution for a single crack is generalized to the case of 
fully interactive multiple cracks. The analysis reduces to a set of 
singular integral equations. Asymptotic expansions of the singular 
terms are converted analytically to real space for numerical effi- 
ciency and accuracy. The numerical code can be run on a PC, and 
produces accurate results that compare favorably with results 
found in the literature, as demonstrated in Part II of this work. 
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Analysis of the Driving Forces 
for Multiple Cracks in an 
Infinite Nonhomogeneous Plate, 
Part I1: Numerical Solutions 
In Part 1 of  this work, an analytical model was developed for the fundamental solution for 
a crack embedded in an infinite nonhomogeneous plate. This fundamental solution is used 
here to generate the stress intensity factors and strain energy release rates for fully 
interactive multiple crack problems. Also, a numerical technique used in solving the 
singular integral equation in Part I is presented, along with a parametric study. The 
parametric study addresses the influence of crack distance, relative angular orientation, 
and the coefficient of  nonhomogeneity on the crack driving forces. The strain energy 
release rate is recommended for use as a crack propagation criterion because it depends' 
on the local material properties as well as all the remaining parameters contained in the 
stress intensity factors. 

Introduction 

The system of singular integral equations for a crack embedded 
in an infinite nonhomogeneous material was obtained in Part I 
(Eqs. (56) and (57)). The singular part and two additional terms 
were extracted using asymptotic expansions of the kernels at 
infinity, producing an efficient and accurate method for evaluation 
of the stress intensity factors and strain energy release rate. Also, 
the fundamental solution was used to formulate the solution for 
multiple cracks in an infinite nonhomogeneous plate (see Eqs. (73) 
and (74) in Part l). 

Here in Part II, the numerical technique used in solving the 
system of integral equations is discussed, using as an example Eqs. 
(56) and (57) of Part I. Then, a parametric study is conducted to 
examine the influence of each parameter of the solutions on the 
stress intensity factor and strain energy release rate. 

Numerical Solution Technique 

The singular integral Eqs. (56) and (57) in Part I need to be 
normalized before any numerical integration scheme can be ap- 
plied. Introduce the following normalized quantities: 

b - a  b + a  b - a  b + a  
t = - - T - s + ~  2 - ,  x , = T r +  T 

b - a  
k~(r, s) = ---~-- ko(x,, t) 

f 
l 2 

2~*(~',-0) l'~(r) = -- * s)  
zr 171L  s - r 

where 

(1) 

X u = (  0 l 1 0 
1 0 ) '  8 i J = (  0 1 ) '  (2) 

The unknown singular functions f~(s) consist of a known sin- 
gular weight w(s) and unknown regular functions gi(s) 

fi(s) = gi(s)w(s) (3) 

where 

1 
w ( s )  - ( 1  - s ~ '  (4 )  

The integration of the Cauchy-type singular integral Eq. (1) is 
obtained using a numerical collocation technique such as the 
Lobatto-Chebyshev method, producing a system of algebraic equa- 
tions in g(h):  

f* ( s )  =J)( t ) ,  p*(r) = p , ( x ) ,  /x*(r, 0) = /*(x,, 0) 

(i, j )  = (1, 2). 

Then the integral equations can be rewritten as 
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_"[ K + 1 p~rp) 1 ,~ Xi~ 
. . . .  + ~ . ( r~ ,  Sk) 2~'~7,,~ 0) ~- sk - r,, 

j=l k=l 

/ / \ a 
8 u S C i l U I - - 2 - - ( s k - r " ) ) )  g i % ' e ) w k ' 2  ( i =  1 ,2 )  (5) 

where p = 1 . . . . .  n - 1 and Ci is the cosine integral. Values for 
the abscissa sk, weights wk, and collocation points rp, can he found 
in Binienda and Arnold (1995). In Eq. (5), there am 2n unknowns 
but only (2n - 2) linear equations. Consequently, two additional 
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0.25 

0.50 

1.0 

C 

Table 1 Validation of the solution 

Konda and 

Erdogan (1994) 

kl(a)/~/C 

1.036 

1.101 

1.258 

Present Study 

kl(a)/qC 

1.036 

1.i01 

1.260 

Konda and 

Erdogan (1994) 

k2(a)/~/c 

0.065 

0.129 

0.263 

Present Study 

k2(a)/~c 

0.062 

0.122 

0.243 

Table 2 

Ho~i and Nemat-Nasser 

(1985) 

Two collinear cracks In an isotroplc plata 

From literature 

Inner Outer 

Erdogan 

(1962) 

Outer 

cy 

Inner 

0.22 . . . . . .  1.45387 1.11741 

0.50 1.2289 1.0811 1 . 2 2 8 9 4  1.08107 

0.857 1.1333 1.0579 1 . 1 3 3 2 6  1.05786 

Present Method 

Inner Outer 

1.45736 1.11786 

1.22894 1.08107 

1.13329 1.05787 

equations are needed, which are furnished by the discrete single 
valuedness conditions 

n 

~L, g i ( sk )Wk=O i =  1 ,2 .  (6) 
k = l  

Equations (5) and (6) can be represented as follows: 

[A]z,,×zo{g}2,, = {P}2. (7) 

so the unknowns are obtained formally by 

{g} = [A]-I{P}. (8) 

20 --~--~r-~'rF "--r--~r-r~l-----~ q ' ~ - ~ T r  . T 

o Homogeneous 
\ ~ 7c=0.25 

15: \ \  o 7e=0.50 

l x .7c=0.75 
, i 7e=1.0 Y 

5 

0.001 0.01 0.1 1 10 
r/c 

Fig. 1 Mode I normalized stress intensity factor versus normalized inner 
crack tips distance for two colllnear horizontal cracks (¢yy = 1.0, o'xx = 
~'xy) 

Finally, the stress intensity factor is written in terms of g, (s) and 
gz(s). Details appear in Shbeeb (1998); the results are 

2 .v/2/x0 
k,(a)  = et~ag2(a) 

O< + 1) @ - a 

2 ~ o  
kl(b) = (K + 1) , f b -  a et3bg2(b) 

2 ,/2/*o 
k2(a) = (K + 1) ~ e~"g'(a) 

2 ~V2~o 
k2(b) - e~bg,(b).  

(K+ 1 ) , / b -  a 
(9) 

Note that the crack tips are represented in Eq. (8) by a = s~, 
b = s,. The strain energy release rates are defined as 

~-(K + 1) 
Gl(a)  = 8/.2(a, 0)  k2(a) 

wr(K + 1) 
G,(b)  - 8/.(b,  0) k~(b) 

~r(K + 1) 
G2(a) - 8/x(a, 0-------~ kS(a) 

~(~ + 1) 
G2(b)- 8~(b, 0) k~(b). (iO) 

It should be mentioned that the cosine integral in Eq. (5) 
contains an integrable singularity at s = r. However, the use of the 
Lobatto-Chebyshev method eliminates the need to do any analytic 
evaluation as long as care is taken to obtain numerical conver- 

502 / Vol. 66, J U N E  1999 T r a n s a c t i o n s  of the  A S M E  

Downloaded 04 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



300 . ~ - - - ~  ~ , , - , - -  ,- ~ , ~ . . n ~ , ~ - - ~ - ~  

I \  
250 ~-\ o Homogeneous 
- I \ \  ~ w =°.25 

t \ \  o ~,~:o.5o 
o 200 <~ \ \  y # )< ')'e:0.75 
"C' f \ \ \  / , ,o:,.o 

, o o N \ \ \  , , 

0.001 0.0l 0.1 1 10 
r/c 

Fig. 2 Mode I normalized strain energy release rate versus normalized 
inner crack tips distance for two colllnear horizontal cracks (~ryy = 1.0, 
O'xx = "TXy) 

gence. A similar situation occurs with the step function in Eqs. 
(22) and (23) in Part I. 

For validation, two simulations were run. First, the normalized 
Mode I stress intensity factor produced by this technique Compares 
favorably to that of Konda and Erdogan (1994) over a range of 
nonhomogeneity constants 3/, as summarized in Table 1. Second, 
the results for two collinear cracks embedded in an isotropic plate 
are shown in Table 2 to match results in the literature over a range 
of distances between crack tips, 
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Fig. 3 Normalized stress intensity factor versus normalized inner crack 
tips distance for two collinear cracks along the 0 = 30 deg (O.yy = 1 .0 ,  O'xx 
= ~'xy); (a)  Mode I, (b) Mode II 
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Fig. 4 Normalized strain energy release rate versus normalized inner 
crack tips distance for two collinear cracks along the 0 = 30 deg (¢yy  = 
1.0, O'xx = ~'xy); (a) Mode I, (b) Mode.II 

P a r a m e t r i c  S t u d i e s  

In the following studies, the length of each crack is chosen to be 
2c = 2. The infinite plate is subjected to normal stress tyyy = 1 psi 
along the y global direction. Each crack is located along its local 
x~-axis, oriented at angle 0i (with respect to the global x-axis). All 
geometrical dimensions are normalized with respect to c. The 
parametric studies are presented for the normalized Mode I and 
Mode II stress intensity factor, i.e., kL/ko and k2/ko, and normal- 
ized strain energy release rate, i.e., Gj/Go and Gz/Go, where k0 = 
o - ~ c  and Go = k0~-(t( + 1 )/8 P,o. The nonhomogeneity constant 
y is used to define the shear modulus by ~2 = pcoe yr. 

The first study takes into consideration the problem of two 
coil\near horizontal cracks (see insert in Fig. 1 or 2). Figures 1 and 
2 show the Mode I normalized stress intensity factor and Mode 1 
normalized strain energy release rate (respective Modes II are 
zero) versus the logarithm of the normalized crack-tip distance r/c. 
Notice that as the distance between the cracks decreases, the stress 
intensity factor and strain energy release rate increase for all 
positive nonhomogeneity constants 3'. The homogeneous case is 
represented by 3' = 0. Both driving forces increase as 3' increases 
because the material becomes locally stiffer. The increase is espe- 
cially significant for a crack-tip distance less than 0.01 because of 
increased crack interaction. 

The case of collinear inclined cracks at 30 deg from the hori- 
zontal axis is shown in Figs. 3 and 4. Mode I stress intensity factor, 
shown in Fig. 3(a), has larger magnitudes than the corresponding 
Mode II stress intensity factor (shown in Fig. 3(b)) for both 
homogeneous and nonhomogeneous materials because the normal 
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Fig. 5 Normalized stress intensity factor at tip a~ versus crack (2) 
orientation angle 02 for two inclined cracks (tryy = 1.0, O'xx = ~'xy = 0.0, d = 
1.0, 01 = 30 deg); (a) Mode I, (b) Mode II 

traction components applied at the crack surface are larger than the 
shear component. As before, both modes show an increase in SIF 
with decreasing crack-tip distance and with increasing nonhomo- 
geneity % 

Figures 4(a) and 4(b) display Mode I and II strain energy release 
rate. The magnitude of Mode I strain energy release rate is almost 
three times larger than the corresponding Mode II strain energy 
release rate. Both modes of strain energy release rate increase with 
decreasing normalized crack-tip distance r / c  (similar to stress 
intensity factor) and with decreases in nonhomogeneity, % (dif- 
ferent from stress intensity factor). It should be pointed out that the 
material stiffness at each crack tip dominates the results for strain 
energy release rate to the point of reversing the trend in behavior 
of stress intensity factor with respect to 7. Also, note for r / c  > 1 

no discernable difference in strain energy release rate is observed. 
The case of two cracks located along two different local radial 

axes at distance d = 1 from the origin is shown in the remaining 
figures. The location of the crack 1 is kept constant at 30 deg while 
orientation of the second crack is changed from 45 to 90 deg. Both 
stress intensity factor and strain energy release rate are shown for 
each crack tip versus the orientation angle of the second crack. 

Figures 5(a) and 5(b) display Mode I and II SIF while Figs. 6(a) 
and 6(b) represent both modes of strain energy release rate at the 
left crack tip of crack 1. Notice that when the second crack 
approaches the first crack, the tip a~ is shielded and all driving 
force components are significantly reduced, Mode II stress inten- 
sity factor has its maximum at an orientation angle of the second 
crack of about 70 deg. As before, by increasing local material 
stiffness (increasing 3~), higher magnitudes for Mode I stress in- 
tensity factor and lower magnitudes for Mode II stress intensity 
factor are produced. 

Both modes of strain energy release rate depend not only on the 

square of the stress intensity factor but also on the material 
stiffness at the crack tip. This influence is especially evident in 
Figs. 5(a) and 6(a) where the homogeneous case produces the 
smallest Mode I strain energy release rate at orientation angle 45 
deg, similar to the corresponding stress intensity factor. However, 
the homogeneous Mode I strain energy release rate curve increases 
for higher angles, in contrast to the corresponding stress intensity 
factor, which decreases. 

The difference in behavior of stress intensity factor and strain 
energy release rate is even better shown in Figs. 7 and 8. Here the 
shielding effect does not exhibit itself. Both modes of stress 
intensity factor are smallest for a homogeneous material (see Figs. 
7(a) and 7(b) for Mode I and II stress intensity factor), while both 
components of strain energy release rate are largest (see Figs. 8(a) 
and 8(b) for Mode I and II strain energy release rate), because of 
the influence of the crack-tip material stiffness. Hence, the remain- 
ing parametric studies are presented with strain energy release rate 
only, as it is the more complete driving force parameter. 

The results for the left crack tip of the second crack are shown 
in Figs. 9 and 10. Mode I strain energy release rate monotonically 
decreases to almost zero at 75 deg, and at approximately 50 deg 
does not depend on 7, as shown in Fig. 9(a). In the 45-50 deg 
range, the homogeneous case produces the highest Mode I strain 
energy release rate while the smallest strain energy release rate is 
found in the 50-90 deg range. Mode II strain energy release rate 
is higher than Mode I for orientation angle 45-90 due to the 
dominant shear traction component applied at the crack surface. 
Both modes decrease with increasing orientation angle, as shown 
in Fig. 9(b). 

Mode I strain energy release rate at the b2 crack tip is shown in 
Fig. 10(a). For all orientation angles, the homogeneous case yields 
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the highest Mode 1 strain energy release rate. For all nonhomoge- 
neity constants, Mode I strain energy release rate decreases with 
increasing orientation angles. The nonhomogeneous material with 
the highest 'y also decreases to zero, but does so at a smaller angle 
because the crack tip remains closed. Mode II strain energy release 
rate is shown in Fig. 10(b). The trend here is not as clear; Mode II 
strain energy release rate is clearly the highest for large % but for 
smaller y, the orientation angle plays an important role due to the 
applied traction forces at the crack surface. However, all the curves 
attain their maximum values around 55 deg. 

All of these parametric studies demonstrate that the effect of the 
material properties, crack orientation, and location of the addi- 
tional crack are interdependent and consequently produce behavior 
different for nonhomogeneous materials than for homogeneous 
materials. The model developed in this work can be used to study 
fracture problems in nonhomogeneous materials and can be used 
to tailor the properties in order to reduce driving force components 
and effectively increase the life of these materials. 

C o n c l u s i o n s  

The parametric studies presented here examine the effects of 
nonhomogeneity constant, crack orientation, and crack-tip distance 
on stress intensity factors and strain energy release rates for 
multiple cracks. They reveal that both stress intensity factors and 
strain energy release rates are highly dependent not only on the 
crack geometrical parameters (crack orientation, location, and rel- 
ative distance), but also on the value of the nonhomogeneity 
constant y and the local stiffness of the material at each crack tip. 

The results demonstrate that the driving forces can be amplified 
by collinear crack orientation or can be reduced by the shielding 

effect between cracks above or below. The character of the am- 
plification or shielding remains similar for nonhomogeneous ma- 
terials, but in most cases, increasing the nonhomogeneity increases 
the stress intensity factor and reduces the strain energy release rate. 

The well-known one-to-one relation between the stress intensity 
factor and the strain energy release rate curves is not always valid 
for nonhomogeneous materials, because the strain energy release 
rate also depends on the material's elastic constants. Hence, the 
stress intensity factor curves may have a different character than 
the strain energy release rate curves. Consequently, the appropriate 
driving forces to be used as a crack propagation criterion need 
further investigation so as to determine which driving force (stress 
intensity factor or strain energy release rate) best correlates with 
appropriate experimental results. However, since the strain energy 
release rate includes the influence of the stress intensity factor and 
material stiffness at the tip, it is recommended that total strain 
energy release rates be used as the driving force parameter for 
cracks in nonhomogeneous materials. 

For practical engineering applications, the effects of boundaries 
must be included in the singular integral equations, and correlation 
with experimental studies is required to determine the local tough- 
ness of functionally graded materials. Further research on this 
topic is warranted. 
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Wavelet Analysis of Laser- 
Generated Surface Waves in a 
Layered Structure With Unbond 
Regions 
This paper presents the results on the utilization of a wavelet transform to study the 
dispersion of laser-generated surface waves in an epoxy-bonded copper-aluminum lay- 
ered specimen with and without unbond areas. Laser ultrasonic experiments based on the 
point-source~point-receiver (PS/PR) technique were undertaken to measure surface wave 
signals in a layered specimen. The wavelet transform with a Morlet wavelet function was 
adopted to analyze the group velocity dispersion of the surface wave signals. A novel 
hybrid formula for grcmp velocity dispersion is proposed for measurements across unbond 
regions. Results and data obtained are in good agreement with calculated and experi- 
mental dispersion curves. The general behavior of the group velocity dispersion for 
different measuremem,configurations can be utilized to differentiate the unbond regions 
in a layered structure. 

1 Introduction 

The detection of delamination and/or bonding quality in bonded 
structures is of practical importance in the NDE of composite 
structures such as layered fiber-reinforced composites, brazed me- 
tallic tools, etc. Although ultrasonic methods are available for 
some on-line monitoring of the manufacturing process, the utili- 
zation of liquid couplants prevents some important applications 
such as on-line monitoring of hot and moving objects. As such, 
based on this line of thinking, laser ultrasonics provides a useful 
alternative method for monitoring manufacturing processes. The 
noncontact feature and the ability of broadband signal generation 
of laser ultrasonic methods have demonstrated its great potential in 
NDE applications (Scruby and Drain, 1990). Past applications 
include using laser ultrasound to investigate the Lamb wave prop- 
agation phenomena in thin plates (Hutchins et al., 1989; Dewhurst 
et al., 1987; Nakano and Nagai, 1991) and to obtain the scan 
images of thin graphite/epoxy laminates and silicon wafers (Veidt 
and Sachse, 1994). In past studies (Spicer et al., 1990; Hurley et 
al., 1997), precise modeling of the laser source and theoretical 
computations of the elastic waves in thin as well as thick plates 
were made. Besides, restrictions on using the lowest plate modes 
to extract the elastic modulus and thickness information of a thin 
plate using laser-generated ultrasonic waves were noted. In addi- 
tion, a laser-generated ultrasonic bulk wave (Castagnede et al., 
1991) and surface wave (Wu and Chat, 1994; Chat and Wu, 1994) 
were also applied to the determination of elastic constants of 
anisotropic materials. In these studies, the deviation of the prop- 
agation direction between the energy velocity and phase velocity 
was considered. The elastic constants for the composite overlays 
can be measured by employing a line-focused pulsed laser (Doyle 
and Scala, 1991) in such a way that both the phase velocities and 
the skew angles between phase and group velocities of the skim- 
ming longitudinal waves on the surface are measured to fit the 
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elastic constants. Laser ultrasound has also been applied to the 
study of Lamb wave propagation in paper (Johnson et al., 1996), 
The results show that the lowest Lamb wave modes can be iden- 
tified clearly with minimal damage to the paper. The laser- 
generated ultrasonic guided waves have recently been applied to 
layered isotropic (Wu and Chen, 1996) and carbon fiber-reinforced 
polymer composite laminates (Scudder et al., 1996). Results and 
data are in good agreement with the calculated and experimental 
results. 

During the last decade, the wavelet transform has been explored 
and applied to analyze nonstationary transient signals that appear 
in different physical situations (Ruskai et al., 1992). For example, 
there are successful applications of the wavelet transform method 
in the dispersive analysis of elastic waves in structures (Onsay and 
Haddow, 1994; Kishimoto et al., 1995). In the area of laser 
ultrasound, Cho et al. (1996) utilized the wavelet transform to 
measure the group velocity of laser generated surface waves in 
metallic specimens with subsurface lateral defects. The mathemat- 
ical theory and the associated advantages of the wavelet transform 
can be found in the review articles by Rioul and Vetterli (1991) 
and Hlawatsch and Boudreaux-Bartels (1992). 

In this paper, we utilized the wavelet transform to study the 
dispersion of laser generated surface waves in an epoxy-bonded 
copper-aluminum layered specimen with and without an unbond 
area. Laser ultrasonic experiments, based on the point-source/ 
point-receiver (PS/PR) technique, were conducted to measure sur- 
face wave signals in the layered specimen. A Nd:YAG laser was 
ntilized as a point source and the elastic wave signals were re- 
ceived through the utilization of a PZT transducer with a small 
acting area. The received wave signals were then processed using 
the wavelet transform to obtain the dispersion as related to the 
fundamental surface wave mode. The influences of the bonding 
layer thickness and the unbond area on the group velocity disper- 
sion of the fundamental surface wave mode were studied and 
discussed. 

2 Wavelet Transform 

The wavelet transform is one of the important linear time- 
frequency representations of signals, which map a one- 
dimensional signal of time into a two-dimensional function of time 
and frequency. In contrast to the short-time Fourier transform, a 
wavelet transform preserves the feature of automatically scaling 
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the time window function to cover both high-frequency and low- 
frequency signal resolutions. 

The mathematical definition of a wavelet transform of a signal 
f(t) can be written as (Rioul and Vetterli, 1991) 

W~'(a, b) = f(t)to*~,,,(t)dt (I) 

where the superscript "*" denotes the complex conjugate, a, b E 
R and a > 0. The wavelet transform (Eq. (1)) is the inner product 
of the signalf(t) and the wavelet function, to.,,(t) which measures 
the similarity between the signal and the wavelet functions. The 
wavelet functions tOo,b(t) is a scaled and translated version of the 
basic wavelet t0(t) in which the parameter "a" determines the time 
scaling and parameter "b" determines the time shift (translation). 
From Eq. (2), it is easy to see that as the scale parameter a 
increases, the wavelet function tp~.#(t) becomes dilated in time, and 
the wavelet analysis becomes more concentrated in its long-time 
behavior (low-frequency) of the signal. On the contrary, as the 
scale parameter a decreases, the wavelet function to,,.b(t) becomes 
compressed in time, and we see that the wavelet analysis works 
best for high frequency signals. The coefficient of the wavelet 
transform indicates the similarity between the signal and a partic- 
ular wavelet function quantitatively. In order to assure the exis- 
tence of the inverse wavelet transform, the basic wavelet function 
is assumed to oscillate in time and ftb(t)dt = 0 (Rioul and 
Vetterli, 1991). 

To analyze a digitized signal, the parameters a and b can be 
discretized according to a = a~', b = nboa'~, where a0 > 1 and 
m, n are integers. In particular, the choice of a0 = 2 and b0 = 1 
has been shown to generate an orthonormal basis and preserve 
remarkable inversion property (Onsay and Haddow, 1994). With 
the discrete parameters a and b, the discretized wavelet transform 
can be written as 

N-1 l ( kAt - nboa'o"~ 
DWf(a'o", nboa~) = Z v~o--~ ~*\ ~ )f(kAt) (3) 

k=0 d 

where At is the sampled time interval. The choice of a particular 
wavelet function depends strongly on the transient characteristics 
of the signal being analyzed. In this study, the Morlet wavelet is 
utilized as the wavelet function. The definition of the Morlet 
wavelet is defined as Onsay and Haddow (1994) 

0(t) = 7r-l/4(e -i . . . .  e -~°~/2)e -trq2 (4) 

t~(00) = '77"-l/4(e -(c°-°°'>z/2 - -  e -(0° ~ +~°2)/2) (5) 

where OOc is the center frequency of the Morlet wavelet and ~(co) 
denotes the Fourier transform of @(t), 

3 Calculations of Surface Wave Dispersion in Layered 
Media 

The propagation of a surface wave in an isotropic layered 
half-space has been studied by many researchers in the past and 
relevant references can be found in the book by Ewing et al. 
(1957). The following calculations of dispersive surface waves in 
a layered media were calculated by a general-purpose computer 
program (Chen, 1994). The program was written based on the 
sextic formalism of Stroh (Stroh, 1962; Braga, 1990) for the 
calculations of dispersion curves of isotropic as well as anisotropic 
multilayered media. 

4 Laser Ultrasonic Experiments and Wavelet Analysis 

4.1 Experimental Setup and Specimen. A l-ram deep 
shallow square slot (area 120 × 80 mm 2) was machined from an 

(a) 

Fig. 1 

~H 

Aluminum 

(b) 

Top view (a) and side view (b) of the specimen 

aluminum block with equal width and length of 200 mm and with 
a height of 150 ram. A thin copper plate of l-ram thickness was 
then bonded carefully on top of the aluminum block with epoxy 
resin. The top view and side view of the specimen are as shown in 
Fig. 1. The densities of the aluminum specimen and the copper 
layer are 2698 kg/m 3 and 8500 kg/m 3, respectively. In Fig. l(a), 
the travel distance of the wave disturbances in the unbond area and 
well bond are denoted as l~ and la, respectively. The longitudinal 
and shear wave velocities of the copper and aluminum specimens 
were measured by ultrasonic pulse-echo method as follows: 

aluminum: CL = 6389.1 m/s, Cr = 3097.8 m/s 

copper: CL = 4545.5 m/s, Cr = 2222.2 m/s. 

The density and the elastic wave velocities of the epoxy were 
also measured by the ultrasonic pulse-echo method. A small epoxy 
specimen was made from the same mixture as that used for 
bonding the copper thin plate and the aluminum block. The mea- 
sured results of the epoxy sample are as follows: 

CL=2500 .0m/s ,  Cr= l112.2m/s,  p =  1157.Skg/m 3. 

Figure 2 shows the experimental setup utilized in the present 
study. A Nd:YAG pulsed laser (Quanta-Ray, GCR-130, wave- 
length 532 nm) was utilized to generate elastic waves in the 
layered specimen. The duration of the laser pulse utilized was 10 
ns and the pulse energy carried was about 100 mJ. As shown in 
Fig. 2, the layered specimen rested on a precision translation stage 
to accurately control the distance between the source and the 
receiver. A NBS conical transducer (Proctor, Jr., 1982) measured 
the generated elastic wave signals from the laser sources. The 
received voltage signals from the conical transducer were then 
amplified by a preamplifier and recorded by a digital oscilloscope 
(LeCroy 9314L). A trigger signal synchronized with the laser 
source was utilized to trigger the digital oscilloscope. The recorded 
signals were then sent to a personal computer for analysis. 

To study the dispersion of surface waves in an epoxy-bonded 
layered specimen, measurements were conducted in a well-bond 

Nd:YAG 
Laser 

specimen I 

, ~ trlanslation stage 

[ Oscilloscope 1 

-Switch Trigger ] _ ~  1 I 
Signal Digitizer 

conical GPIB 
transducer 

i ,I / ,  i 
I I I I  

Fig. 2 Experimental setup of the laser ultrasonic experiment 
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Fig. 3 Wave signal received on the surface of the epoxy-bonded 
copper-aluminum specimen (source to receiver distance is 60 ram) 
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Fig. 5 Time response of a particular frequency equal to 0.59 MHz that is 
extracted from Fig. 5. The peak of the time response Is about 33 p,s. 

area. Figure 3 shows the typical wave signal (vertical displace- 
ment) received on the surface of the copper-aluminum specimen. 
The distance between the laser point source and receiver was 60 
mm and the vertical axis represents the relative amplitude of the 
displacement signal. The signal shows that the lower frequency 
disturbances propagate faster than the higher frequency signals. To 
have quantitative measurements of the arrivals of all the frequency 
components of the received signal, the wavelet analysis was 
adopted. 

4.2 Wavelet Analysis. The dispersion curve of the funda- 
mental mode of surface waves in a layered medium can be ob- 
tained using a conventional spectral analysis method (Wu and 
Chen, 1996). In this method, Fourier analysis of the wave distur- 
bances at two different locations is required, and therefore, two 
receivers are needed. As the wavelet transform maps a one- 
dimensional signal of time into a two-dimensional function of time 
and frequency, the information of the frequency content of a 
specific time can be extracted easily from the transform results. 
Therefore, in the wavelet transform method, once the time origin 
of the laser point source is known, the group velocity dispersion 
can be obtained by analyzing the wave disturbance from one 
location, and this, thus avoiding the use of a second receiver. It is 
worth noting that the conventional spectral analysis technique is 
used to obtain the phase velocity dispersion of the surface wave, 
while the wavelet transform method is employed to obtain the 
group velocity dispersion. 

Figure 4 shows the wavelet transform of the signal shown in Fig. 
3. The vertical axis is the coefficient of the wavelet transform and 
the planar axes are the time and frequency, respectively. From Fig. 
4, one can find the frequency content of the wave signal at a 
specific time or the time domain response of a particular fie- 

...... ...... !iiii i l !ii ........ 3500 . . . .  i : 

'~ 2500. 
t :~  2 0 0 0 ,  

1 5 0 0 .  

~: looo. 

5 0 0 -  

Frequency 
o 0 J~me t~s) 

Fig. 4 Wavelet transform of the wave signal as shown In Fig. 3 

quency. Since the elastic waves in a layered medium are disper- 
sive, the phase or group velocities are dependent on the frequency 
of the wave signal. Shown in Fig. 5 is the time response of a 
particular frequency equal to 0.59 MHz. From the figure, we can 
see that the arrival time of the wave group around 0.59 MHz is 
located at the peak of the time response, which is about 33/xs. The 
second large peak in the figure is due to the reflection from the 
boundary of the specimen. Since the distance between the laser 
point source and the receiver is known, the group velocity of the 
particular frequency can thus be determined by dividing the travel 
distance with the group delay 33 /.~s (Kishimoto et al., 1995). 

The solid circles in Fig. 6 represent the group velocities calcu- 
lated from the wavelet transform results (Fig. 4) according to the 
aforementioned procedures. This experimental result demonstrates 
clearly the dispersive behavior of the laser generated elastic waves 
in this layered specimen. The group velocity of the fnndamental 
surface wave mode decreases with the increase of frequency to a 
minimum, then, increases to a certain value. The solid line in Fig. 
6 is the theoretical dispersion relation of the fundamental surface 
waves in the copper-aluminum half-space not taking into account 
the thickness of the bonding epoxy layer. As shown in the curve, 
the phase velocity of the fundamental surface wave mode in the 
copper-aluminum layered half-space approaches to the Rayleigh 
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Fig. 6 Theoretical (solid line, without the epoxy layer) and experimental 
(solid circles) group velocity dispersion of the fundamental surface wave 
in an epoxy-bonded copper-aluminum specimen 
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Fig. 7 Theoretical dispersion as related to the fundamental surface 
wave in a three-layered half-space (copper-epoxy-aluminum half-space) 
with different epoxy layer thickness 

surface wave velocity of aluminum as the wave number ap- 
proaches zero. On the other hand, the phase velocity of the fun- 
damental surface wave mode approaches to the Rayleigh surface 
wave velocity of copper as the wave number increases. 

Figure 7 shows the calculated dispersion as related to the fun- 
damental surface waves in a three-layered half-space (copper- 
epoxy-aluminum half-space). The five curves in Fig. 7 represent 
the dispersion relationship to the thickness of the epoxy layer when 
varied from 0 to 0.2 H. The calculated results show that the 
thickness of the epoxy layer plays an important role in the disper- 
sion of the fundamental surface waves in such a bonded layered 
half space. It is clear that a small change in the epoxy thickness 
causes a considerable change in the magnitude of the group ve- 
locity. We note that a dip in the surface wave dispersion of a 
bonded layered half space provides a qualitative (and quantitative, 
if an inversion algorithm is implemented (Wu and Liu, 1999)) 
indication of the thickness of the bonding layer. When we compare 
the calculated and the measured dispersion curves shown in Fig. 7, 
we see that the thickness of the epoxy bonding layer of the 
specimen is close to 0.1 H which is approximately 0.1 mm. 

5 Dispers ion of Surface Waves  in a Layered  Structure  
With Unbond Areas  

In the detection of an unbond area with laser generated surface 
waves, three different situations regarding the location of the 
source and the receiver may be involved. The first situation is one 
where both the source and the receiver are located in the region of 
a well-bond area and the second situation is where both are located 
in the unbond region. The third and last situation is one in which 
either the source or the receiver is located in the unbond region. 
The first case was studied in a previous section. In the following 
subsections, the other cases are discussed. 

5.1 Measurements on Top of an Unbond Area. For the 
case where both the source and receiver are located in the unbond 
area of a layered structure, the surface layer (copper layer in this 
paper) acts like a thin plate. Figure 8 shows a typical signal that is 
received at an unbond region, in this case where the distance 
between the laser source and the receiver is 70 ram. From the 
time-domain signal, one can find easily the dispersive behavior of 
the signal which results in higher frequency signals propagating 
faster than the lower frequency signals. On processing the received 
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Fig. 8 Wave signal received in the unbond region where the distance 
between the laser source and the receiver 70 mm 

signal as shown in Fig. 8 using the wavelet transform, the group 
velocity dispersion can be obtained. The solid circles shown in Fig. 
9 are the measured group velocities and the solid line is the 
corresponding theoretical calculation of the Lamb wave dispersion 
in a copper plate. Although there are some deviations between the 
measured and the calculated results, the general trend of the lowest 
antisymmetric Lamb mode is very clear. The results show that 
when both the source and receiver are located on the unbond area, 
the Wave dispersion characteristics are close to that of a thin plate 
as expected. In other words, the differences between the surface 
wave and the Lamb wave dispersion can be utilized to detect the 
unbond area. 

5.2 Measurements  Across an Unbond Area, As measure- 
ments are made across an unbond area, the laser generated elastic 
waves propagate through both the well bond and the unbond areas 
making the wave response become more complicated. The wave 
propagates in the unbond region with the Lamb mode and then in 
the well-bond region with the generalized surface mode. In the 
following measurements, the laser point sources were located in 
the unbond region and the receivers were located in the well-bond 
region. The travel distances in the well-bond region were fixed at 
70 ram, while those for the unbond region are at 35 mm and 55 
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Fig. 9 Comparison of the experimental group velocity dispersion for 
measurement in the unbond region and the Lamb wave dispersion of a 
copper plate (solid line) 
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Fig. 10 Wave signals for a propagation of 70 mm in a well-bonded 
region and 35 mm and 55 mm in the unbond region, respectively 

mm, respectively. Figure lO shows the received wave signals with 
the upper one representing the case of l~ = 35 mm and the lower 
one for the case o f / j  = 55 mm. l~ represents the propagating 
distance in the unbond region. Except for the skimming longitu- 
dinal bulk waves, the figure shows that the major wave group is 
initiated by high-frequency disturbances. 

The signals shown in Fig. 10 are then processed by the wavelet 
transform and the obtained group velocity dispersions are shown in 
Fig. 11 (35 mm) and Fig. 12 (55 mm). The results show that the 
measured dispersion curves are different from the theoretical dis- 
persion cur,~e of bonding thickness 0.1 H. The measured group 
velocities shown in Figs. 11 and 12, indicates that the group 
velocity dispersion is dependent on the travel distance of the laser 
generated elastic waves in the unbond region. Thus, for measure- 
ments across an unbond region, the dispersion relation is neither 
close to that of the lowest Lamb mode nor to that of the general- 
ized surface wave mode. 

5.3 D i s p e r s i o n  C u r v e  for M e a s u r e m e n t  A c r o s s  U n b o n d  
Areas•  In the case of a well-bonded copper-epoxy-aluminum 
layered medium (Fig. 7), the group velocity of the generalized 
surface wave decreases l?om the Rayleigh wave velocity of the 
aluminum (the substrate) to a minimum value, then increases to the 
Rayleigh wave velocity of the surface layer (copper thin plate). On 
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Fig. 11 Group velocity dispersions for surface wave propagating 70.mm 
in a well-bonded region and 35 mm in an unbond region 
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Fig. 12 Group velocity dispersions for surface wave propagating 70 mm 
in a well-bonded region and 55 mm in an unbond region 

the other hand, as shown in Fig. 9, the group velocity of the lowest 
Lamb mode (antisymmetric) increases rapidly fi'om zero to the 
Rayleigh wave velocity of the copper plate. In Figs. 11 and 12, 
results show that for measurements across the well-bond and 
unbond region, the group velocity dispersion at the very lowest 
frequency preserves a similar trend as that for the Lamb wave 
dispersion. In addition, as the travel distance in an unbond region 
increases, the Lamb mode becomes more pronounced, and there- 
fore, the group velocities at the lower frequencies become smaller. 

The aforementioned observations indicate that for elastic wave 
propagating through both well-bond and unbond regions, the group 
velocity dispersion can not be predicted from either the Lamb 
wave analysis or the generalized surface wave analysis. The group 
velocity dispersion for measurements across a well-bond and un- 
bond region appears to lie somewhere between the Lamb wave and 
the generalized surface wave dispersion. Generally speaking, most 
of the energy of an elastic disturbance propagating in an elastic 
waveguide is carried by the fundamental wave mode. Therefore, it 
is reasonable to assume that the elastic wave propagation in an 
unbond region is with the group velocity of a Lamb wave. In the 
case of a well-bond region, the elastic wave propagation is with the 
group velocity of the generalized surface wave. 

With the aforementioned observations and discussions, the 
group velocity for the case of measurement across an unbond 
region is approximated as 

II  + 12 
v(oo) - Ii I2 (6) 

+ 
v, ((o) v2(oJ ) 

w h e r e / l ,  12 are the propagation distances in the unbond region and 
the well-bond region, respectively, v t ,  v2 are the group velocities 
of the fundamental antisymmetric Lamb mode and the generalized 
surface wave mode, respectively. The lines in Fig. 13 are the 
theoretical calculations of the group velocity dispersions for the 
case where l~ = 35 mm, 12 = 70 mm and the bonding thickness 
are varied from 0 to 0.2 H. The theoretical predictions show that 
the initial parts of the dispersion curves are dominated by the 
fundamental mode of the antisymmetric Lamb wave. Furthermore, 
the minimum group velocities shown in Fig. 11 (the generalized 
surface wave) are increased due to the adding of the Lamb wave 
propagation effect. The results shown in Fig. 13 demonstrated that 
the proposed group velocity dispersion (with bonding thickness 0.1 
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Fig. 13 Synthetic group velocity dispersion for the case where I~ = 35 
mm and la = 70 mm with different bonding thickness ranging from 0 to 
0.2 H 

H) for measurements across the unbond region agrees well with 
the measured data (solid circles). Similar results are also found for 
the case where l~ = 55 mm, 12 = 70 mm as is shown in Fig. 14. 

The results shown in this section demonstrates that for laser 
ultrasonic measurements across a well-bond and unbond region, 
the group velocity dispersion can be approximated by the proposed 
formula with reasonable accuracy. The results also reveal that the 
propagation distance in an unbond region could be determined 
from the hybrid group velocity dispersion if a simple inversion 
algorithm is adopted. 

6 Discuss ions  
Based on the predictions of Eq. (6), as long as the propagation 

distances in the well-bond and the unbond regions are equal, the 
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Fig. 14 Synthetic group velocity dispersion for the case where I~ = 55 
mm and la = 70 mm with different bonding thickness, ranging from 0 to 
0.2 H 
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Fig. 15 Measured time domain signals for the receiver (solid line) and 
laser source (dashed line) located in the unbond region, respectively. 
The travel distances in both of the well bond and unbond regions are 
fixed at 35 mm. 

group velocity dispersive relationships are equal. It is independent 
of whether the source or the receiver is on the unbond region or 
not. Figure 15 shows the measured time domain signals for the 
receiver (solid line) and the laser source (dashed line) located in 
the unbond region, respectively. In the measurement mode, the 
travel distances in both of the well bond and the unbond regions 
were fixed at 35 mm. In Fig. 15, we find that the time-domain 
signal for both cases deviate slightly from each other. However, 
the group velocity dispersions of both cases shown in Fig. 16 (open 
circles and triangles) coincide with each other. This result shows 
that the arrival time of the frequency component for both the 
aforementioned cases have similar propagation speeds. This ex- 
perimental result demonstrates further the validity of Eq. (6) in the 
current applicationl 

It is worth noting that as the laser point source or the receiver is 
very close to the boundary of a well-bond and unbond region, the 
diffraction induced by the discontinuity is not considered in Eq. 
(6). In addition, the results of Figs. 11 and 12 show that Eq. (6) can 
only predict the group velocity dispersion for measurements across 
the unbond region to a certain degree of accuracy. For a complete 
description of the group velocity dispersion of the aforementioned 
problem, a more theoretical investigation needs to be undertaken. 
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7 Conclusions 
Based on the results of this study, it has been shown that the 

wavelet transform with a Morlet wavelet function can be adopted 
to analyze laser-generated dispersive surface waves in a layered 
medium with or without an unbond area. For the case of an 
epoxy-bonded layered medium, the bonding thickness strongly 
affects the dispersive behavior of the surface waves. In laser 
ultrasonic measurements using a point-source/point-receiver (PS/ 
PR) technique, when both the source and the receiver are in the 
unbond region, the lowest antisymmetric Lamb mode results. As 
the line of the source and the receiver are across the well-bond and 
unbond boundary, the group velocity dispersion cannot be ex- 
plained by existing theories. An approximated group velocity 
dispersion formula was proposed and data obtained matches well 
with the experimental results. The general behavior of the group 
velocity dispersion for different measurement configurations can 
be utilized further to differentiate the unbond regions in layered 
structures in a more precise way. 
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Macrocrack-Microcrack 
Interaction in Piezoelectric 
Materials, Part I: Basic 
Formulations and J-Analysis 
The macrocrack-microcrack interaction problem in transversely isotropic piezoelectric 
materials is studied. The microcracks near a macrocrack tip in the process zone are 
assumed to be parallel to the latter, while the poling direction oJ" the piezoelectric 
materials is assumed to be perpendicular to the cracks. Three kinds of elementary 
solutions with different crack configurations and under different loading conditions ate 
given, from which the interaction problem is reduced to a system of Fredholm integral 
equations by using the pseudo-traction electric displacement method (abbreviated PTED). 
After the equations are solved numerically, the traditional mode 1 and mode H stress 
intensity factors and the electric displacement intensity factor are evaluated. In order to 
confirm the proposed method as well as the numerical results, a consistency' check is 
proposed which is based on the J-integral analysis and provides a powerful tool to 
examine the numerical results. Thus, any mistakes are avoided since they would certainly 
lead to unsatisfied numerical results contrary to the check. It is concluded also that the 
disturbance of the near-tip electric field provides another source of shielding. 

1 Introduction 
Due to the well-known performance of the mechanical-electrical 

coupling in piezoelectric ceramics, these kinds of materials are 
found to have widely technological applications such as transduc- 
ers, sensors, and actuators. Generally speaking, piezoelectric ce- 
ramics show brittle nature, from the mechanical point of view, and 
susceptible to fracture when a macrocrack is formed. The under- 
standing of the fracture behavior of piezoelectric ceramics is of 
great importance, thereby it received considerable attention in the 
recent ten years. Sosa and Pak (1990), Sosa (1991, 1992), Pak 
(1990, 1992), Pak and Sun (1995a, b), and Pak and Carman (1997) 
studied the two-dimensional problems for an elliptic hole or crack 
in piezoelectric materials. They defined two kinds of stress inten- 
sity factors (SIF's), i.e., the traditional mode I and mode II SIF's 
and the electric displacement intensity factor (EDIF). Moreover, 
they found that the mode I and mode lI SIF's are independent of 
the electric loading, while the EDIF is independent of the mechan- 
ical loading. This means that the mechanical loading and the 
electric loading are not coupled in single crack situations when 
taking SIF's and EDIF to be the crack-tip dominant parameters. It 
is not clear that the same conclusion could be given in multiple 
crack problems. 

As regards the conservation integrals in piezoelectric materials, 
Pak (1990) and Suo et al. (1992) proposed the J-integral which 
also has a clear physical significance as the total potential energy 
release rate (TPERR). However, Pak and Sun (1995a, b) pointed 
out that neither the stress intensity factors nor the TPERR are 
suitable for describing the fracture behavior of piezoelectric ce- 
ramics. They showed that a new fracture criterion should be 
proposed, which is based on the mechanical strain energy release 
rate (MSERR). Under this criterion, they found that the mechan- 
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ical loading and the electric loading are coupled and that the 
positive electric fields aid the crack propagation, while the nega- 
tive electric fields impede the crack propagation. 

On the other hand, the fracture toughness of engineering brittle 
materials is significantly influenced by the microstructure of the 
materials, such as microcracks, microvoids, and microinciusions. 
The interaction between a macrocrack tip and the near-tip material 
microstructure has been studied by a number of researchers (see, 
e.g., Rose, 1986; Rubinstein, 1986; Horii and Nemat-Nasser, 1985, 
1987; Chudnovsky et al., 1987; Gong and Horii, 1989; Gong and 
Meguid, 1991; Chen and Hasebe, 1994). The so-called shielding 
problems in such materials have brought a considerable interest in 
the past ten years (see, e.g., Hutchinson, 1987; Ortitz, 1987, 1988, 
1989). It has been shown, from experimental studies as well as 
analytical estimations, that the existence of microcracks in the 
near-tip process zone shields a macrocrack tip from the remote 
loading. Hutchinson (1987) point out that the shielding effect 
arises from two consequences of microcracking, i.e., the reduction 
in the effective elastic moduli and the release of the residual 
stresses. It could be imagined that the fracture toughness of piezo- 
electric materials would also be influenced by the microstructure 
of the near-tip process zone. However, the shielding problem in 
such materials, to the present author's knowledge, has not been 
studied yet, neither analytically nor experimentally. Specially, how 
the electric loading influences the shielding effect is not clear and 
thus worthy of investigation. 

The goal of the present study is to supply the lack of analytical 
estimations for shielding problems in piezoelectric materials. As a 
first attempt, in Part I of this paper, attention is focused on the 
macrocrack-microcrack interaction in a transversely isotropic pi- 
ezoelectric material. The microcracks are assumed to be parallel to 
the macrocrack, while the poling direction of the material is 
perpendicular to the cracks. In Section 2, elementary solutions 
with two kinds of crack configurations and subjected to three kinds 
of loadings are given, respectively. In Section 3, a pseudo-:traction 
electric displacement (PTED) method is proposed, which is moti- 
vated by the well-known pseudo-traction method (Hori! and 
Nemat-Nasser, 1985, 1987). Using the elementary solutions and 
the PTED method, the interaction problem can be reduced to a 
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Fig. 1 A finite crack loaded by concentrated tractions and concentrated 
electric displacement 

system of Fredholm integral equations whose solutions could he 
given numerically with the aid of the Chebyshev numerical inte- 
gral technique. After doing so, the effect of the microcracks on the 
mechanical SIF's and the electric displacement intensity factor at 
the macrocrack tip is evaluated. Nevertheless, the derived numer- 
ical results should be examined. However, no previously known 
results exist for comparisons. A possible way is to make some 
comparisons with the results in degenerated cases. This might lead 
to some incorrect and unexpected conclusions when a tiny mistake 
in manipulations escapes from such comparisons (Chen and 
Hasebe, 1998). In Section 4, a consistency check is proposed 
which is based on the conservation nature of the J-integral (Pak, 
1990; Suo et al., 1992). It is proved that although the check 
represents a necessm'y condition rather than a sufficient condition, 
it does provide a powerful tool to confirm the present numerical 
results. Moreover, it is shown that there is a wastage of the 
J-integral when the remote J-integral, J~, transmits across the 
microcracking zone from the infinity to the macrocrack tip (Chen, 
1996; Zhao and Chen, 1997; Chen and Ma, 1997). The influence 
of the electric displacement loading on the wastage is shown in the 
figures which provides another source of shielding induced from 
the disturbance of the near-tip electric field due to microcracking. 

2 Elementary Solutions 
Consider a two-dimensional problem for a transversely isotropic 

piezoelectric material under plane-strain conditions. Assume that 
the poling direction of the piezoelectric material is parallel to the 
y-axis (see Figs. 1 and 2). The constitutive equations can be 
written as (Sosa, 1992) 

r , , /  0° < 0 0 
~e22~ = l a d 2  a22 + b(~2J{D2 } 
L2Ei2 j 0 a33 0"12) b13 

O"121 

where e 0, o-u, D~, and E~ are the strain, the stress, the electric 
displacement, and the electric field, respectively. And (i, j )  = 1, 
2, a 0, b o, and 8. are reduced material constants which were 
discussed in details by Sosa (1991). 

The stress components and the electric displacement compo- 
nents could be expressed by three complex potentials ~e(Zk) (k = 
1, 2, 3) as follows (Sos& 1992): 

I? s JY 
I X 

Fig. 2 A semMnfinite crack loaded by concentrated tractions and c o n -  
cen t ra ted  electric displacement 

0"11 

3 

k=l  

0"22 = al((I)k(Zk), Zk) 

3 

= ...2., [¢,(zO + ¢,(zO] 

0-,2 = G 2 ( ~ k ( Z L ) ,  Zk)  = 

3 

k=[ 

3 

D,  = c,(*k(zo, zO = 
k=l  

3 

/<=1 

where, the overbar denotes the complex conjugation, and 

Zk = x + /xky 

(2) 

At = -[(b=,  + b,3)p,~ + b22]/(3ul~# + 322) (k = 1, 2, 3), (3) 

in which /xk are three roots with positive imaginary parts of the 
following governing equation: 

AId, 6 q- Bt,  4 + C/z 2 + D = 0, (4) 

where 

A = all~ll  

B = a11322 if- 2al2811 + a33~11 q- 621 q- b~3 q- 2b2~b13 

C = a22811 + 2a12822 .-4- a33322 q- 2b21b22 ÷ 2b13622 

D = a2262a + b~2. (5) 

2.1 A Finite Crack. As shown in Fig. 1, a finite crack in an 
infinite piezoelectric material is considered which is loaded by 
concentrated tractions P and Q as well as the concentrated electric 
displacement D2 on both crack faces. From the conditions with 
superscripts + and - denoting the upper and lower boundary 
values, respectively, 

o%(x )  = o'=(x)  

o?2(x) = o i2(x )  (y = 0 ~ -oo < x < ~ )  (6) 

D ; ( x )  = D ; ( x ) ,  

the following relations could be obtained: 

3 3 

[ ¢ k ( x )  - c~,~(x)] + = ~ ]  [ , ~ , ( x )  - q ,~(x)]  
k=l k=l 

3 3 

[ ~¢k ( x ) -  ~ ( x ) ]  += ~ [ ~ ( x ) -  # ~ ( x ) ]  
k=[ k=l 

3 3 

k=l k=l 

which are the simplest Rieman-Hilbert problems whose solutions 
are holomorphic functions. Considering the remote conditions, the 
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holomorphic functions should be zero and then the following 
relations are derived: 

3 3 

k=l k=l 

3 3 

~ ( z ~ )  = E ~ '~ ( z~ )  
k=l k=l 

3 3 

k=l k=l 

(8) 

The boundary conditions on the crack faces in Fig. 1 are well 
known as 

~ (x = ~ ; ( x )  = Qr (x  - s) 

D] (x )  =D;(x) = D ; 6 ( x  - s) 

( y = 0 Z ,  lx [ < a )  (9) 

where a is the half-length of the crack, s is the distance shown in 
Fig. 1, and ~(x - s) is the Derac function which has a different 
meaning from ~ and 622 in Eq. (1). 

Substituting Eq. (2) into Eq. (9), it follows that 

3 

[ ~ ; ( x )  + ~ - ( x ) ]  = P~(x - s) 
k=l 

3 

~2 [/~kq~(x) + /Xkq~-(X)] = - Q S ( x  - s) 
k=l 

3 

[)tkdP£~(x) + Xk dp~-(x)] = - D 2 8 ( x  - s), 
k=l 

(10) 

where the superscripts + and - refer to the upper and lower 
boundary values of the corresponding complex potentials. 

Furthermore, substituting Eq. (8) into (10) leads to the following 
equations: 

dp~(x) + op~(x) = (akiP + Ak2Q + Ak3D2)8(x - s) 

( k =  1, 2 ,3 ) ,  (11) 

where A ~j are elements of the following matrix: 

1 F ~2X3 -- ~3~2 X3 -- ~2 ~2  -- ~ 3 ]  

~IA2 -- ~2A1 A2 -- AI ~1 ~ 2 J  

-~ ~LLi(/~ 2 -- }k3) -t- ~ 2 ( / ~ 3 -  /~1) "~ ~LL3()kl- /~2)' 

(12) 

(13) 

Equation (11) is a typical Rieman-Hilbert problem whose solution 
is 

,t,~(z~) = 
(AklP + At:zQ + A~3D2) { a 2 - s2~ ,n 

\ a 

(k= 1 ,2 ,3 )  (14) 

where the superscript a refers to the first elemental solution cor- 
responding to the case of Fig. 1. 

The stresses at any point in the xy-plane induced by P, Q, and 
D2 could be given by substituting Eq. (14) into (2) which will be 
discussed below. 

2.2 A Semi-Infinite Crack. Consider a semi-infinite crack 
in an infinite piezoelectric material as shown in Fig. 2, which is 
loaded by the concentrated tractions P and Q as well as the 
concentrated electric displacement D2 on the both faces. 

Repeating the same procedure from (6) to (14), the solution of 
the problem shown in Fig. 2 is given as follows: 

• ~(Zk) = (AkIP + Ak2Q + Ak3D2) 
2w(s - Zg)Z~/2 (k = 1, 2, 3) (15) 

where the superscript b refers to the second elemental solution 
shown in Fig. 2 and s refers to the distance from the traction acting 
point to the origin. 

The stresses at any point in the xy-plane induced by P, Q, and 
D2 could be given by substituting Eq. (15)into (2) which will be 
discussed below. 

2.3 Remote Loading Conditions. Consider a semi-infinite 
crack in an infinite piezoelectric material loaded by the remote 
stress intensity factors K~ and K~, and also by the remote electric 
displacement intensity factor K~. Without going into detail, the 
solution is given as 

dP~(Zk =fk(Zk)Z~? '`z + Pk(Zk) (k = 1, 2, 3), (16) 

wheref~(ZD and Pk(Zk) could be determined by using the remote 
conditions. After doing so, the following formulation is given: 

~ ( Z k )  = (AklK ~ -t- Ak2K ~ q- Ak3Ke)Z; 1'2 (k  = 1, 2, 3) (17) 

where Ak2, Ax2, and At3 are the elements of the matrix A u in (12). 

3 Pseudo-Traction Electric Displacement Method 
(PTED) 

Consider a semi-infinite macrocrack interacting with N arbi- 
trarily located parallel microcracks in the near-tip process zone in 
a transversely isotropic piezoelectric material (see Fig. 3). Here the 
small scale approach has been adopted. At infinity, the loading 
conditions are K~, K~, and K~. The global coordinate system (x, 
y) and N local coordinate systems (xl, y~) (i = 1, 2 . . . .  N) are 
preferred with the origins taken to be the macrocrack tip and the 
microcrack centers, respectively. As mentioned above, the poling 
direction of the material coincides with the y-direction. The geo- 
metric parameters q~, d~, and az denote the location angle, the 
location distance, and the half-length of the ith microcrack. All the 
crack faces are traction-free and charge-free. 

The original interaction problem shown in Fig. 3 has been 
decomposed into N + 2 subproblems as Horii and Nemat-Nasser 
treated in brittle solids (1985, 1987) (see Fig. 4). 

In the subproblem 1 of Fig. 4, the semi-infinite crack is loaded 

Ki 
K II 

T Y 

x 

y X 2  

Xl 

Fig. 3 Macrocrack-microcrack Interaction 
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by remote SIF's K~ and K~, and the remote EDIF K~. According 
to the discussion presented in Section 2.3, the normal stress fo, o(s), 
the tangential stress fiqo(S), and the electric displacement fioo(S) 
induced from the remote intensity factors at any point (s, 0) on the 
ith microcrack location are given by (2) and (17): 

foo(S) = G,(O~.(Zk),  Zk) 

fiqo(S) = G~(O;(Z~) ,  Z~) i = 1, 2 . . . .  N, (18) 

f, DO(~) = a~(o~(z,) ,  z~) 

where 
Zk = Re(die i~ + s) + txk Ira(die i~ + s) (19) 

and G~, G2, and G3 are known functions which are given explic- 
itly in Eq. (2). 

In the subproblem 2 of Fig. 4, the macrocrack is subjected to the 
unknown pseudo-tractions P°(x )  and Q°(x) ,  and the unknown 
pseudo-electric displacement d°(x) .  The solutions can be obtained 
by using the elementary solution in Section 2.2 and the integration 

iO , iO technique. The normal stress o'22(s), the tangential stress o'jz(s), 
and the electric displacement D~°(s) at any point (s, 0) on the ith 
microcrack location can be expressed as 

f ° o-~°2(s) = [fipop(t, x, y )P° ( t )  + fipoq(t, x, y )Q°( t )  

+ ~,,oa(t, x, y)d2°(t)]dt 

f° o-i,°~(s) = [fio,,(t, x,  y )P° ( t )  + fiqoq(t, x,  y )Q°( t )  

-I-fiqOd(t, X, y)d~°(t)]dt 

f ° D~°(s) = ~z ,  ov(t, x, y )P° ( t )  + fiooq(t, x, y )Q°( t )  
a~ 

+fiD0,~(t, x, y)dT( t )]dt ,  (20) 

where x + iy = die ~ + s, the nine kernel functions fi~,op(t, x, 
y) . . . . .  fiooa(t, x, y) are known real functions, which could be 
expressed by using (2) and (15) without any difficulty. Here the 
subscripts i, 0, p, q, D, d have definite meanings which refer to 
the microcrack, the macrocrack, the normal traction, the tangential 
traction, the poling direction, and the electric displacement, re- 
spectively. 

In the subproblem i + 2 of Fig. 4, the ith microcrack is 
subjected to the unknown pseudo-tractions P~(xe) and Q~(x~), and 
the unknown pseudo-electric displacement d~z(x,). Without going 

0i  0 i  into detail, the normal stress o'2z(s), the tangential stress o-~2(s), 
and the electric displacement D°J(s) at any point (s, 0) on the 
macrocrack location are obtained as follows: 

Oi f ai ~r22(s) = [fol, ip(t, xi, y i )p i ( t )  + fopiq(t, xi, y i )Qi( t )  
-ai 

+ fopid(t, Xi, y i )d~(t)]dt  

Oi f ai O'12(S) = [fOqip(I, xi, Yi)pi( t )  + foqiq(t, xi, y i )Qi( t )  

+ f0c~,~(t, x.  y~)d~(t)]dt 

f al D~i(s) = [ fovip(t, xi, y i )p i ( t )  + fooiq(t, x,, y i )Qi( t )  
--ai 

+ foDid(t, x,, y i)d~(t)]dt ,  (21) 

where the nine kernel functions foro,(t, x, y) . . . . .  foq~,~(t, x, y) are 
known real functions, which could be expressed by using (2) and 
(14), and xl + iy~ = - d i e  i*~ + s. 

Similarly, the normal stress o'~'2(s), the tangential stress o'~'2(s), 
and the electric displacement D~i(s) induced from the ith micro- 
crack at any point on the j th ( j  ¢ i) microcrack are obtained as 
follows: 

x 
' ' 

Crack 2 

Crack 1 
Subproblem 1 

X 

÷ 

,y  

~ d~<x~ N :Q x, +Z 

4 i = 1  

, y  

d~( ~ 

Qi(x) 

> 

Subproblem 2 Subproblem i+2 

Fig. 4 Decomposition of macrocrack-microcrack interaction problem 
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f al 

o'~2(s) = ~pi,,(s, x~, y i )P' ( t )  + fjpiq(S, xi, yi)Qi(t)  
--al 

+ fj,,A~, x. y,)d~(t)]dt 

0"Jii2(s) : [JZjqip(S, Xi ,  y i ) p i ( t )  + f j q iq (  S ,  x i ,  yi)Qi(t)  

ai 

+ J)qia(s, x,, yi)d~(t)]dt 

fa, D~(s) = ~D,~(S, X. y3e~(t) + f~q(S. X~, y3QO) 

+ f:D~,~(S, X~, y~)di2(t)]dt, (22) 

where the nine kernel functions in (22) are known real ones, which 
could be expressed by using (2) and (14), and x~ + lye = die ~j - 
die '~' + s ( j  4= i). 

Now, the original problem is reduced to the following integral 
equations after performing the superimposing technique: 

N 

po(~) + ~ 0"~(s) = o 
/=1 

N 

Q°(s) + ~'~ 0"~(s) = 0  (-o~ < s < O) 
/=1 

N 

d~(~) + ~ D~O) = o 
l=L 

N 

pi (s )  + ~ 0"~2(s) = -~po(s)  (j :/= i) 
j=0 

N 

Qi(s) + ~ 0-i~2(s) : -fiqo(S) (j 4= i) ( - a i  < s < a,) 
j=0 

N 

d~(s) + ~ D~'(s) = --fioo(S) (j ¢ i) 
j=0 

( i =  1 ,2  . . . .  N). (23) 

0 ,  o, O~' ~2.  '~ where 0"22, ~rt2, , ~r~z, and D~ have been defined by (20), 
(21), (22), while f#,0, f~,~0, andf~Do are known as expressed by (18). 

Using the Chebyshev numerical integration technique, the sys- 
tem of integral Eqs. (23) could be solved numerically for the 
unknown pseudo-tractions and pseudo-electric displacement U(s ) ,  
Q'(s),  and d~(s) (i = O, 1, 2 . . . .  N). After doing so, the intensity 
factors of the macrocrack tip and those at the ith microcrack tips 
are given 

f o )/,/ t _ - u s d s  K i -  K~ - P°(s  

f o / , / ~  K' .  : K ~  - , ~  O ° ( s )  d,~ 
- oo 

K'~ : K7 - d~(s) ds (24) 

and 

K~ i = - p i (s ) (a i  + s)t/2(a i - s) 1/2 ds 
-a .  / 

i 

K1 L i :  - p i ( s ) ( a i -  s)1/2(ai + s)-l /2 ds 

-ai  

;a I~i~ i ~ - -  O i ( s ) ( a i  'q- S ) 1 1 2 ( a  i - -  S )  -112 d s  

-a l  

f o, / Ki~ i = -- Qi(s) (a  i - s ) m ( a  i + s)-1/2 ~ a i d s  
-al  

f a' K~' ' - = - -  d 2 ( s ) ( a  i -{- s ) l / 2 ( a  i s )  -1/2 d s  

a - r 

K ~  i = - d ~ ( s ) ( a l  - -  S ) l / 2 ( a i  + S)  -1/2 d s  

a, 

( i =  1 , 2  . . . .  N) (25) 

where the superscripts R and L refer to the right tip and the left tip 
of the ith microcrack, respectively. 

4 Consistency Check 
From the above-mentioned manipulations, numerical results for 

the SIF's and the EDIF at the macrocrack tip and the microcrack 
tips could be given, which will be discussed in detail in Part II of 
this series. However, it is not easy to confirm the results surely and 
steadily since no previously known results could be used for 
comparisons. A possible way from which the present results could 
be demonstrated is to make some comparisons in degenerated 
cases. However, it is not clear, at least not fully clear, from the 
physical point of view, that if the present results are really correct 
in general cases, after the above-mentioned comparisons are per- 
formed. Specially, if there were a tiny mistake in the above- 
mentioned manipulations which has no influence on the results in 
the degenerated cases and does influence the final results in general 
cases, the conclusions derived could be incorrect or misleading. 
Such a mistake could not be recognized by making the above- 
mentioned comparisons. Therefore, a question arises as to what the 
present authors should do to examine their numerical results more 
surely and steadily (Chen and Hasebe, 1998). 

In this section a consistency check is proposed which starts from 
the total potential energy release rate (TPERR) in piezoelectric 
materials. As defined by Pak (1990) and Suo et al. (1992), the 
J-integral in such materials has a clear physical significance as the 
TPERR and its formulation is given as 

f l 1 Ou r, Ocp 
J = . ~ (O'i jEij  - -  DiEi)dy - nicrip --Oxl ds - niDi ~xl ds (26) 

where, up (p = 1, 2) is the displacement, q0 is the electric 
potential, and F is a closed contour to be chosen. Customarily, in 
single-crack problems, F is generally taken as a smooth curve that 
starts from one point on the lower face and ends at another point 
on the upper face of a crack. 

For making the consistency check, several closed contours are 
specially introduced (see Fig. 5) along which the J-integral is 
evaluated, respectively. In Fig. 5, F ~ is corresponding to the 
remote mechanical-electric field, F '  is corresponding to the mac- 
rocrack tip, while F a is corresponding to the N microcracks and F '  
encloses the ith microcrack only. According to the path- 
independent nature of the J-integral, it is obvious that 
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N 

AJ = ~ ju) (27) 

where AJ is evaluated along F a and j~t~ is evaluated along F ~, and 

j ~  = j t  + AJ (28) 

j t j j ~  + A j ] J ~  = 1 (29) 

where J~ is evaluated along F ~ and J '  is evaluated along F'.  
Equation (29) is similar to the author's previous conclusions in 

brittle solids (Chen, 1996), in bimaterial solids (Zhao and Chen, 
1997), and in anisotropic solids (Chen and Ma, 1997), which 
reveals that the remote TPERR is divided into two parts. One of 
them is contributed from the macrocrack tip and the other is 
induced from the existence of the microcracks. The detailed for- 
mulations of the two parts are given as follows: 

J '  = ¼ [K']  rU[Kt]  (30) 

j m = ¼ [ K m ] r H [ K m ]  ( l =  1 , 2 , 3  . . . . .  N) (31) 

j u = ¼ [ K C ~ ] r H [ K U ]  ( l =  1 , 2 , 3  . . . . .  N) (32) 

j(;) = j R ; _  jLI (1 = 1, 2, 3 . . . . .  N) (33) 

where 

[K']  : [K~ K'~ K'e] T (34) 

[K R t ] = [ x ~ '  X~' K~'] r ( l :  1 , 2 , 3  . . . .  N) (35) 

[K L t ]=[K~ '  K~ ~ K~] r ( l =  1 , 2 , 3  . . . .  N) (36) 

and H is a 3 × 3 matrix related to the piezoelectric material 
constants as 

H = 2 Re(iAB-~) (37) 

in which 

E Pl 
[ A ] :  q, 

FI 

P3  

q2 q3 
F2 F3 

1 [B]  = 1 1 
- A t  - X 2  -A3_I 

(38) 

(39) 

and 

Pk = allP,~ + al2 - b21Ak 

qk=  ( a t 2 / x ~ + a 2 2 -  b22Ak)/txk k =  1, 2, 3 

rk = - (b l3  + ~l l /~k)/ .~k • (40) 

What's more, the relation (29) provides a necessary condition as 
well as a powerful tool for the consistency check to examine the 
numerical results derived by the above-mentioned technique 
PTED. Taking the PZT-4 piezoelectric ceramic as an example 
whose material constants are presented in Table l, numerical 
examinations derived by the PTED method are shown in Table 2 
and Fig. 6, respectively. Here, the normalized distance d, = (d - 
a)/a = 0.3, 0.5, and 1.0, respectively, and the location angle q~ is 
taken to be a variable from 0 deg to 160 deg. Only one microcrack 
is considered in the near-tip process zone of a macrocrack which 
is under the combined mechanical-electric loading conditions, i.e., 
K~ ° ~ 0, K~ = 0, and K~ = IO-SK~CN ~. It is shown that the 
consistency check is really satisfied by the present numerical 
results. The examinations presented in Table 2 and Fig. 6 confirm 
the results derived without taking any comparisons with some 
known results in degenerated cases since any mistake in the 
manipulations mentioned in the above section, if exists, will cer- 
tainly lead to unsatisfied conclusions contrary to the check (29). 

It should be noted that the relation (29) as well as the results 
shown in Fig. 6 reveals that there is a wastage, i.e., A J, when the 
remote TPERR, J~ transmits across the microcracking zone from 
the infinity to the macrocrack tip. The wastage is just due to the 
redistribution of the near-tip stress field and the near-tip electric 
field induced from microcracking. The major difference between 
the present investigation and the author's previous ones is the 
influence of the disturbed near-tip electric field on the wastage 
which represents as another consequence induced from micro- 
cracking. Thus, there are three kinds of energy dissipative pro- 
cesses due to microcracking in piezoelectric materials which do 
lead to the phenomenon of shielding effect and material toughness 
enhancement. As discussed by Hutchinison (1987), the first two 
ones are well known, i.e., the reduction on the effective moduli and 
the release of residual stresses at the microcrack location. The last 
one is the just above-mentioned disturbed near-tip electric field 
(DNTEF). It will be discussed further in Part II of this series that 
the disturbance of the near-tip electric field do to microcracking 
really provides another source of shielding. 

5 C o n c l u s i o n s  

From the above-mentioned manipulations and computations, the 
tbllowing conclusions are given: 

Table 1 The reduced material constants of the PZT-4 piezoelectric ceramic 

~11 at2  a22 
8.205 × 10-12 --  3.144 × 10 -12 7.495 N 10-12 

b21 b22 hi3 

- -  16.62 × 10-3 23.96 × 10-3 39.4 × 10-3 i 

~11 822 
7.66 × 107 9.82 × 107 (V2N- 1) 

a33 
19.3 X 10 -t2 (m2N -I)  

(m2C - 1) 
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Table 2 Numerical examinations by using a consistency check under compound mechanical-electric 
loading conditions (K~ ° ~ 0, K~ = 0, K~ = IO-SK~CN -1) 

ta'',, = u.:,)'~." " 80 200 600 900 120° 160° 

Microerack 
K~/K~ 
K~/K~ ° 

K~/K~°(xIO-~CN -' 
L o o  Kt/Kt  
L K . / K  t 

K~/K~(×IO-'CN-'i 
~/J~ 

Macrocrack 

K;/K~ ° 
K~z/K; 

K~/K;(×iO-~CN-b 
J'/J® 

0.5854 0.6233 0.7721 0.8265 0.7447 0.2250 

0.0086 0.0371 0.0691 0.0079 -0.0984 -0.1007 

0.5735 0.5546 0.4911 0.4546 0.4217 0.3300 

1.0308 1.1659 0.7967 0.4661 0.2116 -0.0004 

0.0766 0.1004 -0.1603 -0.1811 -0.1206 -0.0161 

0.9154 0.7548 0.4530 0.3345 0.2419 0.1171 

-0.5033 -0.2458 0.0372 0.0873 0.1107 0,0964 

1.3127 1.3877 0,9990 0.7928 0.7589 0,9807 

0.0534 0.0290 -0.1928 -0.1323 -0.0109 0.0113 

1,2286 1.1240 0.9818 0.9508 0.9378 0.9518 

1,5033 1.2458 0.9628 0.9127 0.8892 0.9042 

(J' + AJ)/J  = 1.0000 1,0000 1.0000 1.0000 1.0000 1,0000 

1 The pseudo-traction electric displacement method is effec- 
tive to treat the macrocrack-microcrack interaction problem in 
piezoelectric materials. 

2 The proposed consistency check really provides a powerful 
tool to examine numerical results for the interaction problem, 
although it represents a necessary condition rather a sufficient 
condition. 

3 There is a wastage when the remote J-integral transmits 
across the microcracking zone from infinity to the macrocrack tip 
since microcracks in the near-tip process zone not only reduce the 
effective moduli and release the residual stresses, but also disturb 
the near-tip electric field. The latter provides another source of 
shielding, 
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Macrocrack-Microcrack 
Interaction in Piezoelectric 
Materials, Part I1: Numerical 
Results and Discussions 
Numerical results are shown in figures and tables. The major features for the traditional 
stress intensity factors and the electric displacement intensity factor against the micro- 
crack location angle and the distance of the microcrack center from the macrocrack tip 
are discussed. It is shown that, unlike single-crack problems, the mechanical loading and 
the electric loading are coupled together since the microcrack not only releases the 
near-tip stresses, but also disturbs the near-tip electric field. Furthermore, the influence 
of the electric loading on the mechanical strain energy release rate (MSERR) at the 
macrocrack tip is discussed in detail. It is found that the variable nature of  the MSERR 
against the normalized electric loading is monotonic and proportional wherever the 
parallel microcrack is located near the macrocrack tip. However, the slope of the 
MSERR' s curve considering microcracking diverges far from those without considering 
microeracking. This finding reveals that, besides the two sources of microcrack shielding 
discussed by Hutchinson (1987)for brittle solids, the disturbance of the near-tip electric 
field due to microcracking really provides another source of  shielding for piezoelectric 
solids. 

1 Introduction 
In Part I of this series, the TPERR analysis for the macrocrack- 

microcrack interaction is studied and the wastage of the TPERR is 
found when the remote J-integral transmits across the microcrack- 
ing zone from infinity to the macrocrack tip. However, it is doubt 
that whether or not the wastage could be used as a criterion to 
determine the microcrack shielding or amplification effect in pi- 
ezoelectric materials as it would be in brittle materials. This is due 
to the conclusion derived by Pak and Sun (1995a, b) that the 
TPERR, i.e., the J-integral is not suitable for describing the frac- 
ture behavior of piezoelectric ceramics. Moreover, they proposed 
a new criterion, i.e., the mechanical strain energy release rate 
(MSERR) for this purpose. As defined by them, the MSERR is 
given as 

G~ t = lim ~ O ' 2 2 ( X ) / 2 k U 2 ( ~  - -  x)dx for the mode I, (1) 
3--~0 

and 

G~ = lim_l~ (~ ~ , 2 ( x ) A u l ( 8 -  x)dx for the mode II (2) 
~ o  2 b  J 0  

where the superscript M refers to the MSERR and dXUl and Au2 are 
the jumps of the displacement components measured from the 
lower face to the upper face of a macrocrack. 

For the mode I, the MSERR is related with the crack-tip SIF's 
and the EDIF as follows: 
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G~ = ¼ (H2~KiKtt + H22K~ + Hz3KiKe) (3) 

where H 0 (i, j = 1, 2, 3) is the elements of the 3 x 3 matrix H 
which has been given in (37) of Part I. 

Although the foregoing formulations presented in Part I are 
concerned with multiple microcracks and under the combined 
mode I and mode II and electric loading conditions, numerical 
results shown in Part I1 are limited to a single microcrack inter- 
acting with a macrocrack tip under the combined mode [ and 
electric loading conditions. For the sake of convenience, a special 
piezoelectric material--the PZT-4 piezoelectric ceranfic-- is taken 
as an example with the reduced material constants listed in Table 
1 of Part I. In the forthcoming numerical results, the plane-strain 
conditions are always assumed and the poling direction of the 
material is always taken to be perpendicular to both macrocrack 
and microcrack, i.e., parallel to the y-direction (see Fig. 1 of Part 
I). All the numerical results have been confirmed by using the 
consistency check presented in Part I. 

In Sections 2 and 3 attention is focused on the variable 
tendencies of the traditional stress intensity factors and the 
electric displacement intensity factor at the macrocrack tip 
influenced by microcracking. In Section 4 the influence of the 
electric loading on the mechanical strain energy release rate is 
studied. It is found that, unlike the conclusion derived by Pak 
and Sun (1995a, b) for single-crack problems, the mechanical 
loading and the electric loading are coupled in the presented 
interaction problem since the microcrack not only releases the 
near-tip residual stresses and reduces the effective elastic mod- 
uli in the process zone, but also disturbs the near-tip electric 
field. The latter presents another source of shielding. It is 
concluded that the electric loading plays an important role in 
microcrack shielding problems for piezoelectric materials. The 
influence of the loading, whenever it is positive or negative on 
the mechanical strain energy release rate, always leads to de- 
creasing the amplitude of the amplification effect and the neu- 
tral shielding angle, and in turn the amplification region near the 
macrocrack tip. 
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Fig. 1 Normalized mode I stress intensity factor against the location 
angle 

2 T h e  T r a d i t i o n a l  S t r e s s  I n t e n s i t y  F a c t o r s  

In this section the interaction effect between a microcrack and a 
semi-infinite macrocrack is represented by the traditional stress 
intensity factors, i.e., the normalized SIF's K~/K~ and K~]K~. In 
Fig. 1, K~/K~ against the microcrack location angle q~ is plotted 
taking the normalized distance d, = (d - a)/a = 0.3 (where d 
is the distance between the microcrack center and the macrocrack 
tip and a is the half-length of the microcrack). Three kinds of 
loading conditions are considered for making comparisons: (i) 
combined mode I and positive electric loading, i.e., K~ ¢ 0, K~ 
= 0, K~ = IO-8K~CN-~; (ii) purely mode I loading, i.e., K~ 
0, K~ = 0, K~ = 0; and (iii) combined mode I and negative 
electric loading, i.e., K~ ¢ 0, K~ = 0, K~ = - iO-SK~'CN -~. It 
is seen that the corresponding three curves show very complicated 
variable tendencies which are dissimilar to those found by Pak and 
Sun (1995a, b) in single-crack problems. The mechanical loading 
and the electric loading are really coupled due to the existence of 
the microcrack. In other words, the mode I stress intensity factor is 
no longer independent of the electric loading. For example, in the 
range of ¢p between 12 deg and 141 deg, the positive electric 
loading leads to aiding the interaction effect, while the negative 
electric loading leads to impeding the effect. However, it is not 
always the case. In the ranges of q~ between 0 deg and 12 deg and 
between 141 deg and 160 deg, an opposite influence of the electric 
loading could he seen, i.e., the positive electric loading leads to 
impeding the effect, while the negative electric loading leads to 
aiding the effect. What's more, as shown in Fig. 1, there exist three 
special locations for the considered parallel microcrack in the 
near-tip process zone at which neither the positive nor the negative 
electric loading has influence on the K~/K~. The location angles 
corresponding to three special locations could be called as neutral 
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Fig. 2 Normalized mode II stress Intensity factor against the location 
angle ~p 

electric loading angles (NELA) denoted by 9Ne' In the present case 
(taking the PZT-4 piezoelectric ceramic and setting d,, = 0.3) the 
NELA q~Ne equals to about 12 deg, 65 deg, and 141 deg, respec- 
tively. It is found also in Fig. 1 that the electric displacement 
loading plays an important role in the macrocrack-microcrack 
interaction problem. The electric loading not only leads to shifting 
the maximum amplification location and amplitude when K~/K~ > 
l, but also leads to shifting the maximum shielding location and 
amplitude when K~/K~ < 1. Table 1 shows the comparisons of the 
maximum amplification and maximum shielding location angles 
and the corresponding values of K~/K~ among the three kinds of 
loading conditions mentioned above. It is concluded that the pos- 
itive electric loading leads to increasing the maximum amplifica- 
tion location angle q~,,, and to decreasing the maximum shielding 
location angle p,,, and the negative electric loading just leads to an 
opposite influence on q~,,,~ and q~ ..... 

In Fig. 2, the mode II SIF K~/K~ against ~ is plotted. It is seen 
that there are four neutral electric loading angles at which neither 
the positive nor the negative electric loading has influence on 
K~r/K~. However, the values of the NELA do not coincide with 
those shown in Fig. 1 for the mode I SIF K[/K~. It is seen also that 
the electric loading leads to shifting the maximum amplification 
and maximum shielding location for K[/K~ too. However, quite 
the contrary, the positive electric loading increases both ~,,, and 
q~ .... while the negative loading decreases both q~,,,~ and q~ .... 

In Figs. 3(a, b, c, d), the mode I SIF K~/K~ against the normal- 
ized distance d, = (d - a)/a is plotted. Four location angles of 
the parallel microcrack are considered, i.e., ~o = 8 deg, 30 deg, 80 
deg, and 160 deg, respectively. It is seen in Fig. 3(a) for q~ = 8 deg 
that there is a transformation distance dn, = 0.175 at which 
neither the positive nor the negative electric loading has influence 
on the mode I SIF. When the distance d,, is less than d,,, the 

Table 1 The maximum amplification angles ~Ma and the SIF's values and the maximum 
shielding angles ~M8 and the SlF's values 

Maximum 
amplification 
angles 
SIF's values 

Maximum 
shielding 
angles 
SIF's values 

K~ ¢ 0 , K ~ - - 0 ,  

K~ = 10-8K~CN -I 

18.0" 

1.3899 

110.5" 

0.7504 

K:  0,K; =0, 
K: =0 

12B ° 

1.3521 

126.0 ° 

0.8235 

K7 o,K  -- o, 

K~ = - 10 -8 K~CN-1 

9.0 ° 

1.3613 

149.5 ° 

0.8215 
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positive electric loading leads to increasing K;/K~ and the negative 
electric loading leads to decreasing K~/K~. This nature could be 
called as regular influence of electric loading (RIEL). On the 
contrary, when d, is larger than d,,, the influence of the electric 
loading just shows an opposite nature. This nature could be called 
as opposite influence of electric loading (OIEL). However, in Figs. 
3(b, c, d) there are no such transformation distances at all. It is seen 
that in Fig. 3(b) for q~ = 30 deg and in Fig. 3(d) for ~o = 160 deg 
the variable tendencies of mode I SIF influenced by the electric 
loading are always RIEL, while in Fig. 3(c) for q~ = 80 deg the 
tendencies are always OIEL. It is concluded that the influence of 
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Fig. 3 Normalized mode I stress intensity factor against the normalized 
distance d. 

the electric loading on the mode I SIF is dependent of the location 
of the microcrack, i.e., dependent of q~ and d,,, due to the coupling 
nature of the mechanical loading and electric loading in the present 
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tion angle ~o taking d,, = 0.3. Here the EDIF has been normalized 
by K~ × IO-gCN -J. It is seen in Figs. 4(a) and 4(b) that no matter 
how the microcrack location angle ~ is, the positive electric 
loading always leads to increasing the normalized EDIF and the 
negative electric loading always leads to decreasing the normal- 
ized EDIF. Moreover, it is found that the variable nature of K'JK~ 
× IO-gCN -~ against K~/K~ × IO-gCN -~ is monotonic and 
nearly proportional, wherever the parallel microcrack is located in 
the near-tip process zone. The normalized EDIF at the macrocrack 
tip K'/K~ × IO-gCN -~ is approximately equal to the remote 
EDIF K~/K~ × 10-gCN -~ for large values of the location angle, 
for example, ~o > 40 deg. However, for smaller values of the angle, 
the influence of the existence of the microcrack could not be 
neglected and the maximum influence occurs at the collinear 
situation, i.e., ~ = 0. This conclusion coincides well with the 
well-known fact that the disturbance of the microcrack in the 
collinear case on the near-tip electfc field is much larger than 
those in the other parallel cases corresponding to ~0 > 0. This 
reveals again that the disturbance of the near-tip electric field 
induced from microcracking really provides another source of 
shielding. 
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Fig. 5 Normalized mechanical strain energy release rate against the 
location angle 

macrocrack-microcrack interaction problem. This reveals that the 
disturbance of the near-tip electric field induced from microcrack- 
ing provides another source of shielding. 

3 T h e  Elec tr ic  D i s p l a c e m e n t  In tens i ty  Fac tor  

Of the great interest are the variable tendencies of the electric 
displacement intensity factor (ED1F) against the microcrack loca- 

4 T h e  M e c h a n i c a l  S tra in  E n e r g y  Re lease  Rate  
( M S E R R )  

The influence of the electric loading on the mechanical strain 
energy release rate is studied in this section. The MSERR against 
the location angle of the microcrack under the three kinds of 
combined mechanical-electric loading conditions is plotted in Figs. 
5(a) and 5(b) taking the normalized distance d,, = 0.3 and 0.5, 
respectively. Here, the MSERR G~' is normalized by 

G~--' 2 (HnKi + H23KiK~) (4) 

where, as assumed earlier, K~ =~ 0, K~ = 0, while K~ = 
IO-SK~CN -~, O, -IO-SK~CN -~, respectively. 

It is seen that as the angle q~ increases from zero (correspond- 
ing to the collinear cases) the MSERR increases until the 
maximum value is reached. After the maximum value, the 
MSERR decreases as the angle ~0 increases, until the minimum 
value is reached. It is seen also that the values of the MSERR 
considering the electric loading diverge significantly from those 
without considering the electric loading. This provides another 
evidence of the disturbance of the near-tip electric field due to 
microcracking. What's more, the variable tendencies of the 
three curves in Fig. 5(a) or Fig. 5(b) seem quite different in 
magnitude from those shown in Fig. 1 for the mode I stress 
intensity factor. Although the electric loading leads to shifting 
the maximum amplification location and amplitude when G~'/ 
G~ ~ > 1 and the maximum shielding location and amplitude 
when Gy'/Gy ~ < 1, as contrasted with those for the mode I SIF 
shown in Fig. 1, the electric loading, whatever it is positive or 
negative, always leads to impeding the amplitude of the 
MSERR in the amplification regions corresponding to G~r/G~ ~ 

Table 2 The maximum amplification angles and the MSERR's values and the maximum 
shielding angles and the MSERR's values (d. = 0.3) 

Maximum 
amplification 
angles 
MSERR's 
values 
Maximum 
shielding 
angles 
MSERR's 
values 

K t :~0,Ka = 0 ,  

K~ = 10-gKTCN -1 

12.5" 

1.6346 

112.0" 

0.6952 

c o  o~ 
K x ¢ 0 , K t l = 0 ,  

K~ =0  

13.0" 

1.9024 

126.0" 

0.6489 

ao oo 
K l -~0,K n = 0 ,  

K~ = -10-SK?CN -' 

6 . 0 "  

1.6559 

148.5" 

0.7849 
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Table 3 The neutral shielding angle ~NE 
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K :  = 10-8KTCN -' K :  = 0 K~ ° = -10-sKTCN -' 
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Fig. 6 Normalized mechanical strain energy release rate against the 
electric loading 

> 1 and to decreasing the neutral shielding angle at which a 
transition from the amplification effect to the shielding effect 
occurs. Table 2 shows the maximum amplification angles, the 
corresponding values of the MSERR, and the maximum shield- 
ing angles and corresponding values of the MSERR. Table 3 
shows the values of the neutral shielding angle under the 
above-mentioned three kinds of loading conditions. Therefore, 
the amplification region in the near-tip stress field under com- 
bined mechanical-electric loading should always be smaller 
than that under purely mechanical loading, whatever the electric 
loading is positive or negative, due to the disturbance of the 
microcrack in the near-tip electric field. Indeed, this conclusion 
reveals again that the electric loading plays an important role in 
microcrack shielding problems in piezoelectric solids. More- 
over, it reveals that the mode I SIF and MSERR represent quite 
different physical natures in the macrocrack-microcrack inter- 
action problem as they would do in single-crack problems (Pak 
and Sun, 1995a, b). 

The MSERR against the electric loading is plotted in Figs. 
6(a), 6(b), 6(c) taking d,, = 0.3 and q~ = 10 deg, 80 deg, and 
160 deg, respectively. Here, all the values of the MSERR are 
normalized by Gff ~ = H22(K?)2/4 taking the electric loading to 
be variable. It is seen that the variable tendencies are also quite 
different from those for the traditional mode I stress intensity 
factor KI/K~. In each of the figures from 6(a) to 6(c) two cases 
are considered for comparisons, one of which denoted by the 
label 1 is corresponding to the case without considering the 
microcrack, while the other denoted by label 2 is corresponding 
to the case considering the microcrack. It is found that in both 
cases for every figure the variable tendencies of the MSERR 
against the electric loading are linear although the slope of the 
case 2 is different from the slope of case 1. As K~/K~IO-gCN -~ 
increases from - 1  to 1, the G~' /G~ ~ in both cases for every 
figure always increases proportionally. Detailed investigations 
reveal that in Fig. 6(a) an amplification effect of the microcrack 
could be seen since the values of G~'/G~ ~ in the case 2 (with 
the microcrack) are always larger than that in the case 1 
(without the microcrack), while in Figs. 6(b) and 6(c) shielding 
effects could be seen since the values of GiM'/G~ = in the case 2 
(with the microcrack) are always smaller than those in the case 
1 (without microcrack). 

Finally, it should be emphasized that the influence of the ori- 
ented angle of microcracking corresponding to inclined micro- 
cracks on the mode I SW and the MSERR is poorly understood at 
present, which will inevitably require further investigation in the 
sequel. 

6 C o n c l u s i o n s  

From the above-mentioned discussion, the following conclu- 
sions could made. 

1 The mechanical loading and the electric loading are coupled 
in the macrocrack-microcrack interaction problem in piezo- 
electric materials since the microcracks in the near-tip pro- 
cess zone of a macrocrack not only release the near-tip 
residual stresses and reduce the effective elastic moduli in 
the zone, but also disturb the nearr-tip electric field. The latter 
presents another source of shielding. 

2 The electric loading plays an important role in microcrack 
shielding problems for piezoelectric materials. Whatever 
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the loading is positive or negative, the influence of the 
loading on the mechanical strain energy release rate at the 
macrocrack tip always leads to decreasing the neutral 
shielding angle and the amplitude of the amplification 
effect and in turn the amplification region near the mac- 
rocrack tip. 
For a fixed microcrack location the MSERR against the 
electric loading shows a linear nature as it could be in single 
crack problems. As the electric loading increases from a 
negative value to a positive value the MSERR increase 
proportionally. However, the slope of the linear relation 
between the MSERR and the electric loading depends on the 
location of the microcrack. 
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Biphasic Poroviscoelastic 
Behavior of Hydrated Biological 
Soft Tissue 
Hydrated biological soft tissue consists of a porous extracellular matrix (ECM) and an 
interstitial fluid. The poroelastic theory (Biot, 1962), which was originally developed for 
soil mechanics, has been widely used for mathematical modeling of such hydrated 
biological tissue. This theory assumes that the ECM is incompressible and purely elastic, 
and that the interstitial fluid is incompressible and inviscid. The overall viscoelasticity of 
the tissue is expressed as a result of the frictional interaction between the elastic porous 
matrix and the interstitial fluid. The poroelastic theory, also known as the biphasic theory 
(Mow et HI., 1980) in the biomechanics field, has served well over the past 20 years as an 
excellent modeling tool for the interstitial fluid flow-dependent viscoelastic response of 
hydrated soft tissue. It has been demonstrated that hydrated sojq tissue also possesses a 
significant intrinsic viscoelasticity, independent of the interstitial fluid flow. The biphasic 
poroviscoelastic (BPVE) theory, which was first introduced by Mak (1986a and 1986b), 
incorporates a viscoelastic relaxation function into the effective solid stress of the 
poroelastic theory thus accounting for both intrinsic fluid flow-independent and fluid 
flow-dependent viscoelasticity. The objective of the present study is to investigate the 
biphasic poroviscoelastic characteristics of hydrated soft tissue, with an emphasis on the 
relative contribution of fluid flow-dependent and fluid flow-independent viscoelasticity to 
the overall viscoelastic behavior of soft tissues. 

Introduction 

While diverse in morphology and relative composition, all soft 
connective tissues in the animal body share a basic composition; 
they consist of ceils, extracellular matrix and interstitial water. The 
extracellular matrix serves as a major building block of tissue type. 
Although the composition of extracellular matrix varies with the 
tissue, it generally contains fibers of collagen and elastin embed- 
ded in a hydrophilic gel called ground substance. The collagen and 
elastin fibers are organized in a parallel array of crystalline protein 
fibers, thus serving as tensile elements. The ground substance is an 
amorphous polymer made up of mucopolysaccharide (glycosami- 
noglycans) and other minor glycoproteins. The glycosaminogly- 
cans (GAG) found in most soft connective tissues include chon- 
droitin sulfate, dermatan sulfate, keratan sulfate, and hyarulonic 
acid. In soft tissues, these GAG molecules are usually present in 
association with protein, forming large aggregated macromolecule 
called proteoglycan (PG) (Buckwalter et al., 1989). In a hydrated 
environment at physiological pH, the GAG molecules aggregated 
in proteoglycan become negatively charged, and these high nega- 
tive charges create electrostatic repulsive forces between the mol- 
ecules. It is electrostatic repulsive force which is responsible for 
the marked compressive stiffness of soft connective tissue. Inter- 
stitial water is the most abundant element in soft connective 
tissues. It is involved in providing several important biomechanical 
functions of the tissue not only through binding of water to the 
hydrophilic GAG molecules, but also through the Donnan osmotic 
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swelling phenomenon and the relative motion between the inter- 
stitial water and the porous matrix. 

Such hydrated composite structural morphology as described 
above produces complex mechanical behaviors of soft connective 
tissues, even under a simple uniaxial loading condition. Many of 
these complex behaviors of hydrated soft tissues have been ap- 
proximated with various simplified constitutive, either elastic or 
viscoelastic, models (Fung, 1994). Within the framework of linear 
viscoelasticity, finite combinations of springs and dash-pots, such 
as Kelvin and Voigt models, have been utilized to model the 
viscoelastic behaviors of soft tissues (Hayes and Mockros, 1971; 
Parsons and Black, 1977). An integral form of the quasi-linear 
viscoelasticity theory was also proposed to account for the non- 
linear stress-strain characteristics of soft tissues under large defor- 
mation (Fung, 1972). More recently, the poroelastic theory (Blot, 
1962), which was originally developed for soil mechanics, was 
first implemented to simulate the viscoelastic behaviors of soft 
tissue by Mow et al. (1980). This theory, also known as the 
biphasic theory in the biomechanics field, modeled the soft tissue 
as a biphasic mixture of an incompressible elastic porous solid 
matrix saturated with an incompressible inviscid interstitial fluid. 
This model assumes that the overall viscoelasticity of the tissue is 
expressed as a result of the frictional interaction between the 
porous elastic solid matrix and the interstitial fluid. The poroelastic 
theory has been used extensively to simulate the interstitial fluid 
flow-dependent viscoelastic behavior of various hydrated soft tis- 
sues, such as articular cartilage (Mow et al., 1993), intervertebral 
disk (Laible et al., 1994), arterial wall (Simon et al., 1993), cardiac 
muscle (Yang et al., 1994), lung (Pitt Ford et al., 1991), and brain 
(Basset, 1992). 

It has been found that hydrated soft tissues such as articular 
cartilage demonstrate significant viscoelastic behaviors in pure 
shear (Hayes and Bodine, 1978; Spirt et al., 1989; Zhu et HI., 
1993). When a soft tissue undergoes a pure shear, or deviatoric 
deformation, the interstitial fluid flow within the tissue matrix is 
almost negligible in a volume average sense due to near- 
incompressible properties of both the solid matrix and the inter- 
stitial fluid. Therefore, the viscoelastic phenomenon observed in 
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the case of pure shear represents an intrinsic (fluid flow- 
independent) viscoelasticity of soft tissue matrix. In fact, PG gel, 
an aggregate of polyanionic GAG molecules, is intrinsically vis- 
coelastic, independent of an apparent frictional interaction between 
the solid and the interstitial fluid (Mow et al., 1984; Zhu and Mow, 
1990). Collagen fibrils in tendons and ligaments are also known to 
be intrinsically viscoelastic (Viidik, 1968). Consequently, the ex- 
tracellular matrix of soft tissue, a mixture of PG and collagen, is 
expected to demonstrate intrinsic viscoelastic behaviors in the 
absence of the interstitial fluid flow under shear. In order to 
account for these intrinsic (fluid flow-independent) viscoelastic 
characteristics along with the biphasic (fluid flow-dependent) vis- 
coelasticity of soft tissues, Mak (1986a, b) introduced a biphasic 
poroviscoelastic (BPVE) theory in which an integral-type linear 
viscoelasticity was incorporated into the effective solid stress of 
the biphasic theory. We recently developed a computational model 
of the BPVE theory for hydrated soft tissues utilizing the penalty 
Galerkin weighted residual method and a discrete spectrum repre- 
sentation of the relaxation function (Suh and Bai, 1998). The 
objective of this present study was to investigate the biphasic 
poroviscoelastic characteristics of hydrated soft tissues using ar- 
ticular cartilage as a model, with an emphasis on the relative 
contribution of fluid flow-dependent, and fluid flow-independent 
viscoelasticity to the overall viscoelastic behavior of soft tissues. 

Mathematical Models for Viscoelastic Behaviors of Soft 
Tissue 

Biphasic Poroelastic (BPE) Theory. In the biphasic poro- 
elastic theory, hydrated soft tissue is modeled as a biphasic mixture 
of porous solid matrix and interstitial fluid. It is assumed that both 
the porous solid substance and the interstitial fluid are incompress- 
ible. The apparent volume of the solid matrix is still compressible 
through exudation of interstitial fluid. Assuming that the solid 
phase is linearly elastic with infinitesimal strain and that the 
interstitial fluid is inviscid, the governing equations of the biphasic 
poroelastic theory are (Mow et al., 1980): 

Continuity equation: 

V.  (,~"v ~ + +fvO = 0 (1) 

Momentum equations: 

V ' ( r ~  + ~ r " =  0 c ~ = s , f  (2) 

Constitutive equations: 

o "s = - + ' p I  + gr '~ (3) 

o "~ = -qSSpI (4) 

Here, the superscripts s and f refer to the solid and fluid phases, 
respectively; ~b ~ is the volume fraction of the c~ phase; v ~ is the 
velocity of the a phase; o "~ is the total stress tensor of the a phase; 
and p is the fluid pressure. 6 "~ is the effective solid stress repre- 
senting the portion of the total solid stress which is in excess of the 
local fluid pressure (Biot, 1962). With A' and /z s denoting the 
Lam6 elastic constants, the classical Hooke's law leads to the 
following: 

6" s = h" tr (es)I + 2/x"es (5) 

where e s is the infinitesimal strain tensor of the solid matrix. 
is a diffusive momentum exchange between the solid matrix 

and the interstitial fluid, which can be assumed to be proportional 
to the interstitial fluid velocity relative to the solid matrix. Assum- 
ing a constant diffusive drag coefficient K, it can then be written 
as  

~r '~ = -~ r  I = K(v I - vS). (6) 

Using Darcy's law, the diffusive drag coefficient K can be ex- 
pressed in terms of the permeability K of the solid matrix as 
follows: 

qb f 2  

K - (7) 
K 

While this model assumes that both the solid and the fluid con- 
stituents do not possess any intrinsic viscosity, a diffusive inter- 
action occurring at the physical interfaces between the solid and 
interstitial fluid is incorporated into the continuum modes in Eqs. 
(2) and (6), and thus contributes to the overall viscoelastic behav- 
ior of the bulk material. 

Biphasic Poroviseoelastic (BPVE) Theory. Based on the 
intrinsic flow-independent viscoelastic characteristics of the ECM 
of hydrated soft tissue, the BPVE theory incorporates an integral- 
type linear viscoelastic representation into the effective solid stress 
term, as follows (Mak, 1986a and 1986b): 

f 
t 0 

~.s = B.~ Gl(t - ~') O~ tr (eS)dl - 

f t Oe s 
+ 2t ~s G2( t -  ~) O~r dr. (8) 

Here, B s and /x s represent the intrinsic bulk modulus and the 
intrinsic shear modulus, respectively, of the solid matrix; e s rep- 
resents the deviatoric strain tensor of the solid matrix, i.e., e s = 
e s - ½ tr (E~). G~(t) and G2(t) represent the reduced relaxation 
functions for volumetric and deviatoric terms, respectively. 

It has been shown that most hydrated soft tissues demonstrate 
frequency-insensitive hysteric characteristics over a wide decadic 
range of frequencies (Fung, 1972). A relaxation function with a 
continuous spectrum, proposed by Fung (1972), has been widely 
used to represent such frequency-insensitive viscoelastic behavior 
of various soft tissues (Myers et al., 1991; Kwan et al., 1993; Fung, 
1994). However, an excessive computational burden caused by the 
convolution integral in Eq. (8) hinders the continuous relaxation 
spectrum model from being readily used for a practical application. 
On the other hand, a discrete relaxation spectrum has been proven 
effective to avoid the repetitive, time-consuming calculation of the 
convolution integral, thus improving the computational efficiency 
of the integral-type viscoelastic model description (Suh and Bai, 
1998). The present study, therefore, utilized a simplified relaxation 
function with a discrete spectrum as suggested in our previous 
study (Suh and Bai, 1998): 

Nd 

G(t) = 1 + G ~ e-'/~' (9) 
i=l 

where ~-~ is the discrete relaxation rate, Nd is the number of discrete 
terms, and G is the spectrum magnitude. One disadvantage of this 
discrete spectrum model is the nonuniqueness of the parametric 
representation of Eq. (9) (Tschoegl, 1989; Fung, 1994). While the 
choice of N,~ and the interval of r~ in Eq. (9) are somewhat 
arbitrary, our preliminary tests demonstrated that N,~ = 3 and a 
uniform decadic (10-base logarithmic) interval of rg was efficient 
and comparable to the continuous spectrum model, as shown in 
Fig. 1 (Suh and Bai, 1998). In this case, ~'1 could be denoted as rs, 
the short-term relaxation rate, and "r 3 as '7"t., the long-term relax- 
ation rate, equivalent to two relaxation rate parameters used in the 
continuous relaxation spectrum model (Fung, 1972). The interme- 
diate relaxation rate, ~'2, could be defined as follows: 

log ~'2 = (log rl + log T3)/2. (10) 

In general, G~(t) v s Gz(t) in Eq. (8), because it is likely that, in 
the effective solid stress, the hydrostatic component would relax at 
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Fig, 1 Reduced stress relaxation functions of the three-parameter dis- 
crete model and the continuous spectrum model 

a different rate than the deviatoric component. The flow- 
independent relaxation function for the deviatofic component of 
the effective solid stress could be experimentally obtained from a 
dynamic shear test as reported by Hayes and Bodine (1978). 
However, it is very difficult, or perhaps almost impossible, to 
experimentally isolate the intrinsic flow-independent relaxation of 
the hydrostatic component of the effective solid stress, because any 
volumetric deformation of the solid matrix would induce a con- 
comitant flow of interstitial fluid within the tissue matrix and 
thereby causes a flow-dependent biphasic relaxation in the stress 
component. In order to simplify the expression of Eq. (8), there- 
fore, the present study tested two different model assumptions. The 
first assumption (denoted by "BPVE-i") was that G~(t) = 1 and 
G2(t) = G(t), i.e., the hydrostatic component of the effective solid 
stress is governed simply by a pure elastic law, whereas the 
deviatoric stress component is governed by a viscoelastic law. The 
second model assumption (denoted by "BPVE-2") was that both 
the hydrostatic stress component and the deviatoric stress compo- 
nent are governed by the same relaxation function, i.e., Gl(t) = 
G2(t) = G(t). 

Finite Element Formulation of the Models. The above gov- 
erning equations were first transformed into a weak form of the 
Galerkin weighted residual formulation. The continuity equation, 
Eq. (1), was then replaced with a penalty form, by which the 
pressure could be eliminated from the governing equations. As a 
result, the finite element formulation of the BPVE theory was 
expressed in terms of the displacement and velocity of the solid 
and fluid as primary unknown variables as follows: 

Cv(t) + K'rl(t) = F(t) 

~o t n(t)  = G ( t -  r)v(r)dl" 

(11) 

(12) 

~J 

Fig. 3 

to Time 

Diagram of the ramp loading function 

Here, C and K represent the equivalent convective and equivalent 
stiffness matrices, respectively, and v(t) represents the nodal ve- 
locity vector, r](t) is the viscoelastic pseudo-displacement of the 
solid matrix. Using the discrete relaxation spectrum, Eqs. (10) and 
(11) could be readily discretized to yield a recursive form in the 
time domain. A detail of the present finite element formulation can 
be found in Suh and Bai (1998). 

Experiment and Model Simulation 

Experiment: Unconfined Ramp Compression. Articular 
cartilage was harvested from a fresh bovine patella and used in this 
study. A cylindrical plug uniform in diameter (d = 3 mm) and 
thickness (h = 1.22 _+ 0.07 mm) was prepared from the cartilage 
specimen using a microtome (Vibratome ® 1000) and a stainless 
steel biopsy punch. The specimen was then placed between two 
loading platens, and mounted on a miniature material testing 
machine (Vitrodyne ® V1000) as shown in Fig. 2. The upper and 
lower surface of the specimen was glued to the upper and lower 
loading platens with ethyl cyanoacrylate adhesive. This perfectly 
adhesive boundary condition was used to eliminate an ambiguous 
frictional slip between the specimen and the loading platens (Arm- 
strong et ai., 1984; Spilker et al., 1990). The specimen was then 
submerged in a saline bath, and subjected to a protocol of uncon- 
fined compression stress relaxation as described below. 

After first being equilibrated with an axial tare load of 1 g in a 
saline bath, the specimen was compressed to an axial strain of ten 
percent in a ramp function set at a speed of 10 tzm/sec (Fig. 3). The 
axial reaction force exerted by the specimen during the ramp and 
holding phase was measured using a high precision load cell 
(maximum capacity 25 lb, Transducer Technology, Inc., CA) 
connected to the upper loading platen. 

Model Simulation: Finite Element Model. Due to symmetry 
with respect to the center axis, only the upper right quadrant of the 
tissue domain was considered in the finite element modeling of the 
unconfined compression experiment (Fig. 2). The finite element 
mesh was adopted from our previous study (Spilker et al., 1990), 

Fig. 2 Schematics of the unconfined compression experiment and its finite element 
modeling domain 
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Fig. 4 Comparison of BPE and BPVE models to stress relaxation un- 
confined compression experimental data 

consisting of 140 four-node axisymmetric elements with a total of 
165 nodal points. Because of the penalty approximation of the 
incompressible condition, an axisymmetric mean dilatation formu- 
lation suggested by Nagtegaal et al. (1974) was used so that the 
pressure, strain, and stress variables were evaluated at the centroid 
of each element, whereas the displacement and velocity variables 
were evaluated at the nodal points. A perfectly adhesive boundary 
condition was implemented at the tissue-loading platen interface to 
account for the interface boundary condition used in the experi- 
ment. 

Results 
During unconfined compression, the tested cartilage specimen 

exhibited a significant stress relaxation response (Fig. 4); the peak 
reaction force was 0.78N, and the final equilibrium reaction force 
was 0.19N. Figure 4 also shows the reaction force mathematically 
predicted by the BPE model and the BPVE model simulations. It 
was found that the BPVE model simulations provided an excellent 
agreement with the experimental data. It was also demonstrated 
that BPVE-1 and BPVE-2 produced an identical result in predict- 
ing the reaction force, suggesting that the effect of the intrinsic, 
fluid flow-independent viscoelastic characteristics of the hydro- 
static component of the effective solid stress are almost negligible. 
The BPVE model parameters which produced a best curve-fit to 
the experimental reaction force data were: A ~ = 0.01 MPa and 
/.L ~ = 0.09 MPa, ~ = 0.5 × 10 -~4 m4/N •sec, G = 2.8, ~'s = 0.02 
sec, and ~'L = 13 sec. In the unconfined compression stress 
relaxation protocol, it is possible that the reaction force data alone 
may not be sufficient to allow a complete parameter identification 
with the BPVE model. In this study, therefore, the Poisson's ratio 
of the tissue matrix was thus pre-assumed to be 0.05 based on 
previous literature (Mow et al., 1989; Athanasiou et al., 1991). The 
rational of the choice of v = 0.05 will be discussed in detail later 
in the paper (see Discussion). 

When the corresponding BPE model parameters were used 
(A ~ = 0.01 MPa and/,~ = 0.09 MPa, K = 0.5 × 10 14 m4/N. 
sec), the BPE model simulation resulted in a noticeably low-peak 
reaction force and a slow relaxation, especially during the early 
period (t < 100 sec) of unconfined compression (Fig. 4). It was 
found that the BPE model provided an excellent prediction of the 
long-term relaxation response (t > 100 sec). 
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Fig. 5 The volumetric strain energy distributions predicted by the BPE simulation at t = 10 
seconds (a) and at t = 105 seconds (b) 
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Fig. 6 The devlatorlc strain energy distributions predicted by the BPE simulation at t = 10 
seconds (a) and at t = 105 seconds (b) 

The deformation pattern of the tissue matrix under unconfined 
compression is noteworthy. Figures 5 and 6 show the volumetric 
and deviatoric strain energy distributions in the tissue matrix, 
respectively, predicted at t = 10 seconds and t = 105 seconds 
during the unconfined compression experiment using the BPE 
model simulation. The maximum volumetric strain energy oc- 
curred at the upper right corner of the specimen, and was 1960 Pa 
at t = 10 seconds and 1754 Pa at t = 105 seconds in Figs. 5(a) 
and 5(b), respectively. On the other hand, the maximum deviatoric 
strain energy, which also occurred at the upper right comer of the 
specimen, was 6629 Pa at t = 10 seconds and 3620 Pa at t = 105 
seconds in Figs. 6(a) and 6(b), respectively. The magnitude of the 
deviatoric strain energy was much higher than that of the volu- 
metric strain energy over the entire region of the tissue matrix. 
This indicates that, during the unconfined compression stress- 
relaxation experiment, most of the tissue deformation occurred in 
a deviatoric form, rather than a volumetric form. It was also found 
that the deviatoric strain energy exhibited a significant relaxation 
with time, whereas the volumetric strain energy underwent only a 
small relaxation. 

Figures 7 show the hydrostatic pressure distributions at the peak 
time (t = 10 seconds) predicted by the BPE and BPVE model 
simulations. The BPVE model simulations predicted a larger pres- 
sure magnitude (maximum pressure was 122 Kpa) than the BPE 
model (maximum pressure was 44 KPa). The BPVE model also 
predicted a larger pressure gradient within the tissue matrix, as 
compared to the BPE model. Again, BPVE-1 and BPVE-2 pre- 
dicted a similar pressure pattern. 

Figure 8 shows a vector plot of the interstitial fluid velocity at 
the peak time (t = 10 seconds) predicted by the BPVE model 
simulation. As the tissue was axially compressed, the interstitial 

fluid flowed radially toward the outside of the tissue matrix. The 
maximum fluid velocity at the peak time was predicted to be 3.9 
~m/sec at the upper right corner of the tissue. 

Discussion and Conclusion 
This study demonstrates that the BPVE theory produces an 

excellent prediction of the short-term as well as the long-term 
stress relaxation response of the unconfined compression experi- 
ment of articular cartilage. Also, the BPE model was found to 
provide an excellent prediction of the slow relaxation characteris- 
tic of the long-term response of the experiment. However, the BPE 
model underestimated the peak reaction force and the stress relax- 
ation of the tissue matrix during the early period of viscoelastic 
response of the tissue. Similar observations have been made pre- 
viously in both the unconfined compression experiment (Arm- 
strong et al., 1984; Brown and Singerman, 1986) and the inden- 
tation compression experiment of articular cartilage (Mow et al., 
1989; Suh and Bai, 1997). 

The present study shows that, during unconfined compression 
stress relaxation, the majority of deformation in the tissue matrix 
occurs in a deviatoric form, rather than a volumetric form. Because 
of the incompressibility condition used in Eq. (1), interstitial fluid 
flow is created only through the volumetric deformation of the 
tissue matrix. Therefore, we can conclude that an underestimation 
of both the peak reaction force and the stress relaxation observed 
in the BPE model simulation of unconfined compression is caused 
by its underlying assumption that the viscoelasticity of soft tissue 
solely depends on the interstitial fluid flow (i.e., the volumetric 
deformation of the tissue matrix). 

It was also found in the present study that the BPE theory was 
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Fig. 7 The hydrostatic pressure distributions at t = 10 seconds predicted by the BPE (a), BPVE-1 
(b), and BPVE-2 (c) simulations 

able to provide an excellent prediction for the long-term relaxation 
response of the tissue (Fig. 4). Since most connective soft tissues, 
such as articular cartilage, are made of very dense extracellular 
matrix with an extremely low permeability ( -10  -~5 m4/N • see), 
the flow velocity of the interstitial fluid is extremely slow ( -10  -6 
m/see), as shown in Fig. 8. Therefore, the fluid flow-dependent 
viscoelastic phenomenon is most likely to occur at a very slow 
rate. This phenomenon is consistent with the fact that the volu- 
metric strain energy exhibits only a slight relaxation over time 
(Figs. 5), as compared to the deviatoric strain energy (Fig. 6). 

A model, which could accurately simulate the short-term vis- 

coelastic behavior of the tissue, was achieved by implementing the 
intrinsic, fluid flow-independent, viscoelastic representation into 
the deviatoric component of the effective solid stress. In summary, 
the present study suggests that, while the long-term viscoelastic 
response of soft connective tissue is mainly governed by the fluid 
flow-dependent biphasic viscoelasticity, the short-term viscoelastic 
response is primarily associated with the fluid flow-independent, 
intrinsic viscoelasticity of the tissue matrix. It is also suggested 
that the fluid flow-independent viscoelastic features of the solid 
matrix need to be taken into consideration, especially when the 
tissue undergoes a considerable deviatoric deformation. 
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Several limitations associated with the BPVE model assump- 
tions of the present study deserve further discussion. First, the 
constitutive model, Eqs. (1)-(8), is based on the assumption of 
linearity in the range of infinitesimal deformation. The model 
simulation, based on the experimental parameters predicted from 
the unconfined compression test performed in the present study, 
produced an average axial-strain (e~z) of ten percent with the 
maximum axial strain of 27 percent occurring at a localized 
singular point (the upper right corner of Fig. 2), an average radial 
strain (Err) of four percent and an average circumferential strain 
(E00) of four percent. The assumption of linearity has been consid- 
ered acceptable for similar strain ranges in previous studies, al- 
though finite deformation models have shown to improve model 
simulations in many cases (Suh et al., 1991). Nonlinear viscoelas- 
tic modeling including large deformation will be investigated in 
future studies. Regardless of any potential limitations associated 
with the simplified assumption of linearity in the present study, the 
important role of the flow-independent, intrinsic viscoelasticity in 
the short-term viscoelastic responses of hydrated soft tissues 
should remain to be valid. 

Secondly, the present model also assumes the isotropic, homog- 
enous material properties of hydrated biological tissue. Most of 
hydrated biological soft tissues, such as muscle, tendon, and lig- 
ament, have a highly organized fibrous structure in parallel to the 
principal loading direction (Fung, 1994), thus demonstrating sig- 
nificant anisotropic characteristics. In this case, a transversely 
isotropic model assumption along the fiber orientation may need to 
be taken into consideration. Articular cartilage also has a fibrous 
microstructure (Buckwalter et al., 1988): The superficial tangential 
zone (top five to ten percent near the articulating surface of 
cartilage) and the deep zone (near the junction with the underlying 
bone) of articular cartilage have relatively well-organized fibrous 
patterns with a distinctive directionality. However, the majority of 
the tissue domain is composed of randomly oriented collagen 
fibers without apparent directionality. Due to this characteristic, an 
isotropic assumption has therefore been widely accepted in carti- 
lage modeling. Nonetheless, the transversely isotropic or 
deformation-induced anisotropic models have been proposed to 
improve the accuracy of mathematical modeling of articular car- 
tilage (Bursac et al., 1997; Soulhat et al., 1997). A combination of 
the BPVE and the deformation-induced anisotropic characteristics 
of articular cartilage may be able to provide more accurate model 
simulations over wide range of loading conditions. 

Thirdly, the present study assumed the Poisson's ratio of artic- 
ular cartilage to be 0.05. It has been shown in the literature (Mow 
et al., 1989; Athanasiou et al., 1991) that the Poisson's ratio of 
articular cartilage varies over a wide range between 0 and 0.5. As 
Poisson's ratio of the tissue approaches 0.5, there would be less 
change in the apparent volume of the tissue matrix. This would 
cause less interstitial fluid movement within the tissue matrix, thus 
reducing the consolidation (or poroelastic) effect of fluid flow- 
dependent viscoelasticity. In contrast, when the Poisson's ratio 
approaches zero, there would be more and more change in the 
apparent volume of the tissue matrix, thus increasing the consol- 

idation effect of the fluid flow-dependent viscoelasticity, v = 0.05 
was chosen in the present study to increase the consolidation effect 
in the BPVE model simulation. Further studies will be necessary to 
investigate the true value of Poisson's ratio in the BPVE modeling 
of articular cartilage. 

Finally, the large number of the BPVE model parameters (A ', 
/x s, K, G, ~'s, and ~'L) can cause a technical difficulty in obtaining 
unique parameter identification from a single experimental data. 
While each model parameter holds its distinctive physical inter- 
pretation, the overall viscoelastic behavior of soft tissue most 
likely represents a complex coupling phenomenon of all of these 
physical parameters. Therefore, a more accurate parameter identi- 
fication of the BPVE model may require a combination of several 
independently distinctive experiments, each of which is mostly 
representative of each model parameter. This is currently under 
investigation in our laboratory. 
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Exact Solutions for Two- 
Dimensional Time-Dependent 
Flow and Deformation Within a 
Poroelastic Medium 
Exact analytic solutions are derived for the time-dependent deformation of a poroelastic 
medium within a two-dimensional finite domain. Solutions are given with a specific set of  
boundary conditions for the case of  a source of fluid at an arbitrary point and for an 
applied pressure on the boundary. These solutions are ideal for testing numerical schemes 
for poroelastic flow and deformations due to their relative simplicity. 

Introduction 
Poroelasticity has wide applications in biology, filtration, and 

soil science (for example, Gibson et al., 1970; Armstrong et al., 
1984; Booker and Carter, 1986; Yang and Taber, 1991; Ban'y et 
al., 1995). Many numerical codes have been developed to solve the 
poroelasti c equations for various geometries and applications. 
However, there are few exact analytic solutions which can be used 
to test the accuracy of these numerical codes. We present here 
analytic solutions to the por0elastic equations in a two- 
dimensional finite domain. 

Two situations are considered: a source at some arbitrary posi- 
tion; and an imposed applied pressure on the boundary. Our aim is 
not to model any particular application of poroelasticity, but to find 
simple two-dimensional solutions that can be used to test numer- 
ical codes. 

To date, most analytic solutions in poroelasticity are either 
one-dimensional or purely cylindrical, both which reduce to dif- 
fusion type equations. Numerous solutions to the one-dimensional 
poroelastic equations, for different applicable boundary condi- 
tions, have been given, such as linear solutions by Holmes et al. 
(1985), Lai and Mow (1980), and Parker et al. (1987) plus non- 
linear exact and perturbation solutions by Barry and Aldis (1990, 
1991) and Holmes (1983). 

For the problem of a pressurized cylindrical shell, exact and 
perturbation solutions have been given by Kenyon (1976, 1979), 
Klanchar and Tarbell (1987), and Barry and Aldis (1993). Uniaxial 
loading of cylinders has also been considered by Armstrong et al. 
(1984) and Yang and Taber (1991). 

Some exact solutions have been found in infinite and semi- 
infinite regions. Booker and Carter (1986, 1987) used transform 
techniques to find the steady-state solution of a point sink embed- 
ded in a poroelastic half space. Compression of poroelastic layers 
has also been considered by a number of authors such as Heinrich 
and Desoyer (1961), Gibson et al. (1970), Mak et al. (1987), and 
Ateshian et al. (1994). Rudnicki (1987) used infinite Fourier trans- 
forms and Laplace transforms on an infinite domain to solve for 
plain-strain dislocations in an infinite poroelastic medium. The 
time-dependent relaxation of a linear poroelastic disk after some 
assumed deformation has been solved by Sachs et al. (1994) and 
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Jensen et al. (1994). Barry et al. (1995, 1997) give steady-state 
solutions for the deformation of a finite layer by a line source. 

The above exact solutions are only marginally useful in testing 
the accuracy of a two-dimensional numerical scheme. The radial 
and one-dimensional solutions are unable to test fully two- 
dimensional deformation effects. Solutions in semi-infinite regions 
(such as half-spaces or infinite layers) are inappropriate since 
numerical schemes are restricted to finite domains. 

In this paper, we will use Laplace and finite Fourier transforms 
to solve for the time-dependent displacement, pressure, and flow in 
a finite linear poroelastic medium. The boundary conditions will be 
specifically chosen to simplify the resulting solution and to match 
the appropriate transforms. The difficulty in finding these solutions 
is putting them in a suitable form so that the inverse Laplace 
transform can be calculated exactly. Our exact solutions are highly 
suitable for testing numerical schemes for which there are few 
analytic solutions for two-dimensional domains. 

To obtain analytic solutions we have made the standard linear 
poroelastic assumptions. The material is initially homogeneous 
and isotropic with a constant permeability. The stress is assumed 
to be linearly dependent on the strain and the deformations small. 
We note that it is a trivial extension to include anisotropic perme- 
ability. 

Poroelastic Equations 
The poroelastic equations were first derived by Blot (1941) 

studying with the consolidation of soils. These equations were then 
rederived and extended using mixture theory by Bowen (1980) and 
applied to the study of soft tissue compression (for example, Lai 
and Mow, 1980; Mow and Lai, 1980; Armstrong, 1984; Holmes, 
1983; Holmes et al., 1985). We have included here a brief over- 
view of the poroelastic equations derived using mixture theory but 
we refer readers to the above references for a more complete and 
formal derivation. 

The porous material is modeled as a continuous binary mixture 
of solid and fluid phases (denoted by/3 = s, f, respectively) where 
each point in the mixture is occupied simultaneously by both fluid 
f and solid s. The porous medium is assumed homogeneous and 
isotropic with no body forces. Both the solid and fluid phases are 
assumed to be intrinsically incompressible. Bulk compression of 
the mixture can arise only by a decrease in the fluid fraction. The 
density of each phase in the mixture is given by pO = pr~+ t3 where 
Of is the intrinsic density and 4) ~ the volume fraction of component 
/3. For our binary system 4/ + 451 = 1. 

The conservation of mass for each phase is 

a+~ + x~. (4,~v~) = q~ (1) Ot 
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where the solid velocity v" = 0~/0~, fi is the solid displacement 
vector, ~r is the gradient operator and q" = 0 and q/ = q = 0 
except at any sources or sinks in the medium. The overall conti- 
nuity equation is obtained by adding the equations for both phases 
so that V • ~ = q where we define ~ = r~/v: + 4,'~v ~ as a 
macroscopic fluid velocity vector. 

The momentum equations for each phase can be treated simi- 
larly where for small velocities and deformation rates the inertial 
terms can be assumed^negligible. With these assumptions momen- 
tum in each phase is V • T ~ = -Tr  ~, where T ¢ is the stress tensor 
for the /3 phase and ~r ~ is a drag force between the constituents. 
The stress tensors can be modeled as 

T t~ = -4,~,OI + o -t3' (2) 

- I t  *= 7r f = K ( w  ' -  v f ) - p v 6  s, (3) 

where o" represents a solid stress, the "contact stress" (Kenyon 
1976), a function of the strain, K is the drag coefficient of relative 
motion, p is the fluid pressure, and I the identity tensor. We 
assume here that the viscous fluid stress is negligible in compar- 
ison to the frictional interaction between the fluid and the solid, 
hence o "e = 0 and o" ~ &. 

Substituting the interaction term (3) into the momentum equa- 
tion and using 4,* = 1 - 4,z leads to 

K 
1). & = qb~ ? (v s - vf). (4) 

or after a little manipulation 

~ = ~ " ~ = ~  7 7 -  ~ ' (5) 

where ~ = (4,J)2/K is the "permeability" (Lai and Mow, 1980), fi 
is the displacement of the solid, and O~lOt = v*. The notation we 
use for the "permeability,"/~, conforms to that used in the biolog- 
ical literature and in other derivations of these poroelastic equa- 
tions (Mow and Lai 1980). The fluid viscosity, which is often 
written separately in the soil literature, is incorporated into/~. 

The solid contact stress is related to the displacements, fi = (a, 
~), by the relationships 

& = 1 4 ~ I + 2 / x e ,  e = ½ ( V f i +  (Vfi)~,  ~ = V ' f i  (6) 

where A,/.L are the Lain6 stress constants and e is the infinitesimal 
strain tensor. 

In Cartesian (2, g.) coordinates Eqs. (5) and (6) give 

04, op 
~V2a + (X + tz) 02 - 02 '  

04, op 

where 

OrS Off 

is the dilatation, a measure of the change in porosity of the 
material. By taking the divergence of Eq. (5) and using conserva- 
tion of mass we obtain 

Op 0/,3) 04, &Q. 
¢" ~5~'~5-~ = 0-7- 

p 2 
P = 2 t + 2 / , '  x = ~ ,  z = ~ ,  

^ (A + 2/x)~ a 
t = t  h2 , u = ~ ,  w h '  (11) 

Three dimensionless parameters thus occur: 

A /6 h 2 & 
m =  1 + - - ,  P = - - ,  c~= (12) 

/.z X + 2p~ ()t + 2/x)J~ 

where m is an elastic parameter, P a scaled applied pressure, and 
a a scaled source strength. We note that m = 1/(1 - 2v) where 
v is Poisson's ratio. 

Equations (7), (8), and (10) become 

02u 02u ~2w ~p 
(m + l)  0 7  + ff~z 2 + m 0 - ~  = (m + l )  0 x '  (13) 

02w 02w 02u Op 
Ox 2 + (m + 1) Oz---- 5 - + m O ~ z  = (m + 1) iFz' (14) 

o~p O~p 04, 
Ox-- ~ + ~z 2 = ~ - aQ. (15) 

Transform Results 
The finite sine and cosine transforms (shown here using the x 

variable) are defined as 

fo C,,{f(x)} = f(x) cos )t,xdx = ]o(n). 

1_ 2 
f(x) = ~/0(0) + ~ ~ L(,,) cos a,,x, 

n=l 
and 

f0 T Sx,~(x)} = f (x)  sin )t,xdx =) ,  (n), 

2 
f (x)  = ~ ~ f , (n )  sin )t,x, 

w h e r e  )t,, = n~/T, n = O, 1, 2 . . . . .  
(7) Some elemental properties of these transforms are 

S, ,{ f" (x)}  = -k .Z~(n)  + Any(0) - A,(-1) 'V(T) ,  
(8) 

C~,,{f"(x)} = -;t]fo(n) -f '(0) + (-1)'7'(T), 

S , . { f '  (x)} = -.,k,,fo, 

(9) Cx,,{f' (x)} = )t,f~ - f(0)  + ( -  1 )'•(T). 

The Laplace transform is defined as 

£ { f ( t ) }  = f ( s )  = e-S' f( t)dt  

(10) 
with standard transform properties. 

(16) 

(17) 

Nondimensionalisation 
We nondimensionalise the poroelastic equations with respect to 

a typical length of the porous medium h, the Lain6 stress constant 
A + 2t~, a time scale to and the permeability/~ such that 

Boundary Conditions 
To obtain simple analytic solutions it is important that the 

boundary conditions and the transforms be chosen with care. 
Fourier transforms of Eqs. (13)-(15) will be simplified if the 
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Fig. 1 Schematic diagram of a finite poroelastic medium of nondimen- 
sional lengths x = aand y = b. Illustrated are an applied pressure, p~ on 
the lower boundary and a source Q at some arbitrary position, (x0, z0), in 
the medium. The boundary conditions are also shown. 

boundary terms from Eqs. (16), f(0 ), f(T), f (0), f (T), are zero. 
Because of the cross derivative terms, (02u/OxOz) and (02w/ 
0 x 0 z), in Eqs. (13) and (14), the choice of Fourier transforms for 
u, w, and p are restricted. One suitable set of boundary conditions 
that leads to simple solutions is u = 0, Ow/Oz = 0, on z = 0 and 
z = b, withp = p~(x,  t) andp = p~(x,  t), respectively. On x = 
0 andx  = a we take w = 0, Ou/Ox = 0, wi thp = P3(Z, t) and 
p = p~(z,  t) respectively. These boundary conditions are illus- 
trated in Fig. 1. It should be noted that these boundary conditions 
are not standard conditions such as zero stress or displacement. 

Corresponding to these boundary conditions we define the trans- 
formed variables: fi(n, q, s) = £C~S~q{u(x, z, t)}, ~v(n, q, s) = 
£S, ,C~q{w(x,  z, t)}, and ~(n, q, s) = £&,,S~q{p(x ,  z, t)}. For 
ease of notation the overbar indicates any transformed variable 
with the independent variables indicating which transform has 
been used. 

Other transforms and boundary conditions are possible, how- 
ever, these often restrict the choices for the pressure boundary 
conditions. We found the above system yielded the simplest solu- 
tions and, as will be shown in the results, give rise to interesting 
symmetry properties. 

T r a n s f o r m e d  E q u a t i o n s  

The appropriate transforms of the governing equations 
corresponding to the transform variables are £C~,,Szq{(13)},  
£S~, ,Czq{(14)} ,  £S.,S~q{(15)}. Applying these gives the ma- 
trix system 

A w = (m + 1)B2 (18) 
~0 B3 

where 

(1 + m)A~ + A~ mA,,Aq (m + 1)A,, ] 
A = mA,,Aq A, z, + (1 + m)A2q (m + 1)Aq ] 

a. ao -(a, ~, + a~)/s 

and A,, = nTr/a, 2% = qqr/b. The terms Bl, B2, B3 are dependent 
on the boundary conditions, such that 

B1 = P 3 -  ( -1)"p4,  B 2 = p l -  (-1)q/32, 

- 1  
B 3 = - -  (or 0 + AnB I + AqB2), 

S 

where 

p~(n, s) = £&, ,{e , (x ,  t)}, ~(n ,  s) = £&,,{e~(x, t)}, 

P3(q, S) = .£Szq{P3(z, t)}, P4(q, s) =.£Szq{P4(z , t)}, 

Q(n,  q, s) = FS~,Szq{Q(x , z, t)}. 

The system of Eqs. (18) can be solved for fi, ~, ~ by simple 
matrix inversion giving 

(1 + m)A~ 
~(n, q, s) = Bi ~2 

(1 + m)A,,Aq 
~,(n,  q, s)  = " B j  ft 2 

(1 + m)A,,Aq 
B2 ,,~2 

~n 

(1 + m)a~ 
+ B2 ~2 

Aq 
- aQ ~(X + ~), 

A,, Aq 1 
~(n, q, s) = B, -i- + B2 ~ + ,~Q X + ~' (19) 

where X : ~ + X~. 
In the next sections we will consider two different possibilities: 

first, where the boundary pressure is zero with flow driven by a 
source and second, where the flow is driven by a pressure on z = 
0, in the absence of a source. 

S o u r c e  S o l u t i o n  

Here we consider the case of a pulsating point source at (x0, z0) 
with zero pressure on the boundary such that p~ = P2 = P3 = 
P4 -- 0 and 

Q(x,  z, t) = 8(x  - Xo)8(z - Zo) sin o)t. (20) 

On transforming this becomes 

~)(n, q, s) w sin A,,x0 sin ~qZ 0 
= s2 + w2 (21) 

with B~ = 0, B2 = 0, B3 = - e t O / s .  Thus 

fi(n, q, s) - )~()~ + s ) '  ~ (n ,  q, s') = )~(~. + s ) '  

- 0  
- . (22)  p(n,  q, s) .~ + s 

The inverse Laplace transform of these are 

A,, Aq 
tS(n, q, t) = - ~ - ~ ( n , q ,  t), ~ ( n , q ,  t) = - ~ p ( n , q ,  t) (23) 

where 

c~ sin A,,x0 sin AqZo 
/3(n, q, t) = - X2 + ~o2 

× (?~ sin ~ot - ~o cos wt ~- toe- ,b) .  

The appropriate sine and cosine inverse transforms are 

(24) 

2 
u(x,  Z, t) = ab  ~ ~(0,  q, t) sin AqZ 

q=l 

4 
+ ~ ~ ~ ~(,~, q, t) cos X,,x sin A,,z, 

q=l n=l 
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Fig. 2 Deformation of a regular grid due to a source at a position (.25, 
.25) In the medium. Parameter values are a = 1, b = 1, to = 1, a = 2 with 
the displacement shown at time t = ~r/2. Solid lines Indicate the exact 
solution while the dashed lines Indicate a numerical solution. Note that 
the solution Is Independent of the elastic parameter m. 

2 
w(x,  z, t) = ~ ~ ~(n ,  O, t) sin A,,x 

n=l 

4 
+ ~-~ ~ ~ ~(n ,  q, t) sin A,,x cos AqZ, 

q=l n=l 

4 
p(x,  z, t) = ~ ~ ~ .h(n, q, t) sin A,,x sin XqZ. 

q=l n=l 

(25) 

Pressure  Solution 

Here we consider the case of Q = 0 with a pressure on the lower 
edge defined by 

p](x, t) = /3(H(x - Xo) - H(x  - xO)F(t ) ,  (26) 

where H is the Heaviside function, H(x)  = 1 for x -> 0 and 
H(x)  = 0 for x < 0,/3 is the nondimensional pressure magnitude 
and F(t) is any well-defined function of time. The other pressures 
are P2 = P3 = P4 = 0. Thus 

pl(n,  S) : --/3(COS AnX 1 - -  COS A n X O ) t T ( S ) ,  (27) 

where F(s) = .E{F(t)}. Hence B1 = 0 and 92 = /31(n, s). 
Substitution of these into Eq, (19) and calculating the inverse 
Laplace transform gives 

fi(n, q, t) - (1 -~xm)h,, p(n, q, t), 

~(n,  q, t) - (1 + m)A. z 
~Aq p(n,  q, t) (28) 

where 

Source Solution. We will first discuss the solution of a source 
of fluid within the medium, which is unique in being independent 
of the elastic parameter m. This is apparent from the Eqs. (23)- 
(24). Figure 2 illustrates the deformation at time, t = 7r/2, within 
the pressure cycle with parameter values a = 1, b = 1, a = 2, 
to = 1. The source is positioned at (.25, .25). Solid lines indicate 
the exact solution while the dashed lines indicate a numerical 
solution, calculated using a finite difference method we developed 
with a 21 × 21 grid. Note that the two results are virtually 
indistinguishable even with such a coarse grid. The numerical 
solution was also verified to be independent of the parameter m. 
This unusual independence on the Poisson's ratio is due to the 
combination of the specific boundary conditions and the interac- 
tion of the fluid flow with the solid deformation. This indepen- 
dence provides a good check of any numerical method used and 
the summation routine. 

Pressure Solution. We see a remarkably different behavior 
with the solution for an applied pressure on the lower surface. 
Equation (29) shows that the solution has zero time lag and is 
completely synchronous with the applied pressure. The deforma- 
tion is thus equivalent to a sequence of steady-state solutions. 
Unlike the source solution, the deformation is dependent on m. 
Oddly, the pressure is still independent of the elastic parameter m. 
Figure 3 illustrates the deformation at time, t = 7r/2, where 
F(t) = sin tot anda  = 1, b = 1,/3 = 1, to = 1, andm = 1.5. 
The solid lines indicate the exact solution while the dashed lines 
indicate the numerical solution. 

Discuss ion 

Other solutions are possible using this transform method. By 
linearity, the pressure and source solutions can be combined or 
pressures on other surfaces he applied (p2, p3, P4 # 0); however, 
these give no new results. More complicated boundary conditions 
can also be incorporated using Fourier expansions. For example, 
by setting w = ~ a~ sin (ilry/b) on x = a the a~ can be found so 
the desired boundary condition is obtained. However, this greatly 
complicates the solution and is not necessary for checking a 
numerical scheme. 

The boundary conditions we impose do not correspond to nor- 
mal physical boundary conditions. However, our aim is not to find 
solutions for an applicable problem but to find simple exact solu- 
tions to test numerical codes. The boundary conditions we assume 
are natural ones in terms of the governing differential equations, 
giving simple solutions. Hence the independence of the source 
solution with m and the pressure solution with time, are due to the 
natural coupling of the boundary condition and the differential 
equation. These features provide an excellent mechanism for 
checking the correct implementation of any numerical scheme. 

Solutions can also be found by performing a Fourier transform 
in only one direction and then solving the resulting system in terms 
of exponentials as in Barry et al. (1995, 1997). However, this 
yields solutions in terms of ~ s  making an inverse Laplace trans- 

~q 
~(n,  q, t) = -~-/3(cos A,,xl - cos A,,xo)F(t), (29) 

and the sine and cosine inverses can be calculated as in Eq. (25). 

Results  

The exact solutions were determined by evaluating the relatively 
simple sums in Eq. (25). The summations converge rapidly with- 
out the need for acceleration schemes although convergence does 
vary with position in the medium (convergence being slower 
nearer the source and pressure discontinuities). For simplicity the 
summations were calculated using 40 terms. No discernible dif- 
ference was found if more terms in the summation were calculated. 
Indeed, in most cases, substantially fewer terms were necessary to 
obtain convergent results. 
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Fig. 3 Deformation of a regular grid due to an applied pressure Pl. 
Parameter values are a = 1, b = 1, m = 1.5, to = 1, /3 = 1 with the 
displacement shown at time t = ~r/2. Solid lines Indicate the exact solu- 
tion while the dashed lines Indicate a numerical solution. 
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form difficult to find. Our solutions using two finite Fourier trans- 
forms has the advantage that the resulting solution is simply 
expressed and easily inverted. With modem computing power, and 
the rapid convergence of the summations, inversion of the Fourier 
transforms given in Eq. (25) is simple to compute. 

Although our solutions involve double summations, they are 
still useful in testing fully numerical codes. The solutions can be 
calculated to any desired accuracy at any point in the medium. 
Hence they class as being "exact" analytic solutions. 

Conclus ion 

We have derived a set of exact solutions for the time-dependent 
two-dimensional flow and deformation of a poroelastic material. 
Fourier transforms and Laplace transforms were used to formulate 
the answer in terms of double summations. It was found that a 
specific set of boundary conditions enabled simple solutions to be 
found. Two solutions were illustrated: flow from a fluid source and 
flow from an applied fluid pressure on the boundary. These showed 
remarkable properties, with the source flow being independent of 
Poisson's ratio and the second solution being synchronous in time 
with the applied pressure. The simplicity of these solutions makes 
them ideal for testing the accuracy of numerical methods. 
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Relationships Between Kirchhoff and 
Mindlin Bending Solutions for Levy 
Plates 

C. M. Wang,  ~ G. T. Lim, ~ and K. H. Lee 3 

Introduction 
Wang and Alwis (1996) presented an exact deflection relation- 

ship between Kirchhoff and Mindlin polygonal plates. All the 
straight edges of the plates must, however, be simply supported but 
the transverse loading can be of arbitrary distribution. The deriva- 
tion of the relationship was based on an analogy approach and the 
assumption that the moment sum vanishes along the edges includ- 
ing the comer points. When using the relationship, Mindlin solu- 
tions obtained for plates with obtuse and reentrant corners are 
somewhat less accurate due to the moment singularities at such 
comer points. Nevertheless, the relationship allows easy and exact 
determination of the more complicated Mindlin plate solutions 
from the simpler Kirchhoff plate solutions for scalene triangular 
plates and rectangular plates or near rectangular shaped plates. 
Such Kirchhoff plate solutions abound in the open literature for 
use in the relationship. 

Wang and Lee (1996) extended the aforementioned work to 
axisymmetric bending of circular and annular plates. All possible 
combinations of free, simply supported, and clamped edges were 
considered and the loading must, however, be rotationally sym- 
metric. In addition to the deflection relationships, they gave the 
relations for the slope/rotations, moments and transverse shear 
forces. 

The present study continues in this line of investigation by 
treating the bending problem of Levy plates. In using Levy's 
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a 
I~ it,] 

h/2 

Fig. 1 Levy plate and rectangular coordinate system 

method of analysis, the shape of the loading function for Levy 
plates is restricted to be the same for all sections parallel to the 
direction of the two simply supported edges. Derived herein are the 
exact relationships between the bending solutions of Levy plates 
based on the Kirchhoff plate theory and the Mindlin plate theory. 
These relationships, hitherto not available, enable engineers to 
unlock solutions for the Mindlin Levy-plates upon supplying easy 
available Kirchhoff Levy-solutions without much tedious mathe- 
matics. Using the relationships, it was discovered that earlier 
analytical Mindlin Levy-plate solutions by Cooke and Levinson 
(1983) were erroneous. 

Theory 
Consider an isotropic Levy plate with uniform thickness h, 

length a, width b, modulus of elasticity E, Poisson's ratio u, 
and shear modulus G = E / [2 (1  + v)]. Adopting the rectan- 
gular Cartesian coordinate system as shown in Fig. 1 with its 
origin at the mid-left side of the plate, the Levy plate is simply 
supported along the edges x = 0 and x = a while the other two 
edges y = b / 2  and y = - b / 2  may be clamped, simply 
supported, or free. The shape of the transverse loading on the 
plate is characterized by 

m 7rx 
q(x ,  y)  = ~ q, .(y)  sin - -  a 

m = l  

(1) 

On the basis of load equivalence from the equilibrium equations 
for the Kirchhoff and Mindlin plate theories, one can write the 
following relationships 
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oQM+ oQM_ OQ K+ OQK 

Ox Oy ~x Oy 

2 M 2 M 2 M 2 K 0 M~, 0 Myy Mxy O Myy ,9 a Mxy 2MK ~ 2 K 

O----~T-+2-ffx~y + 0--~2 -- Ox 2 + 2 - ~ - + - - O y  2 

(2) ~bxm + Wm= K2Gh ~ dy2 

(1 + v) dqty,,, mqr\ 2 ] 

+ ~ -7-) 0~,,, 

where the superscripts K and M denote quantities in the two 
theories, respectively. 

By substituting the usual Levy representations for the stress- 
resultants, the two load-equivalence relationships may be ex- 
pressed as 

(4) 

and 

4 V )  = 

where the moment sums or Marcus moments ~J~ are given by 

(6) , M M'a"~x+M'~'y_ D _ 0 .... 

~ g M"~xx+M"~YY 
~ ' " -  1 + v 

(7) 

and the Levy operator £ is defined as 

- dy2 (.). (8) 

By solving Eq. (5), the relationship between the moment sums 
of Kirchhoff and Mindlin plates is given by 

~ ) ~  ~ K m,rry m a y  
~ "  + C~,. sinh + C2m cosh - -  

D D a a 

To solve for w ~ in terms of w K, it is seen that Eq. (4) gives 

~ , ~ = - D £  Wm K2Gh]. 

The substitution of Eqs. (7) and (10) into Eq. (9) yields a 
differential equation, the solution of which leads to the following 
deflection relationship: 

( °y) w,, = w , , + ~ - ~ +  Ca,, , -  C ~ , , , ~  c o s h m : Y  

( ay ) m~y 
+ C 4 m - C 2 , , , ~ - ~  s i n h - -  a 

where C~.,, i = 1, 2, 3, 4 are constants to be evaluated from the 
boundary conditions. 

It now remains to determine the Mindlin rotation relationships 
in terms of the Kirchhoff solution. Based on the moment-shear 
force equilibrium equations and the Levy expressions for the stress 
resultants, it can be shown that 

(12) 

and 

o r--ym 
qty,,, + --dy = ~ - ~  [ dy 2 2 ~ "  

2 dy J"  
(13) 

The transverse deflection may be eliminated from Eqs. (12) and 
(13) by first differentiating Eq. (12) with respect to y, and then 
substituting the expression for the derivative of the deflection into 
Eq. (13). By doing so, one obtains 

dqtx,, m ~  
dr ( ~ _ ) ~ y , ,  D(I  - v) 

- dy2 

( 7 )  3 d3l// .... ( 7 )  2 dl//xm ] (14) 
+ t)"m+ dy 3 dyJ" 

By letting 

( 7 )  }k2m = -1" D(1 - v) (15) 

Eq. (14) may be written as 

d3t) .... )t] dtO.m m'tr ( d2Oy,. ) 
dy - - - g - -  dy - ~ \ dy 2 -)t'2"OY" " (16) 

By solving Eq. (16), one obtains 

d tpx,,, m 7r 

dy a 
qJy,,, + Cs., sinh A,,,y + C6.. cosh a,,,y. (17) 

Before proceeding further, it is noted that the substitution of 
Eqs. (6) and (7) into Eq. (9) yields 

(9) \ dy a tO.., \ dy 2 a2 w,. + Cl,. sinh--a 

m qry 
-'~ C2m cosh (18) a 

By differentiating Eq. (17) with respect to y and combining it 
(10) with Eq. (18), one obtains 

d2q j .... mZ'tr2 m~ ( dZw: m 2"n'2 ~) 
d y  2 a 2 IlJx'n = a \ d y  2 a2 w,, 

+ )t,.(C5,. cosh Amy + C6,,, sinh Amy) 

+ - -  Clm sinh + Czm cosh . (19) a a 

By solving Eq. (19), one gets 
(11) 

mTr D(1 - u) 
_ K + A,. (Csm cosh A.,y ¢0 ..... a w,. 2K2G h 

+ Cfm sinh Amy) + C7,,, + C2,, sinh - -  a 

( y )  m'n'y 
"~- Csm Jv Clm ~ cosh - -  (20) a 
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By substituting Eq. (20) into Eq. (17), one can obtain 

d w  K 

toy,,, - dy 
m'n" D(1 - . )  

+ ~ - ~ "  (Csm sinh Amy + C6m cosh A,,,y) 

+ CTm + C2,,. 2 + C tin cosh a 

y a ) mTr~, 
+ C8,,. + Ct,,, ~ + C2,,, 2 n ~  s i n h - - ~ .  (21) 

By substituting Eqs. (11), (20), and (21) into Eq. (12), it is 
deduced that 

m (O ) 
C 7 m -  - -  C i  m - -  C 4  m a ~ 6 h  (22) 

and 

mo(  ) 
C8,, = -  C2m- C3,,, • a (23) 

In view of the foregoing deflection and rotation expressions, the 
relationships between solutions of Mindlin and Kirchhoff plates 
may be summarized as follows: 

• M o m e n t  Re l a t i onsh i ps .  

BRIEF NOTES 

MM ~ ~ [ m~ry ,,~ = Mxx + vD C~,,, s i n h -  
O 

m = I 

mT] + C2,,, cosh sin - -  
a 

- D ( 1  - u )  ~ A m 2 K @ h  
ttl = ] 

× (Cs,,, cosh Amy + C6., sinh Amy) + ( ~ - ~ )  2 

D ay ~ mwy 
× ~SGh Ct , , , -  Ca,,, + Czm 2m'n'] sinh a 

+ C2,n- C3m 

cosh sin 
a 

(27) 

• Def lec t ion  Re la t ionsh ip .  

ay) 
wM = wK + ~ G h  + C3,,, - C~,,, 2m-£" cosh - - -  

a 
m = ] 

( m:y] 
@ C 4 m -  C2,,, sinh s i n -  

a 

* R o t a t i o n - S l o p e  Re la t ionsh ips .  

(24 

Owk ~ I D(1 - u) 
¢~ = - o-T + ~ A'" Y ~ o ~  (c~,,, cosh ~,,,y 

m = 1 

D m , n  mTr 
+ C6,,. sinh A,,.y) + K2Gh a C l m -  a -  C4m 

+ C2,,, sinh - + - -  C2,, 
a K 2Gh a 

- -  - -  C3m ÷ C l m  c o s h  c o s  
a a 

(25) 

OW K 

OY - Oy 
- - - +  ['7 o(1 - , 2 K @ h  (Csm sinh A,.y 

D mw mw 
+ C 6 m  cosh Amy) + - Ct,,, - - - -  C4,.. 

K ~ h  a a 

y a ~ mwy 
+ C2.,, ~ + C1,,, 2-m~] cosh - -  a 

D m'rr m w  y 
-- C2,.~ - - -  C3m + C. ,  + K2Gh a a " 

+ C2,, sinh s i n -  
a 

(26) 

E [ m~-y M ~ = M y~. + D C1,,, sinh - -  " a 
m = I 

'7]Y + C2,,. cosh s i n - - -  
a 

+ D ( I  - v) ~ h,,, ~ 2 G h  
m = 1 

× (C5,,, cosh Amy + C6,,. sinh Amy) + - -  

( D  a y )  : ,  
X ~ C l m  - C 4 m  ÷ C 2 m  ~ sinh m )' 

2 D 

m:y I + Ct,,. cosh s i n -  
a 

(28) 

M ~ , = M ~ y +  ~ A~,+ 
m = I 

D(1 - v) 
× 2K2Gh (Csm sinh Amy + C6,,, cosh Amy) 

+ 2 C1,,, 

ay ) mwy  
- -  C e m  "q- C 2 m  ~ cosh - -  

a 

( ~ ay / °:Y} 
+ ~ C2,,, - C3,,, + Cl,,, 2mw]  sinh 

m Try m : y  ] m rrx 
+ C~,, cosh - + C2,,, sinh cos 

a a 
(29) 
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• Shear Force Relationships. 

Q~ - Qx + ~ hm(Csm cosh Amy 
m = 1 

(7) + C6,. sinh Amy) + 

×(ClmSinhmqrY+C2"c°shm2Y)]a c o s - - -  
rn ¢rx 

a 

o,1 [(7) Q yM = Q ~ + ; ~ (c5, . sinh Amy 
m=l 

-~- C6m cosh Amy) + 

×(C~mCoshm~'y m~y) l  m~'x 
- + C2m sinh sin - -  

a a 

The foregoing relationships contain a total of six unknown 
constants C.., i = 1, 2 . . . .  6 which are dependent on the six 
boundary conditions at the two edges y = -b /2  and y = +b/2, 
that is, three boundary conditions for each edge. These constants 
are evaluated for Levy plates with clamped edges at y = -b~  2 
and y = + b~ 2 in the next section. 

Illustrative Example: SCSC Levy Plates 
For the clamped edges at y = -b /2  and y = +b/2, the 

boundary conditions are 

O w  x 

w ~ = w  x = 0 ,  qJ~= q J y = - ~ - = 0 .  (32) 

The substitution of the boundary conditions given in Eq. (32) 
into Eqs. (24) to (26) gives 

C6.~ - -  

where 

csch - -  
1 - v  2 

I m~b K2Gh ] × Ctm sinh ~ -  + - - ~ - -  ~;~ (33f) 

12'+ = \ 2~::Gh ' 
(30) 

f ~  = \ ~ - 2 ~ -  ] . (34a, b) 

The above relationships can be used to furnish the deflection, 
rotations, and stress-resultants of SCSC Levy plates based on the 
Mindlin plate theory upon supplying the corresponding Kirchhoff 
plate solutions. This is illustrated below for the Mindlin plate 
deflection using the example of a uniformly loaded, SCSC Levy 
plate. 

(31) Based on the Kirchhoff plate theory, the transverse deflection 
for a Levy plate with simply supported and clamped edges under 
a uniform loading q0, is given by (Mansfield 1989) 

a 4 

wX(x ' y) ~ ~ qm = , U  
m=l 

( m'rry mTry manY) mTrx 
× 1 +Amcosh +Bin sinh s i n - -  (35) 

a a a 

where 

2qo 
qm = m---~[l -- (--1)"] ,  (36a) 

A., = - 

mzrb m~b 
1 + ~ c o t h  2-~- 

m wb m ~b m'n'b 
cosh ~ - -  + ~ csch 2-~- 

(36b) 

Clm = 

( m ~ b  X m b m T r  ~ )  
12~ coth ~ sinh 2 ahm cosh 

(33a) nmTr D mTrb D 1 a 2 rnTrb A b + 
aA,,, K2Gh sinh - ~ -  cosh - ~ + 2 n ~  cosh ~ sinh - - ~  ~ csch - 2 a -  sinh ---2-I 

,+ tanh ~ cosh 2 aA., sinh 

C2m = { m~ D m~rb X b [ D l ( a ) 2 j  mqrb 
aX,. K2Gh cosh ~ sinh + - ~ + 2 m~r sinh ~ cosh 

Arab ab m~b A b] 
2 4m~r sech ~ cosh - ~  

(33b) 

ab m'rrb mob 
C3m = C2,. ~ tanh ~ - f~,,+ sech 

ab m~b mob 
C4,,, = C~,. 4m~r coth - 2 a  - 1)2, csch 

C5.~ sech - -  
1 - v  2 

mTrb K2Gh +] 
X C 2 . , c o s h ~ + ~ f t . , I  

A 

(33c) 

(33d) 

(33e) 

B,,, = m~Tb m~b m~'b " (36c) 
c o s h ~ - + ~ a  csch 2a 

The substitution of Eq. (35) into Eq. (7) yields the moment sum 
for the Kirchhoff Levy plate, which is 

g.)'~K = ~ qm 1 - 2Bin cosh sin - - .  
a 

m = l  

(37) 

Under symmetric loading, the Mindlin deflection is symmetrical 
about the x-axis while the Mindlin rotation ~bym must take on the 
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Table 1 Maximum Mindlin deflection parameters wM(a/2, 
O)D/(qoa 4) of uniformly loaded, square SCSC Levy plates 

Cooke and ABAQUS (40 × 40 mesh 
h/a Levinson (1983) wi~ S8R shell element) Eq.(39) 

0.1 0.00213 0.00221 0.00221 
0.2 0.00276 0.00302 0.00302 

form of an odd function. Correspondingly, the terms in Eq. (34) 
become 

,,,(b/z) 
f~m = O, 12,, + - K2Gh (38a, b) 

In view of Eqs. (24), (33), (35) to (38), the deflection of the 
Mindlin plate is thus given by 

w = {qn(a)41 ~- ~ 1 + A,,, c o s h - - a  
m = 1 

+ B "  a--sinh + ~ - ~  mm~ 

{ re'try [ m ~ ' b ]  
× 1 - 2B,,,cosh a - -  2 B , , , c o s h ~ -  1 

[ (  ab mzrb mTrb I cosh mffy × ~,,, ~ tanh ~ sech ~ ] 

- ~" 2~m~w sinh sin - - a  (39) 

where 

BRIEF NOTES 

a shear correction factor K 2 of s It can be observed that the g.  

deflection values are in agreement with those obtained using 
ABAQUS (1996), thus confirming the correctness of the derived 
relationship. The results, however, differ fi'om those determined by 
Cooke and Levinson (1988). The error made by these researchers 
will be discussed in a separate paper (Lee et al., 1999). 

Concluding Remarks 
The exact relationships for the deflection, rotations, and 

stress resultants of Levy plates between the Mindlin and Kirch- 
hoff solutions have been developed. These relationships allow 
analysts to readily determine the Mindlin Levy plate solutions 
from the corresponding well-known Kirchhoff Levy plate so- 
lutions. The relationships also help to elucidate the effect of 
transverse shear deformation on the deflection of Levy plates 
and serve to provide benchmark solutions for checking numer- 
ical solutions. 
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A Beam Bundle  in a Compress ible  
Inviscid Fluid 

R. J. Zhang ~ 

A three-dimensional homogenization model is developed to predict 
the overall dynamic behavior of  a beam bundle. It is shown that the 
model is transversely isotropic. This characteristic simplifies the 
governing equation of the model in the manner that only one 
scalar parameter appears in it. Transverse isotropy means that 
any direction in the plane perpendicular to the axis of  the beam is 
the principal direction. 

Introduction 
A beam bundle is composed of a great number of tubular beams 

with periodic structure, which are immersed in an acoustic fluid. It 
can be regarded as a fiber-reinforced composite or a material with 
microstructure. By means of the asymptotic homogenization 
method (Bensoussan et al., 1978; Sanchez-Palencia, 1980), a 
three-dimensional continuum model for the beam bundle has been 
given by the author (1998a, b). The model is referred to as a 
unified model, because existing two two-dimensional models, the 
Schumann-Benner's model (Schumann, 1981a, b) and Brochard- 
Hammami's model (Hammami, 1990 and Brochard et al., 1991), 
are its two-dimensional special cases, 

In this paper, the fact is revealed that the continuum model is 
transversely isotropic. This characteristic results in the simplifica- 
tion of the homogenization equation of the model by replacing its 
tensor parameters by a scalar parameter. It is interesting to point 
out the fact that the significance of the scalar parameter, D in 
(13)-(15), is the added fluid area fraction. 

For brevity, we will directly begin with the three-dimensional 
homogenization equations developed by the author (1998a, b, c). 

Three-Dimensional Homogenization Equations 
The three-dimensional homogenized equations for the beam 

bundle are 

-5  + P - ~7~(A,,j3Vt3P) 
Cf 

- ~V3V~p + ~eV~(Bo~%) = 0 (1) 

M~°#t3 + B"t~P + V3~73 iX[ V3V3wa = 0 (2) 

in which the pressure of fluid p and the deflection of beams w. are 
unknown functions to be determined; c; and c~ are the sound speed 
in fluid and beams, respectively; K = ~ / ~ ,  is the density ratio of 
beam to fluid; ~y and ~.~ are the mean density of fluid and beams; 
X is the fluid volume fraction or porosity of the bundle; E1 is the 
flexural rigidity of beams; [XI is the area of a unit cell composed 
of the cross section of a beam and surrounding fluid in the plane 
perpendicular to the beam axis; V; = O/Ox~ and x = (x~, x~, x3) 
denote a global coordinate system, with the x3-axis pointing along 
the beam; a dot over any quantity denotes its derivative with 
respect to time t; summation is on repeated subscripts; and Greek 
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subscripts assume the value 1 and 2 while Latin subscripts range 
from 1 to 3. Tensor parameters in the equations are defined as 

A~t3 = A6,~ - D~j3 (3) 

B ~  = (1 - A)~t~ + Duo (4) 

m. t  ~ = ~,,(1 - A)8.~ + pfD.13, (5) 

and 

,f D.t~ = ~ Xo,.dytdy2 (6) 
rt 

where y = (Yt, Y2) is a local coordinates defined in a magnified 
unit cell as 

y ~ = x ~ ) e  ( a =  1 ,2)  (7) 

with a small nondimensional parameter, • ~ 1, where • is the ratio 
of the size of the unit cell to the size of the whole structure; a 
comma represents the derivative to the local coordinates: Yj is the 
fluid domain in the magnified unit cell; IYI is the area of the 
magnified unit cell; and X~ is the local function defined in the 
magnified unit cell and satisfies the following local problem: 

X~,~t3=0 onYf 
X~,~n¢ = n~ at F 
X~ = periodic function of y~ and Yz 

(8) 

f x .dyldy2 = 0 
rj. 

where F is the interface between fluid and beam, n ~ is the exterior 
normal to fluid domain at F in the magnified unit cell. 

Note that Eqs. (l) and (2) are, in fact, different from those in 
Zhang (1998a, b) by a factor IXb. Similarly, the tensor parameters 
(3)-(6) are different from their original forms by the same factor. 
This modification makes the tensor parameters be the nondimen- 
sional ones, 

2 lsotropic Tensor 
First, it is not difficult to show from (8) that 

X,(Y,, Y:) = X:(-Y2,  Y,) : ~(Yl, Y2). 

It then follows from (6) that 

Dtt = D 2 2 = D  and D i 2 =  -D21. (10) 

Further, we can see that tensor D ~ is symmetric in two subscripts 
because 

(9) 

if Dot~ = ~ X~,~dy 
vj 

1 f [  (8~) 1 f t  - IYI xt~n"dl = J ~  Xt~X~'vnvdl 

i f  (8,,~ 1 f = ~ (x~x,, . ,) .~dy = i ~  x~.,xo.,dy. 
rz rj 

(11) 

Equation (10) indicates that the symmetric tensor D~o is isotropic. 
Sequentially, due to (3), (4), and (5), all the following tensors are 
isotropic, too. Thus, we have 

D,~ = DS,,~, A.~ = A~.;3, 

B.t3 = B~,~t~ a n d  M ~  = M~.~ (12) 
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Fig. 1 

N ~ NON-ADDED FLUID AREA 
FRACTION 

B :  EFFECTIVE CROSS SECTIONAL 
AREA FRACTION 

D : ADDED FLUID AREA FRACTION 

A 

Significance of A, B, and D 

where 

and 

A = A - D  (13) 

B =  1 - A + D  (14) 

M = ~(1 - ~) +~yD. (15) 

3 Uniparameter Equations 

Substituting (12) into (1) and (2), we obtain the final equations 
as follows: 

-~ + fi - AV.V.p - AV3V3p + ~fBV.¢O. = 0 (16) 
C[ 

and 

V [ E1 V3V3w.) (17) M#a + BV~p + 3V3~(~ : 0. 

It can be found that all parameters in (16) and (17) are scalar. This 
indicates that the model is isotropic in the plane perpendicular to 
the axis of beams. Apparently, there are three scalar parameters A, 
B, and M in the above equations. However, according to (13)-(15), 
they are not independent. In fact, for the given geometry (i.e., A is 
given), the only parameter in the final equations is D. 

4 Added Fluid Area 
As can be seen from the definition of M in (15) that the 

significance of the term ~iD is the added fluid mass fraction per 
unit length of beam. Hence, D indicates the cross-sectional area 
fraction of fluid which is added onto the beam. Then, we can see 
from (14) that B denotes the total cross-sectional area fraction of 
the beam and the added fluid. Moreover, (13) indicate that A 
expresses such an area fraction of the fluid that is not added to the 
beam. The fact that tensors A,~, B,~, and D,~ are isotropic makes 
it reasonable that the added fluid has an constant thickness round 
the beam. A, B, and D are illustrated in Fig. 1. 

In the case of the small beam volume fraction, as pointed out by 
the author (Zhang, 1998b), D has the asymptotic expression 

A(1 - A) 
D = - -  f o r l - A ~  1, (18) 

2 - A  

5 Equivalent Sound Speed 
In order to find the sound speed in the axial direction, we delete 

these terms that involve the derivative with respect to x .  in the 
final Eqs. (16) and (17), In this case, the deflection of beams w. 
must be zero, otherwise (17) is not a propagation equation. The 
propagation equation in the axial direction has the form 

A 
fi  A 1 --  A ~ 3 ~ 3 P  = 0 .  (19) 

c} ~ ~ :  

When K = 0.dPr tends to infinity, (19) becomes 

fi  --  cc~.V3V3P = 0 .  ( 2 0 )  

Of course, the sound speed in the axial direction is cy. 
Now let us look for the equivalent sound speed in the plane 

perpendicular to the axis of beams. In this case, the term 
- A . V 3 V 3 p  in (16) has to be deleted. Only in the following two 
cases, a propagation equation can be deduced from the Eqs. (16) 
and (17): 

Case 1: Beams are Fixed. In this case, # .  in (1'6) must be 
zero and Eq. (17) should be deleted. Then, the propagation equa- 
tion in any direction x.  (a = 1 or 2) is of the form 

~ +  / ~ - A V . V ~  = 0  (no sum o n a ) .  (21) 

Correspondingly, the equivalent transverse sound speed (in arbi- 
trary direction) is 

C(,r,,,~) = / ,  1 [A - D]. (22) 

+ K c----~-- 

When n = 0~/Pl tends to infinity, (22) reduces to 

C (Irans) _~ Cf 1 (23) --eq ~ ' 

This is, in fact, similar to what was given by .Brochard and 
Hammami (1991). It reduced to a pure acoustic problem. 

Case 2: Beams Move in Phase. The elimination of #~ in 
the Eqs, (16) and (17) gives an equation in any direction x~ (a = 
1 or 2) of the form 

1 --.A. B 2 

= p f ~ - V . [ V g V 3 ~ E 1  V3V3w~J. . ( n o s u m o n a ) .  (24) 

Obviously, when V~[V3V3 (EHIXI)V3V3w~] = 0, which means 
that all the beams bear the same load or all the beams have the 
same displacement mode, Eq. (24) becomes a propagation equa- 
tion. The equivalent transverse sound speed is 

c('r""~)= - --X ; t - - O + ~ l ~ - ) + D l .  (25) 

It can be shown that the equivalent transverse sound speed ex- 
pressed by (25) is similar to what was given by Schumann (1981). 
In addition, when K = ~.,/~y- tends to infinity, (25) reduces to (23). 
This fact can be understood so that K ~ co means "beams are 
fixed." 

In the case of the small beam volume fraction, see (18), Eq. (23) 
becomes 
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c(tra,~) ~ 2 - ~  for 1 - A ~ 1. (26) eq ~ Cf 

Obviously, there is the same sound speed in any direction in the 
plane perpendicular to the axis of beams (we call it the transverse 
sound speed), and there is other value of the sound speed in the 
axial direction of the beam. This means that the homogenization 
model of the beam bundle is transversely isotropic. Furthermore, it 
can be easily seen from (23) that the transverse sound speed is 
always smaller than the axial one. 
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The fundamental nature of thermoelastic contact between a flat 
punch and an anisotropic half-plane solid is studied. Based on 
Lekhnitskii's stress potentials and anisotropic thermoelasticity 
theory, the formulation leads to the nonhomogeneous Hilbert 
problem which can be solved in compact form. The contact trac- 
tion beneath the punch face is derived in the form of the Cauchy- 
type integral which is solved numerically. The results show that, 
depending on the magnitude of the applied force and the total heat 
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flux, either perfect thermal contact throughout the punch face or 
separation at the punch corners occurs. The contact lengths for 
separation solutions are also examined. 

1 Introduction 
In most cases contact problems are accompanied by heat con- 

duction between two bodies. When heat is conducted across an 
interface between two conducting solids, there will generate some 
resistance to heat flow across the interface, which is found to be a 
function of the local contact pressure proposed by Cooper et al. 
(1969) and Shlykov and Ganin (1964). However, the heat conduc- 
tion and elasticity problems are coupled through the boundary 
conditions, which were raised by Clausing (1996) and Barber 
(1973), since the contact pressure is itself influenced by not only 
the thermal distortion but also the temperature field in the bodies. 
For the case of thermoelastic contact between a fiat punch and 
isotropic half-space, Comninou et al. (1981) discussed that, de- 
pending on the magnitude and the direction of the total heat flux, 
one of the possibilities occurs: separation at the punch corners, 
perfect thermal contact throughout the punch face, or an imperfect 
contact region at the center with adjacent perfect contact regions. 
Clements and Toy (1976) used integral transform techniques to 
solve contact problems for anisotropic media. Recently, Fan and 
Hwu (1996) studied the punch problems for an anisotropic elastic 
half-plane by applying Stroh's formalism (Stroh, 1958). To the 
best of our knowledge, the thermoelastic contact problem associ- 
ated with anisotropic media is new. In this brief note the two- 
dimensional thermoelastic problem of an anisotropic elastic half- 
space indented by a perfectly conducting rigid fiat punch is 
considered. Based on the complex variable representation of two- 
dimensional elasticity developed by Lekhnitskii (1963) and the 
method of analytical continuation, the full-field solutions of the 
temperature field and stress distributions are derived in compact 
form. Since the Cauchy integral appearing in the expression for 
contact pressure distribution cannot be evaluated in closed form 
for anisotropic material, the contact pressure along the punch face 
and the related contact length are computed numerically which are 
found to depend on the geometrical parameters, material anisot- 
ropy, and the ratio between thermal and mechanical loads. The 
condition for perfect thermal contact throughout the punch face or 
separation at the punch corners through these parameters is also 
discussed in detail and shown in graphic form. The results pre- 
sented here can be reduced to those for the isotropic case and 
found to be identical with the solutions given by Comninou et al. 
(1981). 

2 Heat Conduction in the Half-Plane 
The heat fluxes in the x l, x2 coordinate system of an anisotropic 

half-plane medium can be expressed as (Ozisik, 1980) 

h~= -k~jTj ( i , j =  1 ,2)  (1) 

where kjj are the heat conductivity coefficients and T, hi, h2 
denote temperature and heat fluxes in the Xl, x2 direction, respec- 
tively. A subscript after a comma stands for differentiation with 
respect to this index and repeat indices imply summation. The 
steady-state heat conduction equation can be written as 

hi. i : - k i j T ,  i j : 0 .  (2) 

The general solution to Eq. (2) is given by (Wu, 1984) 

T =  th0(z) + O0(z), z = x l +  /*0x2 (3) 

where the overbar denotes a complex conjugate while the complex 
function 4)o(z) is an arbitrary function which can be determined by 
satisfying the specified boundary conditions and P,0 is the root of 
the following characteristic equation with a positive imaginary 
part: 
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Obviously, there is the same sound speed in any direction in the 
plane perpendicular to the axis of beams (we call it the transverse 
sound speed), and there is other value of the sound speed in the 
axial direction of the beam. This means that the homogenization 
model of the beam bundle is transversely isotropic. Furthermore, it 
can be easily seen from (23) that the transverse sound speed is 
always smaller than the axial one. 
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flux, either perfect thermal contact throughout the punch face or 
separation at the punch corners occurs. The contact lengths for 
separation solutions are also examined. 

1 Introduction 
In most cases contact problems are accompanied by heat con- 

duction between two bodies. When heat is conducted across an 
interface between two conducting solids, there will generate some 
resistance to heat flow across the interface, which is found to be a 
function of the local contact pressure proposed by Cooper et al. 
(1969) and Shlykov and Ganin (1964). However, the heat conduc- 
tion and elasticity problems are coupled through the boundary 
conditions, which were raised by Clausing (1996) and Barber 
(1973), since the contact pressure is itself influenced by not only 
the thermal distortion but also the temperature field in the bodies. 
For the case of thermoelastic contact between a fiat punch and 
isotropic half-space, Comninou et al. (1981) discussed that, de- 
pending on the magnitude and the direction of the total heat flux, 
one of the possibilities occurs: separation at the punch corners, 
perfect thermal contact throughout the punch face, or an imperfect 
contact region at the center with adjacent perfect contact regions. 
Clements and Toy (1976) used integral transform techniques to 
solve contact problems for anisotropic media. Recently, Fan and 
Hwu (1996) studied the punch problems for an anisotropic elastic 
half-plane by applying Stroh's formalism (Stroh, 1958). To the 
best of our knowledge, the thermoelastic contact problem associ- 
ated with anisotropic media is new. In this brief note the two- 
dimensional thermoelastic problem of an anisotropic elastic half- 
space indented by a perfectly conducting rigid fiat punch is 
considered. Based on the complex variable representation of two- 
dimensional elasticity developed by Lekhnitskii (1963) and the 
method of analytical continuation, the full-field solutions of the 
temperature field and stress distributions are derived in compact 
form. Since the Cauchy integral appearing in the expression for 
contact pressure distribution cannot be evaluated in closed form 
for anisotropic material, the contact pressure along the punch face 
and the related contact length are computed numerically which are 
found to depend on the geometrical parameters, material anisot- 
ropy, and the ratio between thermal and mechanical loads. The 
condition for perfect thermal contact throughout the punch face or 
separation at the punch corners through these parameters is also 
discussed in detail and shown in graphic form. The results pre- 
sented here can be reduced to those for the isotropic case and 
found to be identical with the solutions given by Comninou et al. 
(1981). 

2 Heat Conduction in the Half-Plane 
The heat fluxes in the x l, x2 coordinate system of an anisotropic 

half-plane medium can be expressed as (Ozisik, 1980) 

h~= -k~jTj ( i , j =  1 ,2)  (1) 

where kjj are the heat conductivity coefficients and T, hi, h2 
denote temperature and heat fluxes in the Xl, x2 direction, respec- 
tively. A subscript after a comma stands for differentiation with 
respect to this index and repeat indices imply summation. The 
steady-state heat conduction equation can be written as 

hi. i : - k i j T ,  i j : 0 .  (2) 

The general solution to Eq. (2) is given by (Wu, 1984) 

T =  th0(z) + O0(z), z = x l +  /*0x2 (3) 

where the overbar denotes a complex conjugate while the complex 
function 4)o(z) is an arbitrary function which can be determined by 
satisfying the specified boundary conditions and P,0 is the root of 
the following characteristic equation with a positive imaginary 
part: 
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Fig. 1 Geometry of the flat punch 

k~/.~ + (kl~ + k~l)/z0 + kH = 0. (4) 

Since k,~ are positive definite and symmetric, the characteristic 
value/x0 in Eq. (4) must be a complex. For isotropic or orthotropic 
material, the conductivity coefficients k~, k2~ are zero and the 
characteristic value /x0 becomes purely imaginary. Putting 
D0(z) = +~(z) and using Eq. (3), the expression of the heat fluxes 
in Eq. (1) can be written in the form 

- h i  = (kil + tzoki2)Do(Z) + (kil + ~oki2)Do(z). (5) 

The rigid punch of width 2a is pressed into the half-plane x~ > 
0 by a compressive force P and the total heat flux Q from the 
punch to the half-plane as indicated in Fig. 1. If there is perfect 
thermal contact throughout the given contact region - a  < - c :  < 
x~ < c~ < a pressed by the punch and the remaining part of the 
half-plane surface is assumed to be insulated (Fig. 2), the condi- 
tions give 

dT(Xl, O) 
- - = 0 ,  - c 2 < x ~ < c ~  (6) 

dxl 

and 

h 2 = 0 ,  x t > c i  or x ~ < - c 2 ,  x 2 = 0 .  (7) 

Using Eqs. (6) and (7), Eq. (5) leads to the following Hilbert 
problem: 

(I '~(xl) + ~ o ( X 0  = 0, - c~  < xl < c~ (8) 

where the superscript + (or - )  is used to denote the field quan- 
tities approached from the medium x2 > 0 (or x~ < 0). The 
solution to the Hilbert problem can be obtained as (Muskhelishvili, 
1953) 

- - W ? 7 4 / / / / /  

L C1 

P 

s- 

' / / / / / ' / - /77  S + 

. C 1[  

Fig. 2 Geometry for perfect contact and separation 

Journal of Applied Mechanics 

blz + b2 
Do(Z) = xt(z _ cl)(z  + c2) , z E S +. (9) 

The contant b, vanishes in the present study since the heat flux 
tends to zero at infinity and the remaining contant b2 can be 
determined from the condition 

It yields 

where 

f ~' h2dxt = Q. 
-ca 

(10) 

- a  
b2 = 2'rrd0 (11) 

do = - i d l  = xlkHk22 - k~2. 

Therefore, the final result for Do(Z) in Eq. (9) becomes 

-Q 
Do(Z) = 2~'do~!(z - c l ) (z  + c~) '  z ~ S +. (12) 

3 Thermal Stresses 

The generalized Hook's law of an anisotropic material can be 
expressed in contracted notation as (Nowacki, 1962) 

6 

e~ = ~ aijcr i + aiT (13) 
j= l  

where aij, at denote the compliance tensor and thermal expansion 
coefficients, respectively. The standard correspondence is adopted 
a s  

{E~} = JEll, E22, ~33, 2E23, 2E31, 2E12] T 

{O',} = [O'll, ~ 2 ,  0"33, O' . ,  O'3l, O'ld T 

{at} = [a l l ,  a22, a33, 2a23, 2a31, 2a12] T (14) 

where the superscript T denotes the transpose. For two- 
dimensional anisotropic thermoelasticity, the representation for 
stresses ~rij, and the derivatives of displacement, u'~, can be ex- 
pressed in terms of two stress functions Dj(z~), D2(z~) and a 
temperature function ~0(z0) as follows: 

O'll = 2 Re[/.~#Dt(Zl) + /.~D2(z2) + p~02Ptqb0(z0)] (15) 

o'22 = 2 Re[Dl(z0 + D2(z2) + Pt~bo(z0)] (16) 

crl2 = - 2  Re[ixlDl(zl) + /z2D2(z2) + tzoetq~o(Zo)] (17) 

u'l = 2 Re[p~Dl(zj) + p2D2(z2) + p0~bo(z0)] (18) 

u~ = 2 Re[qlDl(Zl) + q2D2(Z~) + q0qS0(Z0)] (19) 

where u'i = Ou~/Ox~ and Re denotes the real part of the complex 
function, The arguments zj = x~ + /zjx2 ( j  = 0, 1, 2) are used 
and the characteristic values /zj (i = 1, 2) are the roots of the 
fourth-order characteristic equation with positive imaginary part 

al l /A,  4 - -  2 a l 6 p ,  a + (2a12 + a66)fil, 2 - 2 a 2 6 / z  + a22 = 0 .  (20) 

The elastic coefficientsp~, qi (i = 1, 2) in Eqs. (18) and (19) have 
been defined by Lekhnitskii (1963), and the thermal coefficients 
P0, q0, and Pt have been defined by Chao and Chang (1994). Now, 
a complete solution to the half-plane problem has been reduced to 
the evaluation of two complex functions D~(z~), D2(z2) which 
must satisfy the prescribed boundary conditions along the half- 
plane surface. 
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BRIEF NOTES 

Consider a rigid frictionless flat punch normally indenting the 
half-plane S + under the action of a resultant force P. The boundary 
conditions for this problem are 

u ~ = 0 ,  o ' ~ = 0 ,  - c ~ < x ~ < c ~ ,  x ~ = 0  (21) 

~r2z = oh2 = 0, x~ > cl or /q < -c2 ,  x 2 = 0. (22) 

Since the shear stress vanishes along the whole half-plane surface, 
we have from Eq. (17) 

/,~l~/)l(Xl) + /,~,2cI)2(xl) + Pt~or~o(xl) + ~ld/)l(Xl) 

+ ~22q52(x,) + P,tzoC~o(X,) = 0. (23) 
where It is easy to verify that Eq. (23) satisfied the following relation: 

Pd~0 
qb2(z~ ) = _ ~__L ~(Z~)  - - -  d~0(Z0). (24) 

~Z2 ~ 2  

Moreover, the portion of the half-plane surface on the interval 
x~ > c~ or x~ < -cz  is unstressed, which gives 

• ~(x,) + m~(x,) + P,+~(x,) + m~(x,) 

+ m ; ( x l )  + Ptqb~(x~) = 0. (25) 

Based on the continuation theorem and using Eq. (24), Eq. (25) 
allows us to extend the definition of dP~(z~) from S + into S- by 
putting 

(I) I (Z l )  = (~)I (Zl) ,  Z l e S + (26) 

l -~____L_ /x2 - ~ ~b~(~) + /x2 - /Xo P,450(~0) where 
• ,(z~) = t~2 - t~  t ~  ~-5 

+ z, (27) 
/z2 

Furthermore, with the aid of Eqs. (24), (26), and (27), Eqs. (18) 
and (19) can be combined to yield the following relation: 

2iu'2 = Am,(z,) + Bm,(~) + Cc~o(Zo) 

+ Dqbo(~) + E+o(~o) 

where 

(28) 

\ /x2 / /x~/x2 a2a + a26 (29) 

2,(.,- --a26 ] B =  \ ~ - - 2 - - 2 / L  ; 7 ~ z  a=  (30) 

C = 2i{P,[(l/tx o - /.t.0/bl,22)a22 + (~01~2 - -  1)a26] + ot2//.%} 

(31) 

O = 2 i ( / ' L ° -  ~ 2 , / [  ~ -1%-~  - a26 ] (32) 
id~2 t] L /'LI/'L2 a22  

E = 2i{Pt(1 - ~ / ~ ) ( 1 / ~ - ~  - 1/-~)a= + aJ~oo}. (33) 

In view of Eq. (28) and knowing that 4~o(~o) = qbo(To), 
~b~(x0 = -qSo(X0, the boundary condition u'2 = 0 on x2 = 0, 
- c 2  < xt < c~ implies 

adP~(xO + Bdg;(xO + ( C -  D -  E)qS+(xt) = 0 .  (34) 

After some algebraic manipulations, it can be shown that 

A = B  (35) 

and 

C - D - E = H = 4  -2 E ;  

- a22 Im[P,(1/~0 +/x0/(~tx2)  - 1/tx~ - 1/~2)]} (36) 

where Im denotes the imaginary part of the complex function. 
Now, a general solution to the Hilbert problem, Eq. (34), be- 

comes 

-nX(z) f c, 6g(t)  
~,(z) = 27riA X+(t)(t - z) dt + X(z)F (37) 

--C2 

-Q ( 2 t -  c~ + c2) 
'b°~(t) = 2 ~ 1  sin-l  cl + c2 

S ( z )  = (z - C l ) - l / 2 ( z  ~ c 2 ) - 1 / 2  

Finally, the contant F appearing in Eq. (37) can be determined 
from the condition 

f cl -P  = ~=dt. (38) 
--C2 

Substituting Eq. (37) into Eq. (16) and using Eq. (38) we find 

- i  p,2P 
F - 27r(~2 - ~ )  + M (39) 

HQ f c, 1 
M = 4qr3d, A -c2 ~/(c, - t)(t + c:) 

x/(cl - ~)(~ + c2) sin-' ( 2~ ~ c' + c2) 
f ct + c2 d~dt 

X ~ - t  
--c2 

iQ(lz2- p~o)Pt iHQ 1 
- 2"n'2d1(/.~2 - /X,) q- ~ J  

If one defines 

f [ ( 2 t - c ' + c 2 )  dt  
X _ 2 s i n - l \  ~ j  (40) 

C 1 ~- C 2 Cl - -  C2 
a~ - 2 , a2 - 2 , t = S + a2, ~ = "r] -t- a 2 

Eq. (40) can be put in the form 

M = ~  ,fZ~/S "02 s in- '  ~ 

al 

ds 

[ iQ(Ix2~_~o)_P[ iHQ ] 

X sin -1 ds. (41) 

--al 
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Table 1 Thermoelastic coefficient (graphite/epoxy ~6 = 
k,2 = 0) 

E1 (109 Nm -2) 144.8 
E2 (109 Nm -2) 9.7 
G,2 (109 Nm 2) 4.1 
v,z 0.3 
v23 0.3 
~j (10 6 K-') -0.3 
cd 2 (I0 6 K i) 28.1 
k ,  (Wm i K-t) 4.62 
k22 (Wm t K ~) 0.72 

Due to the property of symmetry, the integrals appeared in Eq. (4 l) 
are found to be zero, and thus we have the result of M = 0. 

The distribution of normal traction at the interface can be 
obtained as 

o22(x,) = 2 R e  ~ a ~ -  ( x l - a 2 )  2 

P ~z - ~ HQ 
× - 2~  + ~2 41r2iAd~ 

x 2,t~ - (X l  - a , )  s in  ~ ~ 

- a l  

~ 2 -  ~o P,Q x, : ,a2}  
/x2 2~'dl sm t . (42) 

In view of Eq. (42), the normal traction beneath the punch 
due to the external force P and total heat flux Q is not sym- 
metric in x, for anisotropic material. Note that the normal 
traction must be a negative value throughout the contact region 
and the related contact length c t and c2 can be determined fi'om 
the continuity condition at the transition such that the function, 
Eq. (42), must be bounded at x~ = c~ and x~ = - c 2 ,  respec- 
tively. Consider the special case/x0 = /~, = /~2 = i and c, = 
c2 = c for isotropic material, the final result for the contact 
length is found to be 

kP ~r 
c - (43) 

Qo~E 

which is identical to the result given by Comninou et al. (1981) if 
one replaces a and E by (1 + v)c~ and E/(1 - v2), respectively, 
in Eq. (43) for a plane-strain condition. As to anisotropic material 
(/-~0 4=/x, 4 = #2), the conditions required for a compressive contact 
stress and separation solutions are more complicated and cannot be 
evaluated in closed form which must be called for in the numerical 
technique. 

4 R e s u l t s  a n d  D i s c u s s i o n  

Since the Cauchy integral appearing in Eq. (42) cannot be 
evaluated in closed form for general values of x.~, the numerical 
integration will be evaluated using Gupta and Erdogan (1979). In 
the calculation, the nondimensional parameter A* for anisotropic 
material defined as 

e~2QEza 
A* - (44) 

ktlP 

is used which will be properly chosen such that the condition of a 
negative (compressive) contact stress must be satisfied. An numer- 
ical example of orthotropic material as displayed in Table 1 is 
given to illustrate the use of the present study. 

BRIEF  N O T E S  

X,/a 

- 1 . 0  - 0 . 5  0 .0  0 .5  1.0 
0.0 

-0.5 

-1.0 
b 

- I  +5 

-2.0 

Fig. 3 Contact pressure distribution for perfect contact for Graphite/ 
epoxy 

Referring to Fig. 3, perfect contact is maintained throughout 
the punch face as A* ranges from - 3 . 5 4 4  to 2.948 for graphite/ 
epoxy composite. Notice that the contact pressure preserves a 
square-root singularity at the sharp edges of the punch at the 
expense of the center until the central presure is zero at A* = 
-3 .544 .  For A* > 2.948, separation begins to occur at the 
punch corners and leaves a contact width ct + c2 which varies 
inversely with A* as indicated in Table 2. It seems to be 
reasonable that either a smaller force pressing the rigid flat or a 
large amount of heat flow approaching downward the elastic 
half-space would result in decreasing of the contact length. 
Typical contact pressure distributions over the contact region 
are shown nondimensionally in Fig. 4 for different values of A* 
where the contact pressure tends to vanish at the edge of the 
contact region as in the isothermal Hertzian problem. Note that 
the smooth transition from perfect thermal contact to separation 
is impossible as A* < - 3 . 5 4 4  for graphite/epoxy composite. In 
this case, a region of imperfect contact will be developed 
around the central part of the punch which may make the 
solutions rather complicated. We would not further discuss this 
case in the present study. 

5 C o n c l u s i o n s  

Based on the developments in the previous sections, the follow- 
ing conclusions are summarized: 

1 Using Lekhnitskii's stress formulation and the method of 
analytical continuation, the thermoelastic contact problem for an 
anisotropic half-space medium is derived in detail and both the 
temperature and thermal stress fields are obtained in compact form. 

2 The normal traction beneath the punch face is found to be 
symmetric with respect to the symmetric line of applied force for 
orthotropic material. 

3 The possibility for perfect thermal contact throughout the 

Table 2 Contact lengths for graphite/epoxy 

A* c~/a cJa 

2.948 0.999 0.999 
4.7 l 2 0.628 0.628 
6.283 0.471 0.47 l 
7.854 0.377 0.377 
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Fig. 4 Contact pressure distribution for perfect contact and separation 
for Graphite/epoxy 

punch face or separation at the punch corners, depending on the 
mangitude of the applied force and the total heat flux, is discussed 
in detail, The contact lengths for separation solutions are also 
computed numerically in terms of the nondimensional parameter 
A* as defined in Eq. (44). 

4 Comparison of the contact length with the isotropic case 
given by Comninou et al. (1981) shows that the results presented 
here are exact. 
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1 Introduction 
Vectorial mechanics and analytical mechanics differ on a num- 

ber of fundamental issues. The most noteworthy among them 
relates to the choice of coordinates. The vectorial approach is 
suited to the rectangular frame of reference and proves to be 
cumbersome for any other choice. Analytical mechanics, on the 
other hand, provides complete freedom in the choice of coordi- 
nates. This freedom helps in the formulation and solution of the 
differential equations of motion. The existence of cyclic coordi- 
nates, for example, leads to partial integration of the equations of 
motion, and to conserved quantities (Greenwood, 1988). The free- 
dom of choice in coordinates can also provide useful insight into 
dynamical interactions between them. For example, there often 
exists gyroscopic Coupling between certain coordinate pairs. Such 
coupling establishes, in essence, an interaction where energy flows 
back and forth between the two coordinates, without dissipation. In 
this paper we take a closer look at gyroscopic coupling in La- 
grangian dynamical systems, and specifically holonomic systems. 

Few recent papers in the literature discuss gyroscopic coupling in 
general dynamical systems. Most of the results on the subject are 
considered well known, and are referenced in advanced textbooks on 
dynamics (for example, Greenwood, 1988; Meirovitch, 1988). In 
many readers these results often create the impression that gyroscopic 
forces appear only in rheonomic systems, and they always appear 
linear in the generalized velocities. It is, however, well known that 
scleronomic systems such as the spinning top exhibit gyroscopic 
coupling. In this note we formally establish the conditions under 
which gyroscopic coupling exist in scleronomic systems. We show 
that these gyroscopic forces, when they exist, are quadratic in the 
generalized velocities and are comprised of a centrifugal force and a 
Cofiohs force, or a pair of Coriolis forces in the coupled coordinates. 
From a kinematic standpoint, both centrifugal and Coriolis forces 
have separate physical interpretations. This has perhaps masked the 
role such force pairs may play in gyroscopic coupling. 

In this paper we use the Lagrangian formulation of mechanics to 
derive a necessary and sufficient condition for existence of gyroscopic 
coupling in scleronomic systems. The condition is derived from the 
functional relationships between local-inertial 4 velocities and gener- 
alized velocities and apply to both particles and rigid bodies. The 
condition, derived for systems described by independent generalized 
coordinates, also applies to systems with holonomic constraints. In the 
event of coupling, the gyroscopic modulus can be easily obtained 
from our approach and can be used to identify the gyroscopic force 
pair and the extent of coupling determined by the flow of energy. 
Such an analysis provides useful insight since the mechanics of 
energy flow is nonlinear and not obvious, except in the simplest of 
systems where a single pair of coordinates, at most, are gyroscopically 
coupled. The insight provided by our results is appealing and testifies 
to the elegance of the Lagrangian approach. The simplicity of deduc- 
tion gives the impression that the results were anticipated by the 
Lagrangian formulation. 
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Fig. 4 Contact pressure distribution for perfect contact and separation 
for Graphite/epoxy 

punch face or separation at the punch corners, depending on the 
mangitude of the applied force and the total heat flux, is discussed 
in detail, The contact lengths for separation solutions are also 
computed numerically in terms of the nondimensional parameter 
A* as defined in Eq. (44). 

4 Comparison of the contact length with the isotropic case 
given by Comninou et al. (1981) shows that the results presented 
here are exact. 
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This note is organized as follows. In Section 2 we discuss 
gyroscopic coupling in dynamical systems, as known in the liter- 
ature. In Section 3 we derive a necessary and sufficient condition 
for the existence of gyroscopic coupling between arbitrary gener- 
alized coordinates. The condition is derived for a scleronomic 
system of particles described by independent generalized coordi- 
nates, but can be extended easily to constrained holonomic systems 
and rigid bodies. The physical significance of the gyroscopic 
modulus is interpreted in Section 4. Two examples are presented in 
Section 5. In the first example we consider a simple system with 
two independent generalized coordinates that are gyroscopically 
coupled. The second example is an extension of the first. It 
involves three generalized coordinates with gyroscopic coupling 
between each pair of coordinates. The usefulness of our results 
become clear from the simplicity of deduction of the complex 
interaction in the second example, which is not obvious. The 
imposition of a holonomic constraint renders the second example 
equivalent to the first. This exercise demonstrates the applicability 
of our results to constrained systems. Section 6 presents conclud- 
ing remarks. 

2 Gyroscopic Coupling in Generalized Coordinates 
Consider a dynamical system described by n generalized coor- 

dinates: q~, q~ . . . . .  q,,. A pair of these coordinates, (q ,  qj) for 
example, is gyroscopically coupled if there exist generalized forces 
in these coordinates that have the form Tijqj and %~4~, with 'y~j = 
-yj~. The gyroscopic forces in the coordinates q~ and qj are 
proportional to i/j and 0~, respectively, and their magnitudes de- 
pend on the gyroscopic modulus, -yq. The gyroscopic forces do not 
make up an action-reaction pair, but are conservative in nature--  
this can be concluded from the sum of the generalized powers 
expended by the two gyroscopic forces. 

Most of the results on gyroscopic coupling are considered well 
known and can be referenced in textbooks on dynamics. These 
results create the notion that gyroscopic forces appear in rheon- 
omic systems and are linear in the generalized velocities. The 
gyroscopic modulus is a function of the generalized coordinates 
but not of the generalized velocities. Such a notion is supported by 
the following analysis, that can be found in (Greenwood, 1988): 

Consider a system of N particles whose positions are specified 
by the Cartesian coordinates x~, x2 . . . . .  X3N. The total kinetic 
co-energy of the system is 

3N 

T* = ½ ~ mfi.~. (1) 
j = l  

The expression above assumes that the mass of a given particle 
appears in three separate terms. To express the kinetic co-energy in 
terms of generalized coordinates, a new set of n coordinates, q~, 
q2 . . . . .  q,,, is chosen to represent the same system. Using the 
kinematic relationships 

xi = xi(ql, q2 . . . . .  q~, t), i = 1, 2 . . . . .  3N, (2) 

the kinetic co-energy, for the general case of a rheonomic system, 
can be written in the form 

n n 11 

T* = T; + E a,4,, + ½ E 2 mijoiOj 
i=1 i=1 j = l  

(3) 

where 

l ~ / OXk~ 2 3N OX k OX k 
T* A= ~ mk~ ~-J  , ai  ~ E mk Oq i Ot ' 

k = l  k= l  

3N Oxk Oxk 
mij = mji ~- E mk Oq i Oqj" 

k = l  

(4) 

BRIEF NOTES 

By defining the nonconservative generalized forces as Q ,  i = 1, 
2 . . . . .  n, and the potential energy as V, Lagrange's equations can 
be written as 

" 1 . . . .  ( Omij Omik Oms~ ~ " 
E moqj + ~ E  E 0~- + Oq; ~ ) 4 j 4 ~ +  E Y,iOs 
j = l  j = l  k = l  j = l  

" Om o Oai OT* OV 
+ E - ~  -(tj+ ot oqi b~qi= Qi 

j = l  

i = 1 , 2  . . . . .  n. (5) 

The third term in the left-hand side of Eq. (5) represents the 
gyroscopic forces. The gyroscopic modulus, 'Y0 is defined as 

Oa i Oaj 
Yo = Oqj Oq~" (6) 

From Eq. (6) and the definition of ai in Eq. (4), it is clear that the 
gyroscopic force terms in Eq. (5) are linear in the generalized 
velocities and vanish if the Cartesian coordinates in Eq. (2) are not 
explicit functions of time. 

The conservative nature of the gyroscopic forces can be ascer- 
tained from the zero power expended by these forces in their 
respective generalized coordinates. Using Eq. (6), it can be easily 
shown that the power expended by these forces is equal to 

n n n n n 

i=1 i=1 j = l  i=1 j = l  

3 Further Insight Into Gyroscopic Coupling 

3.1 The Case of Independent Generalized Coordinates. 
Supplementary to the analysis in the previous section, we show 
that gyroscopic coupling can exist in scleronomic systems where 
the coordinates are not explicit functions of time. Consider a set of 
inertia elements comprised of particles and rigid bodies. The 
motion of the particles can be expressed by a set of three transla- 
tional velocities and the motion of the rigid bodies by a set of three 
translational velocities and three angular velocities about the prin- 
cipal axes. We will denote the set of all such velocities as vi, i = 
1 ,2  . . . . .  M, and refer to them as local-inertial velocities. We will 
denote the inertia properties associated with the local-inertial ve- 
locities as mi, i = 1, 2 , . . . ,  M. The (m,  v~) pair commonly 
satisfy the following properties: 

n 

vi = ~ c i,.4, 
r = l  

i = 1, 2 . . . . .  M (7a) 

~ n n 

T* = ½ mivi 2 = ½ E E micijclkOjqk (7b) 
i=1 i=1 j = l  k = l  

where q,, r = 1, 2 . . . . .  n, are the generalized coordinates, and 
the clr's are functions of q,'s, in general. Equations (7a) and (7b) 
are more general than Eqs. (2) and (1), respectively. This is true 
since it is often convenient to choose a set of local-inertial veloc- 
ities that are not integrable ~. Also, the kinetic energy expression in 
Eq. (7b) allows us to extend the ensuing results to rigid bodies. 
When rigid bodies are included, then m~ terms refer to the principal 
mass moments of inertia and the corresponding v~ terms are 
angular velocities about the principal axes. 

The holonomic nature of the system stems from the integrable nature of the 
constraints acting on the generalized coordinates; it is independent of the integrability 
or nonintegrability of the local-inertial velocities used to express the kinetic co- 
energy. 
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Now consider Lagrange's equation for an arbitrary pair of 
generalized coordinates q. ,  q~ 

- + = Q.  
\ 04,1 \ Oq,I 

o..i._:o..i 
OOt~) \ OqoJ + ~q~ = Qt3 

(8a) 

(8b) 

where (.)' denotes time derivative of (.), and Q~, Q~ are the 
nonconservative forces in the a, 13 coordinates. Using Eq. (7), Eq. 
(8) can be rewritten as follows: 

M ,, ~ " " [ {oc,A {oc,A 
E E m~cuc%~i; + E E E m~ c~. t ~ )  + cot-~q~] 
i= l  j = l  i= l  j = l  k=l  

2 \Oq,] - 2 -  Oqo/ Ojc)~+ ~ = Q,~ (9a) 

E ..:: , .0,  + E E mr c,. t ~ )  + c°tT-dd) 
i=1 7=1 i=1 j - I  k=l 

2 \Oq,l-7\~q~: qSOk+ OOCC~ =Q~" (9b) 

We have assumed that the potential energy V is independent of the 
generalized velocities; hence gyroscopic coupling cannot originate 
from these terms. The first term in the right-hand side of Eqs. (9a) 
and (9b) do not contribute to gyroscopic coupling since they are 
not functions of the generalized velocities. Similarly, terms in Eq. 
(9a) that do not contain qn and terms in Eq. (9b) that do not contain 
O~ do not contribute to coupling. Grouping all such terms as 
"Other Terms Not Of Interest '~ (OTNOI), we rewrite Eq. (9) as 

° r foc  A foc,;~ {ocio] t°°<,o~ 
2 m, L c,ot, 5~£) + c , . , - - ,  + + ,=l :=l \ Oq: J cu\-~q~i c;t~t O~qJ ) 

( oc,,q / oc,~'~ 1 
- cij\ OqoJ - cit3t~qJ JqJq~ + OTNOI = Q~ (10a) 

M ,, V / oc A foc,o~ / oc,;~ f oc,;~ 
E 2 m, L c;~t ~q~) + c,~t ~qj) + c,Jt ~q~) + c,:,--,\ Oq:] 
i=1 j = l  

(ocio] foe,A] 
- Cut~q~] - c,,li~q~) OjO,~ + OTNOI = Qt3 (10b) 

The fourth and sixth term inside the summation of Eq. (10a) can 
be simplified as follows: 

E mi Cil30qj ] cit3 ~q~] J qjqt3 
r=l  j = l  

M " 

= ~2 mic;oot~ ~2 \ Oqjl \Sq~lJ qj 
i ~ l  j = /  

t a ]  i=1 

In the simplification above it was assumed that the system is 
holonomic and therefore generalized velocities are independent of 
the generalized coordinates. Also, the identity ~;~ = (OvJOq,), 
which was obtained by differentiating Eq. (7a), was substituted. 

By eliminating the fourth and sixth terms inside the summation of 
Eq. (10b) in a similar manner, we can rewrite Eq. (10) as follows: 

" r i°c.~ i°<i.~ (o<,o] 
2 mi L c,<~ t ~q~q~) + c;<< t O~qs) + cot Oq~] 

i=l j = l  

{ Oc;~'~ ] 
- cu k 0~q,) 0:4t3 + OTNOI = Q~ ( l l a )  

" [ l °cA l oc,o'~ i o.,0~ 
E mr cr. t ~ )  + ~,. t~gq~) + ~"t~Tq=) 

i=1 j = l  

- cO\~q~]  OJO. + O T N O I =  Qt~ ( l l b )  

Comparing Eqs. ( l l a )  and ( l lb) ,  it can be seen that gyroscopic 
coupling manifests itself via the modulus A, which is of the form 

M,, r:oc,o  (oc, l ] 
A,t3 = E E miciJ L tOq~) \ ~ /  qj" 

i=l  j = l  

(12) 

Accordingly, the gyroscopic forces in the c~,/3 coordinates are 

i = l  j = l  

M ,, r i ° < r &  ( o < , , ~ 1 . .  
/ 3 : - 2  Z miciJL \ ~ J  - ~ ~ - }  ]qjqo, 

i=1 j=l  

(13) 

From Eq. (13), it becomes evident that the gyroscopic forces are 
comprised of a centrifugal force and a Coriolis force, and/or both 
Coriolis forces in the coupled coordinates. 

In light of the above facts, we now summarize the main results 
of this section. Consider a scleronomic system of M inertia ele- 
ments described by n independent generalized coordinates q~, 
q2 . . . . .  q, (2 <- n -< M). Let Eq. (7a) define the mapping 
between the local-inertial velocities and the generalized velocities. 
Then, gyroscopic coupling between an arbitrary pair of coordi- 
nates, q~, q~, will exist if and only if 

A~t~ A ~ m:'u \ ~ 1  \~q~] Clj 4: O. (14) 
i=l j= l  

The necessity and sufficiency of the condition above can be 
directly ascertained from Eqs. ( l l a )  and ( l lb) .  In addition to 
establishing coupling, the condition enables us to identify the pair 
of gyroscopic forces, namely those given in Eq. (13). 

3.2 The Case of Constrained Generalized Coordinates. 
The Lagrangian formulation for constrained systems is quite sim- 
ilar to that for systems with independent generalized coordinates. 
For constrained systems, the structure of the differential equations 
remain unaltered; only the right-hand side is modified to include 
constraint forces. These forces are referred to as Lagrange multi- 
pliers. Since gyroscopic coupling depends on the structure of the 
differential equations and not on their right-hand side, the results 
in the previous section are applicable to constrained systems. 

4 Some Observat ions  About  the Gyroscopic  Modulus  

4.1 Physical Significance. In the case where both general- 
ized coordinates are rotational displacements, the generalized gy- 
roscopic forces are both moments. For the coordinate pair (q~, 
q~), these moments are 
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The gyroscopic modulus in this case is the ratio of a moment to an 
angular velocity and has the units of angular momentum. 

In the case where the coordinates are comprised of a linear and 
an angular displacement, the gyroscopic forces are comprised of a 
moment and a force, respectively. If we assume q~ and q0 to be the 
linear and angular displacements, respectively, the generalized 
forces are 

o 

In such cases, the gyroscopic modulus is the ratio of a force to an 
angular velocity. It can also be considered as the ratio of a moment 
to a linear velocity. Clearly, the modulus has the units of linear 
momentum. For the sake of completeness, one may like to explore 
the coupling between two translational coordinates, Such a cou- 
pling is characterized by a gyroscopic modulus, which, being the 
ratio of a force to a linear velocity, has no clear physical signifi- 
cance. Incidentally, we have not come across a single physical 
system with this type of coupling. 

4.2 Integrability of Local-Inertial Velocities. For the sake 
of completeness, we would like to point out that gyroscopic 
coupling is absent in systems where the local-inertial velocities are 
integrable to expressions involving local-inertial coordinates and 
generalized coordinates only. This can be explained as follows. 
Suppose that the local-inertial velocities are integrable to the form 
in Eq. (2), with the x / s  now denoting local-inertial coordinates. 
Then the ctj's can be expressed as c~j = (Ox/Oqj). From the 
expression for the gyroscopic modulus in Eq. (12), it simply 
follows that 

~=i j=l 

i0(0x, l 0/0x /1 ~- i=1 j=lE m,c,j loq9 ~qJ  - ~q~ \ Oqo ] 4j = O. (15) 

Clearly, gyroscopic coupling may or may not exist in dynamical 
systems and this depends largely on the choice of the generalized 
coordinates. 

5 Illustrative Examples 

5.1 A Simple Illustrative Example. Consider the spherical 
pendulum in Fig. 1, where point mass M is suspended by a chord 
of fixed length L. Two reference frames are used for coordinate 
description, namely, instantaneous Cartesian coordinates x', y', z' 
fixed to the body of the pendulum, and independent generalized 
coordinates ql and q2. The relation between the Cartesian veloc- 

' ' ' and the generalized velocities q,, 45 in Eq. (7a) ities vx, v r, vz, 
can be explicitly written as (v )(Cll 

V{, C21 
Uz C31 

Cl I Cl2 ( 
C21 C22 
C31 C32 

c12 ( 
C22 
C32 

L sin q2 
0 
0 

q) 
02 ' 

o) 
L . 
0 

(16) 

The condition in Eq. (14) involves derivatives of the matrix entries 
with respect to the generalized coordinates. It is clear from Eq. 
(16) that all such terms are zero except for the term (act,/aq2), 
which has a value of L cos q2. Using this result for q~ = q~ and 
q~ = q2, the gyroscopic modulus in Eq. (12) is found to be A = 

BRIEF  N O T E S  

z L 

Y' 

Fig. 1 A spherical pendulum described by two generalized coordinates 

(ML 2 sin q2 cos q2)4~. Accordingly, from Eq. (13) the gyroscopic 
force pair can be identified as 

qa = q,: +[(ML 2 sin q2 cos q2)41142 

q~ = q2: -[  (ML 2 sin q2 cos q2)4114~. (17) 

These terms can be identified in Lagrange's equations for the 
coordinates q~, q~, derived below: 

ML 2 sin2q2/]l + 2ML 2 sin q2 cos q24142 = Ql (18a) 

ML2ii2 - ML 2 sin q2 cos q24~ + MgL sin q2 = Q2 (18b) 

where Q1, Q2 represent the nonconservative generalized forces in 
the coordinates q~, qz. 

5.2 An Extended Example. Consider the spherical pendu- 
lum in Fig. 2, which differs from the pendulum in Fig. 1 because 
the length of the chord is variable. As in the previous example, we 
use two reference frames for coordinate description. These include 
the instantaneous Cartesian coordinates x ' ,  y ' ,  z' and the inde- 

z q3 

i 
~,Y 

) y X I 

z 

Fig. 2 A spherical pendulum described by three generalized coordi- 
nates 
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pendent generalized coordinates qt, q2, and q3. The relation 
between the Cartesian velocities v'~, v'y, v' z and the generalized 
velocities ql, q2, 03 in Eq. (7a) can be written as 

~Jy ~ C21 C22 C23 q2 , 
v'z c3~ c~2 c3~ 43 

C21 C22 C23 ~ 0 q3 0 . (19) 
C31 C32 C33 0 0 1 

Since gyroscopic coupling may exist between the coordinate pairs 
( q l ,  q2), (q2, q3), and (q3, q l ) ,  we  evaluate the modulus in Eq. 
(12) for each of the cases, namely, (q,,  q~) = (ql, q2), (q, ,  q~) = 
(q2, q3), and (q,,  qo) = (q3, ql). Using Eq. (19) these moduli can 
be shown to be 

q~ = qb qt~ = q2, A =  +(Mq~ sin q2 cos q2)ql (20a) 

q ,  = q2, qt3 = q3, A = +(Mq3)q2 (20b) 

q, = q3, q~ = q~, A = - (Mq3 sinZq2)t~. (20c) 

The gyroscopic moduli in Eqs. (20a) and (20c) denote coupling 
between two angular displacement coordinates while the modulus 
in Eq. (20b) denotes coupling between a linear and an angular 
displacement. In agreement with the discussion in Section 4, the 
moduli in Eqs. (20a) and (20c) have the units of angular momen- 
tum and the modulus in Eq. (20b) has the units of linear momen- 
tum. 

The condition in Eq. (14) guarantees the existence of gyroscopic 
forces of the form given in Eq. (13). The gyroscopic force pairs 
corresponding to Eqs. (20a), (20b), and (20c) are 

q~ = ql: +[(Mq~ sin q2 COS q2)gh]Ol 

qt3 = q2: - [ (Mq~  sin qz cos  q2)q l ]02  . . . . . .  (21a) 

q~ = q2:+[(Mq3)02]02 

q~3 = q3: - [(Mq3)42103 . . . . . .  (21 b) 

q~ = q 3 : - [ ( M q 3  sin2q2)01]ql 

qt3 = ql: +[(Mq3 sin2q2)0~]03 . . . . . .  (21c) 

The coupling terms above can be seen in Lagrange's equations, 
derived as follows: 

Mq~ sin2q2/]l + 2Mq~ sin q2 cos q20102 

+ 2Mq3 sin2q20103 = Q1 (22a) 

Mq~q2 - Mq~ sin q2 cos q20~ + 2Mq3c~2q3 

+ Mgq3 sin q2 = Q2 (22b) 

MgI" 3 - Mq3 sin2q2o~ - Mq3q~ - Mg cos q2 = Q3 (22c) 

where Qi, Q2, Q3 are the nonconservative forces in the coordi- 
nates ql, q2, q3- 

To consider a problem with constrained generalized coordinates, 
we introduce the holonomic constraint 

03 = 0 (23) 

in the example above. This modifies Eq. (22) to the form 

Mq~ sin2q2/il + 2Mq~ sin q2 cos q20102 = Qi (24a) 

Mq~i]2 - Mq~ sin q2 cos q2o~ + Mgq3 sin q2 = Q2 (24b) 

-Mq3  sin2q2021 - Mq30~ - Mg cos q2 = Q3 + A (24e) 

where A is a Lagrange multiplier. Clearly, Eqs. (24a) and (24b) are 
exactly the same as Eqs. (18a) and (18b). When q3 = 0, the 
gyroscopic couplings described by Eqs. (21b) and (21c) also 
vanish, reducing the coupling to the one in Eq. (21a). The forces 
in Eq. (21a) are the same as those in Eq. (17). Clearly, the 
constraint in Eq. (23) converts the example in this section to the 
one discussed in the previous section. The third differential equa- 
tion, namely Eq. (24c), gives us an expression for the constraint 
force, A, which measures the tension in the chord. 

6 Conclusion 
Gyroscopic coupling between coordinate pairs of dynamical sys- 

tems represents a conservative form of interaction where energy flows 
back and forth between them. The knowledge of such coupling 
provides insight into the system behavior which is useful for analysis 
and control system design. While gyroscopic coupling has been 
known to exist in both scleronomic and rheonomic systems, the 
mathematical development in the literature conveys the notion that 
such couplings arise in rheonomic systems only. In this paper we 
presented an efficient method for identifying gyroscopic coupling in 
scleronomic dynamical systems. Based on the kinematic relationship 
between the generalized velocities and local-inertial velocities, we 
arrived at necessary and sufficient conditions that identify the modu- 
lus of coupling and the gyroscopic force pair. The conditions apply to 
systems with independent generalized coordinates as well as systems 
with holonomic constraints. In the event that the coupled coordinates 
are angular displacements, the gyroscopic modulus has the units of 
angular momentum. When a linear and an angular displacement are 
gyroscopically coupled, the modulus of coupling has the units of 
linear momentum. Two examples are presented in the note to illustrate 
our approach. 
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material. Several instances of  logarithmic stress singularities oc- 
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Elastic stress singularities are not of the real world. However, 
their presence in a stress analysis can be a real fact. Then it is 
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pendent generalized coordinates qt, q2, and q3. The relation 
between the Cartesian velocities v'~, v'y, v' z and the generalized 
velocities ql, q2, 03 in Eq. (7a) can be written as 
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( q l ,  q2), (q2, q3), and (q3, q l ) ,  we  evaluate the modulus in Eq. 
(12) for each of the cases, namely, (q,,  q~) = (ql, q2), (q, ,  q~) = 
(q2, q3), and (q,,  qo) = (q3, ql). Using Eq. (19) these moduli can 
be shown to be 
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q ,  = q2, qt3 = q3, A = +(Mq3)q2 (20b) 

q, = q3, q~ = q~, A = - (Mq3 sinZq2)t~. (20c) 

The gyroscopic moduli in Eqs. (20a) and (20c) denote coupling 
between two angular displacement coordinates while the modulus 
in Eq. (20b) denotes coupling between a linear and an angular 
displacement. In agreement with the discussion in Section 4, the 
moduli in Eqs. (20a) and (20c) have the units of angular momen- 
tum and the modulus in Eq. (20b) has the units of linear momen- 
tum. 

The condition in Eq. (14) guarantees the existence of gyroscopic 
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where Qi, Q2, Q3 are the nonconservative forces in the coordi- 
nates ql, q2, q3- 

To consider a problem with constrained generalized coordinates, 
we introduce the holonomic constraint 

03 = 0 (23) 

in the example above. This modifies Eq. (22) to the form 

Mq~ sin2q2/il + 2Mq~ sin q2 cos q20102 = Qi (24a) 

Mq~i]2 - Mq~ sin q2 cos q2o~ + Mgq3 sin q2 = Q2 (24b) 

-Mq3  sin2q2021 - Mq30~ - Mg cos q2 = Q3 + A (24e) 

where A is a Lagrange multiplier. Clearly, Eqs. (24a) and (24b) are 
exactly the same as Eqs. (18a) and (18b). When q3 = 0, the 
gyroscopic couplings described by Eqs. (21b) and (21c) also 
vanish, reducing the coupling to the one in Eq. (21a). The forces 
in Eq. (21a) are the same as those in Eq. (17). Clearly, the 
constraint in Eq. (23) converts the example in this section to the 
one discussed in the previous section. The third differential equa- 
tion, namely Eq. (24c), gives us an expression for the constraint 
force, A, which measures the tension in the chord. 

6 Conclusion 
Gyroscopic coupling between coordinate pairs of dynamical sys- 

tems represents a conservative form of interaction where energy flows 
back and forth between them. The knowledge of such coupling 
provides insight into the system behavior which is useful for analysis 
and control system design. While gyroscopic coupling has been 
known to exist in both scleronomic and rheonomic systems, the 
mathematical development in the literature conveys the notion that 
such couplings arise in rheonomic systems only. In this paper we 
presented an efficient method for identifying gyroscopic coupling in 
scleronomic dynamical systems. Based on the kinematic relationship 
between the generalized velocities and local-inertial velocities, we 
arrived at necessary and sufficient conditions that identify the modu- 
lus of coupling and the gyroscopic force pair. The conditions apply to 
systems with independent generalized coordinates as well as systems 
with holonomic constraints. In the event that the coupled coordinates 
are angular displacements, the gyroscopic modulus has the units of 
angular momentum. When a linear and an angular displacement are 
gyroscopically coupled, the modulus of coupling has the units of 
linear momentum. Two examples are presented in the note to illustrate 
our approach. 
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essential that their participation be recognized if any real use is to 
be made of the analysis. The objective of this note is to assist in 
achieving such recognition. 

In particular, we are concerned with identifying configurations 
which can have pure logarithmic stress singularities. That is, 
stresses which behave like O(ln r) as r --~ 0. These are the 
weakest singularities that occur in elasticity. As a result, they can 
be the most difficult to detect with numerical methods such as 
finite element analysis. Asymptotic identification is thus especially 
useful in avoiding having them pass undetected. 

For angular elastic plates under in-plane loading, conditions for 
logarithmic stress singularities have been available for some time. 
When the boundary conditions are homogeneous, these conditions 
are given in Dempsey and Sinclair (1979). When the boundary 
conditions are inhomogeneous, they can be drawn from Dempsey 
(1981). Somewhat surprisingly at this time, the number of config- 
urations identified as actually having logarithmic stress singulari- 
ties is quite small. 

Probably the most well-known example of a logarithmic stress 
singularity is that attending a step shear on a half-plane. The 
corresponding stress field is given in Kolossoff (1914). Also well 
known is the logarithmic stress singularity accompanying inden- 
tation by a frictionless rigid wedge. A stress field of this type may 
be found in Sneddon (195l), Section 48.4. There is a further 
logarithmic singularity in Levy's  problem when the plate vertex 
angle takes on a critical value 45, (45, = 257.5 deg). The corre- 
sponding stress field is given in Dempsey (1981). There are two 
more logarithmic singularities when one edge of the plate is 
subjected to a constant shear traction while the other is free. These 
occur for vertex angles of 45, or 2~- and the accompanying stresses 
are also given in Dempsey (1981). 2 And there are four more when 
one edge of the plate is subjected to uniform pressure/shear while 
the other is clamped. These last are given in Sinclair (1998a). All 
told to date, there are nine different configurations wherein loga- 
rithmic stress singularities are identified as occurring with inho- 
mogeneous boundary conditions. Here we seek to identify other 
such configurations. 

There are even fewer ¢onfigurations identified in the literature as 
having logarithmic stress singularities when the boundary condi- 
tions are completely homogeneous. One is found for a plate with 
a vertex angle of q5,/2 when one edge is subjected to frictionless 
contact conditions while the other is clamped. The stress field in 
this instance is given in Dempsey (1978). A second occurs under 
clamped-free conditions. This may be inferred from Dempsey 
(1995).3 Here we seek to add to this number significantly. 

We begin, in Section 2, by formulating the class of asymptotic 
problems of interest, admitting a fairly broad set of boundary 
conditions. Thereafter, in Section 3, we summarize the require- 
ments for logarithmic stress singularities. We include in these 
requirements those needed for log-squared stress singularities be- 
cause these arise naturally. We close, in Section 4, with a list of all 
configurations that can have logarithmic stress singularities, in- 
cluding, for completeness, specifics of those found in prior work. 
We also note any instances of log-squared singularities. 

2 Formulat ion 
We consider an angular elastic plate subjected to various bound- 

ary conditions along its radial edges. We denote the angle sub- 
tended at the plate vertex by 45, and introduce cylindrical polar 
coordinates (r, 0) with origin O at the vertex (Fig. 1). Thus the 

2 All of the logarithmic stress fields given in Kolossoff (1914) and Dempsey (1981) 
are derived by an alternative means in Ting (1984). This alternative derivation has the 
added attribute of effecting a reasonable transition of stress responses as the plate 
vertex angle passes through the value with a log singularity. 

3 Dempsey (1995) is concerned with logarithmic amplification of power singulari- 
ties rather than pure log singularities as here: hence the identification of the latter is 
not that explicit. These sort of singularities are stronger than just power singularities 
rather than weaker, and consequently not of as great a concern re passing undetected 
as pure log singularities. 

o 

Fig. 1 Geometry and coordinates for the angular elastic plate 

open region N of interest in our asymptotic treatment is 

~lt = { ( r ,  0)10<r<~,0<0<45}. 
With these geometric preliminaries in place, we can formally state 
the class of problems for analysis as next. 

We seek the planar stress components ~r,., ~ro, ~'r0, together with 
their displacements u r, u o, as functions of r, 0 throughout ~ ,  
satisfying: the stress equations of equilibrium in the absence of 
body forces, 

O0" r 1 3TrO O" r - -  O" 0 

Or ~ tT -ff  O- + r O, 

1 0or0 0%o 2%.o 
7 0--0 + / ~ r  + r = 0 ,  (1) 

on !~t; the stress-displacement relations for a linear elastic plate 
which is both homogeneous and isotropic, 

tx I OUr . [ l  OUo ~r) l 
e r r -  ( • +  1) + ( 3 -  K -  1 Or  K)~7 0 O ÷  ' 

c r o = K _  f ( K + I )  0 0 ~ +  + ( 3 - K )  O r J '  

1-1 OUr OUOor ;o] 
%o = /x[ 7 -~-~ + , (2) 

on ~1/, where in / ,  is the shear modulus and K is 3 - 4v for plane 
strain, (3 - v)/(1 + v) for plane stress, v being Poisson's ratio; the 
singularity conditions at the plate vertex, 

or= O(lnr) a s r ~ 0 ,  (3) 

on !)~, where ~r is any stress component; and any one of the 
admissible sets of boundary conditions listed in Table 1 on the 
plate edge at 0 = 0 as well as a further such set on the edge at 0 = 
45. 

Several comments on the foregoing formulation are in order. 
First, re the stress-displacement relations (2): these hold for 1 < 
K -< 3. For plane strain with an incompressible solid, v = ½ yielding 
K = 1. On occasion, such solids are investigated in this work. In 
these circumstances the first two of (2) are exchanged for 

Table 1 Boundary conditions 

Assigned 
Roman numeral Physical description Prescribed quantities 

I Stress free o-0 = 0, ~',.0 = 0 
II Clamped u,. = 0, uo = 0 
lII Contact with friction TrO = .logo, UO = 0 
IV Cohesive laws or0 = kuo, ~'ro = k'u, 
I' Uniform tractions o-0 = - p ,  rr0 = q 
It' Pinching without slip u,. = O, uo = r~3qb 
III' Pinching with friction rr0 = fo'o, uo = r~%b 
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OUr OUo+ ) 
or= 21x-~-, tro= 2~ 7-00- ' 

OU r 10Uo u~ 
0--7- + - r - ~ -  + --r = 0, (2') 

on ~ .  
Second, re the singularity requirement (3): we also briefly con- 

sider log-squared singularities, in which case (3) becomes 

o-= O(ln 2r) a s r ~ 0 ,  

on ~ .  
Third, re the boundary conditions of Table 3: conditions I and II 

are the classical conditions used in in-plane singularity analysis. 
Conditions III are a version of Amonton's law. In these conditions, 
f is the coefficient of friction. Conditions IV reflect the action of 
cohesive/adhesive stress-separation laws on elastic response. In 
these conditions, k and k' are the stiffnesses associated with 
relative displacement across a boundary in the normal and trans- 
verse directions, respectively. And conditions I' ,  II', and III' are 
inhomogeneous counterparts of conditions I, II, and III. In these 
conditions, p is a uniform pressure, q a constant shear, and 8q~ is 
the angle by which the vertex angle of the plate is reduced due to 
pinching (pinching implies that 3q~ is negative on a positive 
0-edge). Of course, any logarithmic singularity determined as 
possible for I, II, or III can also be present with I' ,  II' or III', 
respectively: We distinguish homogeneous conditions from inho- 
mogeneous here because they receive distinct analysis in the next 
section. 

3 A n a l y s i s  

The development of requirements for logarithmic stress singu- 
larities is based on an extension of the classical analysis of Wil- 
liams (1952) for power singularities. We outline this development 
next. 

In Williams (1952), the appropriate choice of a separable Airy 
stress function leads to fields containing four constants which 
share a common power of r. For example, the normal stress o'0 is 

o% = 2`r~-I[a cos (2` ÷ 1)0 + b sin (2` + 1)0 + (A + 1) 

× (c cos (2` - 1)0 + d sin (2` - 1)0)], (4) 

where a,b,  c, and d are the four constants, and 2  ̀is the separation- 
of-variables parameter. The other stresses and the displacements 
for these basic fields are given in Williams (1952). Substituting 
these fields into a set of four homogeneous boundary conditions 
then leads to 

Aa = 0, (5) 

where the vector a = (a, b, c, d), and A is a matrix whose 
elements are in general functions of A. A nontrivial solution to (5) 
requires that the determinant D of A satisfy 

D = 0. (6) 

This requirement generates an eigenvalue equation for h. Deter- 
mining A satisfying (6) with 0 < Re2` < 1 then characterizes the 
power singularities possible in a particular configuration with 
homogeneous boundary conditions. 

To extend the preceding to consider logarithmic stress singu- 
larities, we need stress components containing In r terms. To this 
end, we differentiate the basic fields of Williams (1952) through- 
out with respect to A: This operation produces fields which con- 
tinue to satisfy the governing Eqs. (1) and (2), and which contain 
In r terms. By way of example, under it o'0 of (4) becomes 

~o = r~-1[(2` In r + 1)(fi cos (A + 1)0 + b sin (2` + 1)0 

+ (2` + 1)(~ cos (2` - 1)0 + d sin (2` - 1)0)) 

- 2`0(fi sin (2` + 1)0 - b cos (2` + 1)0 

+ (2, + 1)(~ sin (A - 1)0 - 3 cos (2` - 1)0)) 

+ A~ cos (2` - 1)0 + 2`3 sin (2` - 1)0], (7) 

where the bars atop constants serve to indicate that they no longer 
need be the same as their antecedents, a, b, c, and d. Now 
substituting these fields together with the original basic ones into 
a set of four homogeneous boundary conditions leads to a system 
of the form 

dA 
Aft In r + ~ ~ + A a  = 0, (8) 

wherein dA/d2` is folmed from A by differentiating each element 
with respect to 2 .̀ General requirements for a nontdvial solution for 
g in (8) are established in Dempsey and Sinclair (1979). These 
accommodate the possibilities of multiple materials comprising the 
plate as well as logarithmic amplification of power singularities. 
Here we are concerned with a single material and logarithmic 
singularities by themselves. This leads to a slightly simpler set of 
requirements. Specifically we have, as our requirements for loga- 
rithmic stress singularities with homogeneous boundary condi- 
tions, 

dD 
2`= 1, D = ~ = 0 ,  (9a) 

d2D 
(ra - 3) ~ = O, (9b) 

fi2 + ~2 + 02 ~ 0, (9c) 

where ra is the rank of A when A = 1. The first requirements in 
(9a), (9b) ensure a nontrivial ~. However, for fi = b = 0 = 0, d 

0, no In r terms participate in the stresses (see, e.g., (7) with A = 
1). The last requirement (9c) guards against this possibility. 

Turning to the inhomogeneous boundary conditions of Table 1, 
using the basic fields leads to a system of the form 

Aa = p, (10) 

for 2  ̀= 1, where p is a vector whose components involve one or 
more of p, q, and &h. For p -~ 0, we have a problem in (10) i fD = 
0 for 2  ̀ = 1, unless the rank of the augmented matrix, (A') = 
(A:p), is also reduced. If this rank reduction does not occur, we can 
overcome the difficulty by again supplementing the basic fields 
with auxiliary ones. This leads to the new system 

dA 
A~ In r + ~ ~ + A a  = p, (11) 

for 2  ̀ = 1. The system in (11) can be solved to yield fields 
containing In r provided that all the requirements in (9a), (9b) are 
not met. Thus our first set of requirements for logarithmic stress 
singularities with inhomogeneous boundary conditions has 

2  ̀= 1, D =  0, rA,~ ra, (12a) 

( d D I  2 [dZD\ 2 
\d2`,/  + ( r a - 3 )  2 7 , 2  (12b) 

a2 + ~2 + ~2 ¢ 0, (12c) 

where ra, is the rank of A'  when A = 1. The last requirement (12c) 
continues to ensure the participation of In r terms in the stresses of 
the auxiliary fields. 

There remains the possibility that we have inhomogeneous 
boundary conditions yet (9a) and (9b) do hold. Then merely 
supplementing the basic fields with auxiliary ones does not in 
general suffice. We need further auxiliary fields. These are gener- 
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ated by a further  differentiat ion with respect  to A. By way of  
example,  under  this operat ion ~0 of  (7) becomes  

0% = Xr x-I In 2 r [ d  cos (A + 1)0  + ,~ sin (A + 1)0 + (X + 1) 

X (~ cos (X - 1)0  + d sin (X - 1)0) ]  

+ O( ln  r)  + O ( 1 ) ,  (13) 

as r --> 0, where  the hats  atop constants  serve to indicate that they 
can be dist inct  f rom earlier constants.  Wi th  these added fields, it is 
possible  to comply wi th  inhomogeneous  boundary  conditions.  
Typical ly  such compl iance  results in log-squared stress singulari- 
ties. There  is an exception,  however .  This  occurs when  ,.i = b = 

= 0, d -~ 0. Then  the further  auxil iary stresses do not  have In: 
r terms (see, e.g., (13) with  A = 1). They do, though,  have In r 
terms. Hence  our  second set of  requirements for  logarithmic stress 
singularities with inhomogeneous boundary conditions has 

= 1, D = O ,  rA, 4= rA, ( 1 4 a )  

dD daD 
d--A-= (rA - 3) ~ - f f  = 0, ( 1 4 b )  

a = d = C = 0. ( 1 4 c )  

Log-squared stress singulari t ies occur  if  (14a) and (14b) are met 
but  not  (14c): These  stresses also include logar i thmic terms. 

Equat ions  (9), (12), and (14) const i tute  our  requirements  for 
logar i thmic stress singularities. W e  observe that jus t  the first of  (9), 
(9a), cont inues  to be put  forward in the li terature as supposedly 
conta ining the requirements  for logar i thmic stress singulari t ies 
(see, e.g., Murakami ,  1992). Whi le  (9a) appeals in its relat ive 
simplicity, in general  it is nei ther  necessary nor  sufficient for the 
existence of  log singularities. W e  amplify this point  at the end of 
the next  section. 

Wi th  the requirements  for logar i thmic stress singularit ies at 
hand,  analysis proceeds routinely.  W e  first derive e igenvalue  equa- 
tions of the form of (6) for all possible  combina t ions  of  homoge-  
neous boundary  condi t ions that  can be drawn f rom Table  1" We 
tabulate these e igenvalue  equat ions in the sect ion which  follows. 
Then  we check (9), (12), and (14) in turn. W h e n  potential  new 
configurat ions with log singulari t ies are revealed,  the last require- 
men t  in each of  (9), (12), and (14) requires the assembl ing  of 
associated new fields. The  algebra involved  is s t raightforward but  
lengthy: Details  are furnished in Sinclair  (1998b).  Stresses with log 
singulari t ies and companion  displacements  are set out  ibid: All  of  
these fields are verified directly by subst i tut ing t hem into the 
govern ing  Eqs. (1), (2) (or (2 ' )  where  appropriate),  and checking 
the singulari ty requi rement  (3) and the per t inent  boundary  condi-  
tions. In the interests of  brevi ty  we omit  these fields here, and 
simply provide the configurat ions that engender  them in the next  
section. 

4 Resu l t s  

Eigenvalue  equat ions for various combina t ions  of  homogeneous  
boundary  condi t ions are set out  in Table  2. For  the mos t  part, these 
are avai lable in the literature. The  first, second, and fourth equa- 
tions, when  associated with c lamped/f ree  condit ions,  I/II, can be 
obta ined f rom Wil l iams (1952). The  equat ion for I - I I I  can be 
obtained f rom Gdoutos  and Theocar is  (1975), while  that for I I - I I I  
is essential ly g iven  in Dempsey  (1978). The  equivalence  of stress- 
free condi t ions I with those for  cohes ive  laws IV, as far  as these 
e igenvalue  equations are concerned,  is basical ly argued in Sinclair  
(1996). 

Configurat ions which  can have logar i thmic stress singulari t ies 
when  boundary  condi t ions are homogeneous  are listed in Table  
3(a). Here in  45, satisfies 

tan 45, = 45,, (15) 

BRIEF NOTES 

Table 2 Eigenvalue equations 

Boundary 
conditions on 

0 = 0, 45 Eigenvalue equation 

I or IV-I or IV 
II-II 
III-III 

I or IV-II 
I or IV-III 

II-III 

A sin 45 = _+sin A45 
A sin 45 = ±K sin A45 
f [ ( l  - K) sinA45 _+ (1 + K + 2A) sin 45] 

= (1 + K)(cos A45 -7- cos 45) 
4[K sin 2 A45 + A 2 sin 2 45] = (1 + K) 2 
2f[(1 - K) sin 2 A45 - A(1 + K + 2A) sin 2 45] 

= (1 + K)(siu 2A45 + A sin 245) 
2f[K(l - K) sin 2 A45 + A(1 + K + 2A) sin 2 45] 

= (1 + K)(K sin 2A45 -- A sin 245) 

for 0 < 45, < 2~r. To one decimal  place this gives 45, = 257.5 deg, 
as noted in the Introduction.  Also, 

45~ = s i n -  1 ~/K + 1 2 ' (16) 

for 0 < 45~ --< ~r/2, and ~ is such that  

Table 3(a) Logarithmically singular configurations with ho- 
mogeneous boundary conditions 

Boundary 
conditions on 

0 = 0, 4~ Configuration specifications 

II-II ~ = 1, 45 = 45, 
III-III + = ~-, 2~r, K = 1 , f  ~ 0 

sin 245 
= cos 245 - T ' f =  - c o t  45, 45 :# "tr, 2"n" 

tan 45 
I or IV-II 45 = ~r - 45~, 2~" - 45~, K - 45 

2 sin 245 
I or IV-III K = 1 + 2 cos 245 45 , f =  - c o t  

~r 3~r 345 
II-III qb 2 '  2 ' K =  3 , f =  2 

K - 1  
45 = ~ ,  f = 3-----~ cot 45, K ~ 3 

Table 3(b) Logarithmically singular configurations with in- 
homogeneous boundary conditions 

Boundary 
conditions on 

0 = 0, 45 Configuration specifications 

I '  or IV-I or IV 

II '-II  

III '-III 

I' or IV-II 

I' or IV-III 

II '-III 

45 = ~r, 2 ~ ' . q  ~ 0 
45 = 45 , ,q  :# 0 o r p  -~ 0 
45 = ~r, 2~r, 645 -~ 0 
K =  1, 845 :# 0, 45 -~ 45, 
45= ~-,2,n',645 ~ 0, K-~ 1 , f : #  0 
f =  0, 845 -Ts 0 
45 = 45K, ~r-+ 4 5 ~ , 2 ~ " -  4 5 ~ , p - ' # 0 o r q ~ 0 ,  

tan 45 
and K :# - - -  

45 
45 = rr, 2 ~ , q  4: 0 o r f p  :# 0 
f = - c o t  45, q-~0 orfp:#0,  

2 sin 245 
a n d K #  1 + 2 c o s 2 4 5  45 

45= ~r, 2rr, 845 ~ 0 
f =  0, K = l, 345 ~ 0, tan 245 -~ 245 

rr 3~" 345 
4 5 - 2 '  2 , K= 3, 845:# 0 , f ~  ---~- 

K - 1  
f = ~ cot45,845 4:0,45 ~ ~',2rr, dp~, K ~ 3 
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sin 2 ~  
K(K -- 1) 2 + 4K COS 2~K = (3K -- 1) ~ (17) 

It is understood in Table 3(a) that ¢ is constrained to lie within the 
physically applicable range, 1 -< K -< 3, in addition to any other 
constraints placed upon it. Some actual values of 45, K, a n d f  are: 
for III-III, 45 = 170 deg, K = 1.055,f = 5.67 and 45 = 355 deg, 
K = 1.013,f = 1 1.43; for I or IV-II, 45 = 101.2 deg, K = 2.848 
and 45 = 274.0 deg, K = 2.980; for I or IV-Il l  and K = 2, 45 = 
137.4 deg, 202.7 deg, 324.7 deg with f = 1.09, - 2 . 3 9 ,  1.41, 
respectively; and for II-III and K = 2, 45 = 1 19.7 deg, 227.7 deg, 
304.5 deg with f = - 0 . 5 7 ,  0.91, - 0 . 6 9 ,  respectively. 

Local fields containing logarithmic stress singularities for all the 
configurations listed in Table 3 can be obtained from Sinclair 
(1998b). For II-III when K = 1 a n d f  = 0, fields are also available 
from Dempsey (1978). 

In the analysis of all of the configurations in Table 3(a), the 
ranks of the coefficient matrices involved never drop below two. 
Dempsey and Sinclair (1979) then has that (9a), (9b) are necessary 
requirements. 4 Indeed, all of the requirements in (9) are complied 
with by all of the log-singular configurations identified in Table 3. 
Moreover, when situations arose during analysis in which some of 
the requirements in (9) were complied with but others not, no 
logarithmic stress singularities were found. 

Configurations which have logarithmic stress singularities when 
boundary conditions are inhomogeneous are listed in Table 3(b). 
Herein 45., 45~, ~ remain as in (15), (16), (17), respectively, and 
K continues to be constrained to the physical range. For the 
representative value of K = 2, actual vertex angles for I' or IV-II 
are 45 = 60 deg, 120 deg, 240 deg, 300 deg. 

For I', II', and III', only one plate edge needs to have these 
inhomogeneous conditions in order to realize configurations which 
can be superimposed to produce any inhomogeneous loading on 
both edges (on occasion this requires adding a rigid body rotation). 
Furthermore, the homogeneous cohesive-law conditions IV share 
the same logarithmically singular configurations as the inhomoge- 
neous uniform-traction conditions I'. This is because IV can admit 
rigid-body translations which in turn produce uniform tractions. 

Sources for the logarithmic stress fields for the configurations of 
Table 3(b) are: for I' or IV-I  or IV and ~b -- -n-, Kotossoff (1914); 
for I' or IV-I  or IV and 45 = 45,, 2~, Dempsey (1981); for II '-II ,  
Sinclair (1998b); for III ' - III  and 45 = ~r, f = 0, Sneddon (1951); 
for all other III '-III,  Sinclair (1998b); for I' or IV-II, Sinclair 
(1998a); and for both I '  or IV-III and II '-III ,  Sinclair (1998b). 

The requirements in (12) and (14) are not established as neces- 
sary and sufficient for logarithmic stress singularities with inho- 
mogeneous boundary conditions. However, for all of the config- 
urations identified as having logarithmic singularities in Table 
3(b), one or other of (12) or (14) is complied within its entirety. 
Moreover, no configurations were encountered during the course 
of analysis for which (12) or (14) was complied with and there was 
no logarithmic singularity. 

With the exception of the second configuration for III-III, all of 
the configurations of Table 3(a) under the inhomogeneous bound- 
ary conditions of Table 1 give rise to log-squared stress singulari- 
ties. Fields in these instances may be obtained from Sinclair 
(1998a, b). 

Finally, re (9a) alone as requirements for logarithmic stress 
singularities: requirements (9a) are not necessary. With one ex- 
ception for I' or IV-I  or IV, all of the configurations with loga- 
rithmic singularities under inhomogeneous boundary conditions in 
Table 3(b) do not comply with (9a). Nor are requirements (9a) 
sufficient: There are instances for I or IV-I or IV and III-III where 
(9a) is complied with but there are no logarithmic stress fields. 

4 It is difficult tO see how the rank could be less than 2 in any further problems but, 
if this did occur, necessary and sufficient requirements are given in Dempsey and 
Sinclair (1979). 
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The Elastic and Electric Fields for 
Elliptical Hertzian Contact for 
Transversely Isotropic Piezoelectric 
Bodies 

H. J. Ding, ~ P. F. Hou, 1 and F. L. Guo 1 

1 Introduction 

The elliptical contact is extremely important since it often arises 
in engineering applications. The stress field generated by elliptical 
contact for isotropic elastic materials has been thoroughly inves- 
tigated. Haines and Ollerton (1963) studied elliptical contact stress 
under radial and tangential load. The evaluation of the elastic field 
throughout the contacting bodies for elliptical Hertzian contact has 
been obtained by Bryant and Keer (1982), and their solutions 
included slip and stick zones. Sackfield and Hills (1983a, b) also 
evaluated the stress field for elliptical Hertzian contact under 
normal loading and shear loading, and more concise formulas for 
the stress field are given by Sackfield et al. (1993). 

Concerning the elliptical Hertzian contact for anisotropic mate- 
rials, Willis (1966, 1967) reduced the problem to the evaluation of 
contour integrals using Fourier transforms and presented some 
explicit formulae on the surface of half-space for transversely 
isotropic media. Hanson and Puja (1997) obtained the full elastic 
field resulting from elliptical Hertzian contact of transversely iso- 
tropic bodies under normal and shear loading. Gladwell (1980) and 
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sin 2 ~  
K(K -- 1) 2 + 4K COS 2~K = (3K -- 1) ~ (17) 

It is understood in Table 3(a) that ¢ is constrained to lie within the 
physically applicable range, 1 -< K -< 3, in addition to any other 
constraints placed upon it. Some actual values of 45, K, a n d f  are: 
for III-III, 45 = 170 deg, K = 1.055,f = 5.67 and 45 = 355 deg, 
K = 1.013,f = 1 1.43; for I or IV-II, 45 = 101.2 deg, K = 2.848 
and 45 = 274.0 deg, K = 2.980; for I or IV-Il l  and K = 2, 45 = 
137.4 deg, 202.7 deg, 324.7 deg with f = 1.09, - 2 . 3 9 ,  1.41, 
respectively; and for II-III and K = 2, 45 = 1 19.7 deg, 227.7 deg, 
304.5 deg with f = - 0 . 5 7 ,  0.91, - 0 . 6 9 ,  respectively. 

Local fields containing logarithmic stress singularities for all the 
configurations listed in Table 3 can be obtained from Sinclair 
(1998b). For II-III when K = 1 a n d f  = 0, fields are also available 
from Dempsey (1978). 

In the analysis of all of the configurations in Table 3(a), the 
ranks of the coefficient matrices involved never drop below two. 
Dempsey and Sinclair (1979) then has that (9a), (9b) are necessary 
requirements. 4 Indeed, all of the requirements in (9) are complied 
with by all of the log-singular configurations identified in Table 3. 
Moreover, when situations arose during analysis in which some of 
the requirements in (9) were complied with but others not, no 
logarithmic stress singularities were found. 

Configurations which have logarithmic stress singularities when 
boundary conditions are inhomogeneous are listed in Table 3(b). 
Herein 45., 45~, ~ remain as in (15), (16), (17), respectively, and 
K continues to be constrained to the physical range. For the 
representative value of K = 2, actual vertex angles for I' or IV-II 
are 45 = 60 deg, 120 deg, 240 deg, 300 deg. 

For I', II', and III', only one plate edge needs to have these 
inhomogeneous conditions in order to realize configurations which 
can be superimposed to produce any inhomogeneous loading on 
both edges (on occasion this requires adding a rigid body rotation). 
Furthermore, the homogeneous cohesive-law conditions IV share 
the same logarithmically singular configurations as the inhomoge- 
neous uniform-traction conditions I'. This is because IV can admit 
rigid-body translations which in turn produce uniform tractions. 

Sources for the logarithmic stress fields for the configurations of 
Table 3(b) are: for I' or IV-I  or IV and ~b -- -n-, Kotossoff (1914); 
for I' or IV-I  or IV and 45 = 45,, 2~, Dempsey (1981); for II '-II ,  
Sinclair (1998b); for III ' - III  and 45 = ~r, f = 0, Sneddon (1951); 
for all other III '-III,  Sinclair (1998b); for I' or IV-II, Sinclair 
(1998a); and for both I '  or IV-III and II '-III ,  Sinclair (1998b). 

The requirements in (12) and (14) are not established as neces- 
sary and sufficient for logarithmic stress singularities with inho- 
mogeneous boundary conditions. However, for all of the config- 
urations identified as having logarithmic singularities in Table 
3(b), one or other of (12) or (14) is complied within its entirety. 
Moreover, no configurations were encountered during the course 
of analysis for which (12) or (14) was complied with and there was 
no logarithmic singularity. 

With the exception of the second configuration for III-III, all of 
the configurations of Table 3(a) under the inhomogeneous bound- 
ary conditions of Table 1 give rise to log-squared stress singulari- 
ties. Fields in these instances may be obtained from Sinclair 
(1998a, b). 

Finally, re (9a) alone as requirements for logarithmic stress 
singularities: requirements (9a) are not necessary. With one ex- 
ception for I' or IV-I  or IV, all of the configurations with loga- 
rithmic singularities under inhomogeneous boundary conditions in 
Table 3(b) do not comply with (9a). Nor are requirements (9a) 
sufficient: There are instances for I or IV-I or IV and III-III where 
(9a) is complied with but there are no logarithmic stress fields. 

4 It is difficult tO see how the rank could be less than 2 in any further problems but, 
if this did occur, necessary and sufficient requirements are given in Dempsey and 
Sinclair (1979). 
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The Elastic and Electric Fields for 
Elliptical Hertzian Contact for 
Transversely Isotropic Piezoelectric 
Bodies 

H. J. Ding, ~ P. F. Hou, 1 and F. L. Guo 1 

1 Introduction 

The elliptical contact is extremely important since it often arises 
in engineering applications. The stress field generated by elliptical 
contact for isotropic elastic materials has been thoroughly inves- 
tigated. Haines and Ollerton (1963) studied elliptical contact stress 
under radial and tangential load. The evaluation of the elastic field 
throughout the contacting bodies for elliptical Hertzian contact has 
been obtained by Bryant and Keer (1982), and their solutions 
included slip and stick zones. Sackfield and Hills (1983a, b) also 
evaluated the stress field for elliptical Hertzian contact under 
normal loading and shear loading, and more concise formulas for 
the stress field are given by Sackfield et al. (1993). 

Concerning the elliptical Hertzian contact for anisotropic mate- 
rials, Willis (1966, 1967) reduced the problem to the evaluation of 
contour integrals using Fourier transforms and presented some 
explicit formulae on the surface of half-space for transversely 
isotropic media. Hanson and Puja (1997) obtained the full elastic 
field resulting from elliptical Hertzian contact of transversely iso- 
tropic bodies under normal and shear loading. Gladwell (1980) and 
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Johnson (1985) systematically reviewed the history and literatures 
of the contact problems of isotropic and anisotropic elastic media. 

Piezoelectric ceramics of 6-mm crystal symmetry are transversely 
isotropic piezoelectric materials which have found widespread appli- 
cations because of their excellent piezoelectric properties. Sosa and 
Castro (1994) obtained analytic solutions for point force and point 
charge acting on an orthotropic piezoelectric half-plane through a 
state-space methodology in conjunction with the Fourier transform 
technique. Wang and Zheng (1995) gave analytic solutions for a 
concentrated lateral shear force acting on a transversely isotropic 
piezoelectric half-space using Hankel transfornrs. Ding et al. (1996) 
gave solutions for point force and point charge acting on a trans- 
versely isotropic piezoelectric half-space, called extended Boussinesq 
and Cerruti solutions by the authors, using Fourier transforms. All of 
the above solutions are derived by transform methods and their final 
expressions are relatively tedious and complex. Therefore, Ding et al. 
(1998) obtained the extended Boussinesq and Cermti solutions in 
terms of elementary functions. In addition, Fan et al. (1996) studied 
the two-dimensional contact on a piezoelectric half-plane using 
Stroh's formalism, and gave the solutions for loads acting on the 
boundary of anisotropic piezoelectric half-plane. 

The potential theory method has been developed by Fabrikant 
(1989, 1991) as an efficient method to analyze various mixed bound- 
ary value problems in elasticity. In this paper, we further generalize 
the potential theory method to analyze corresponding mixed boundary 
value problems in piezoelectricity, and obtain the full elastic and 
electric fields for elliptical Hertzian contact of transversely isotropic 
piezoelectric bodies in smooth and frictional cases by employing a 
methodology similar to that of Hanson and Puja (1997), i.e., first 
evaluating the displacement functions and then differentiating. The 
displacement functions can be obtained by integrating the extended 
Boussinesq and Cermti solutions in transversely isotropic piezoelec- 
tric half-space (Ding et al., 1998) in the contact region. 

2 General Solution for the Transversely Isotropic Pi- 
ezoelectric Media 

Introduce Cartesian coordinate Oxyz  where the z-axis is per- 
pendicular to the isotropic plane. For convenience, the following 
notations are introduced: 

U = u + iv, w~ = W ,  W 2 = (~) ,  O" 1 = O" x + O'y, 

a" 2 = o" x -- O'y + 2i~-xy, orzl = O'z,  O'z2 = D z, 

~'zl = rxz + i~yz, n'z2 = D~ + iDy (1) 

where u, v, w are displacement components, • is the electric 
potential, o'~, O-y, Crz, r.,, ~'xz, and %z are stress components, and 
D~, Dy, and D~ are electric displacement components. 

In the case of distinct characteristic roots, s~ ¢ s2 ¢ s3 ¢ s~, 
Ding et al. (1998) gave a concise general solution in terms of four 
displacement functions Fj ( j  = 0, 1, 2, 3) for transversely 
isotropic piezoelectric media as follows: 

3 3 0F~ 
U = A ( i F 0 +  ~ Fj), Win= ~ sjk,, a OZj' 

j=l j=l 

3 02Fj 3 
o-, = 2 ~ (mj - c66 ) OZ~]2 , 0"2 = 2¢66AZ(iFo + 2 F)), 

j=l j=l 

3 02Fj ( OFo 3 OFj) 
ff z,,, = Z OOmj OZ} ' Tz,,, : m SOPmi ~ + Z Sj~mj ~ ) ' 

j=l j=l 
( m =  1 ,2 )  (2) 

where zj = sjz ( j  = 0, 1, 2, 3), so = c6~/c~4 and sj ( j  = 1, 
2, 3) are the three characteristic roots of a sixth-order equation 

BRIEF NOTES 

defined in Ding et al. (1996) which satisfy the condition Re(s j) > 
0. k u and kzj are constants dependent on material constants and 
characteristic roots, and the displacement functions Fj ( j  = 0, 1, 
2, 3) satisfy the following equation: 

( 0 2 0 2 0 2  ) 
~ x 2 + ~ y 2 + ~ z j 2  F j = 0 ,  ( ] = 0 ,  1 , 2 , 3 ) .  (3) 

In addition, 

w u = c44(1 + k u) + elsk2j, w2j = el5(1 + kij) - ~llk W, 

m: = 2c66 - 091)s ~, Pl = c44, P2 • els, A = O/Ox + iO/Oy 

(] = 1, 2, 3) (4) 

and all the above c~ i, e~:, and e~j are the elastic, piezoelectric, and 
dielectric constants, respectively. 

3 Extended Boussinesq and Cerruti Solutions in 
Transversely Isotropic Piezoelectric Half-Space 

Cylindrical coordinates (/9, &, z) are adopted with the z-axis 
perpendicular to the isotropic plane. The point charge Q0 and three 
point forces Px, Py, and P0 with their positive directions the same 
as the x, y, and z-axes act at an arbitrary point M(po, 49o, O) on the 
surface of a transversely isotropic piezoelectric half-space (z -~ 
0). Ding et al. (1998) obtained the displacement functions as 
follows: 

Fo = iGo(PA- - PA)x(z0) 

Fj = G j ( P A  + f 'A)x(z/) + (Po8i + QoAj)R~ 

( ] = 1 , 2 , 3 )  (5) 

where 

R j  - Rj + zj, Rj ~/p2 + p~ _ 2ppo cos (49 - 490) + z~ 

X(Zj) = z j l n R j - R j ,  P = P ~ +  iP) (6) 

and 3j, Aj ( j  = 1, 2, 3) and_Gj ( j  = 0, 1, 2, 3) are defined in 
Ding et al. (1998: Section 3). P and A are the complex conjugates 
of P and A, respectively. 

4 The Elastic and Electric Fields for Elliptical Contact 
Consider that a body ~ (which may or may not be piezoelectric 

body) and a piezoelectric body ® are in contact at the point O 
before forces and charges are applied. Regarding O as the origin, 
we introduce Cartesian coordinates (x, y, z) as shown in Fig. 1 in 
Hanson and Puja (1997), in addition to the cylinder coordinates (p, 
49, z). We further consider that there are a pair of forces Pz and a 
pair of charges + Q and - Q acting on the common normal line in 
body ~ and body ®, respectively. The forces and charges are 
distant enough fi'om the contact point O. Because of deformation, 
a contact region S forms around the initial contact point O. 

Assume that 

(1) the shape of contact region S is ellipse x2/a 2 + y2/b2 -< 1 
where a -> b, and its dimensions are sufficiently small 
compared with those of the bodies ® and ®, so we can 
regard them as two half-spaces. 

(2) there are no free charges in the contact region; if there is 
also no friction in the contact region, we call such contact 
"smooth". 

(3) the normal electric displacement on the surface of bodies 
Q and ® is nonzero only inside the contact region S. The 
contact pressure p(p ,  49) and electric displacement d(p, 49) 
inside the contact region are distributed as follows: 

3P~ [ p 2 cos 2 49 p 2 sin 2 49 
p(p ,  49) - 2"rrab ~1  a 2  b2 , 
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3Q ] p 2 cos 2 49 p2 sin 2 49 
d(p, 49) = 2Tab  V1 a2 b 2 , 

0_<p_<C(49), 0--< 49 < 2rr, (7) 

where C(49) is the boundary of the contact region. For 
the elliptical contact region, C(49) has the following 
form: 

C(49) = ab/\ /a 2 sin 2 49 + b 2 cos 2 49. (8) 

The determination of contact parameters such as a and b, etc., 
are showed in Ding et al. (1998: Section 4). 

4.1 Analytic Solutions for Smooth Contact. Substituting 
Po = p(po, 49o)podpod49o and Qo = d(po, 49o)podpod49o into Eq. 
(5) and integrating the result over 0 -< Po -< C(49o), 0 --< 49o - 
2rr, the displacement functions become 

Fo(p, 49, z) = O, 

3(P~6~ + QA~) 
Fj(p, 49, z) - 2~-ab q~(P' 49, zj), (j = 1, 2, 3) (9) 

where 

f f~  f C(6o) ~ po2cos249o p~sin249o 
O(p, 49, zj) = 1 - - 22 b2 

~ 0  

× lnR~podpod49o, (10) 

where R~ is defined in Eq. (6). 
Substituting Eq. (9) into Eq. (2) and using the partial derivatives 

of ~0(r, 0, zs) given by Hanson and Puja (1997), we obtain the 
elastic and electric fields as follows: 

3 3 
U = - ~3 E (PzSy + Q)tfl × {x[zjOl(~j) - ai,1] 

j=l 

+ iy[zj~b2(~j) - aI,2]}, 

3 
3 

Wm= ~3a3 ~ (PzSj + QA)s~kmj × {a2F(%, e) 
j=l 

- xZ~,(~) - y2~b2(~j ) - z]qt3(~1)} , 

0-1 D 

3 6 
a 3 E (P~8~ + QAfl(mj - c66)zjq13(~j) ,  

j=l 

0" 2 --  

3 
6C66 
a 4 ~ (Pz6j + QA2){azj[O,((;i) - 02(~j)] 

j = l  

+ xZls - y~I3 + a2(I12 - I ~ 1 )  + i2xyl4}, 

3 
3 

(Yz,, = - ~3 E (P~SJ + QAj)tOmjZj~3(~j), 
j = l  

3 
3 

%,, - a3 ~ (Pz6j + QAj)ssto,,j[xOl(~fl + iYqta(~j)] (11) 
j = l  

where e = X/1 - b21a 2 is the eccentricity of elliptical contact 
region; ~j ( j  = 1, 2, 3) are the complex elliptical coordinates 
which can be obtained by replacing z with zj in Eq. (2) in Hanson 
and Puja (1997) and which satisfy the condition 1 - Re(g}) < oo; 
F (%,  e), ( j  = 1, 2, 3) are the incomplete elliptic integrals of the 
first kind; ~& ( j  = 1, 2, 3), q** (k = 1, 2, 3), and l~l, I~2, 13, 14, 
18 are given in Appendix A in Hanson and Puja (1997). 
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4.2 Analytic Solutions for Friction. When bodies ® and ® 
are also subjected to the tangential loading T = T~ + iTy, which 
causes slip at the contacting surfaces, we assume that the sliding 
friction within the contact region can be determined by Coulomb 
friction law. Consequently, substituting the following equation 
into Eq. (5) 

3 P z f  / 02o co s2 490 020 sin 2 490 
P - 2nab  ~1 - a2 b 2 podpod49o, 

f = f x  + ify (12) 

and integrating the result over 0 --< P0 -< C(490), 0 -< 490 -< 2~r, 
the displacement functions become 

3P~Go 
Fo(p, 49, z) = i 2 T a b  (fA - f A ) E z o q J ( p ,  49, zo) 

- 'I'(o, 49, z0)], 

3P~Gj 
Fj(p, 49, z) = 2 T a b  (fA + fA)[zs~b(p, 49, zj) 

- W(O, 49, z~)] (13) 

where qKp, 49, zj) is expressed in Eq. (10) and ~ ( p ,  49, zj) is 
defined as 

foZ~ f c(~°) ~ P2oC°S2~o p~s in2~o  
~ ( p ,  49, zj) = 1 a2 b2 

~ 0  

X Rjpodood49 o (14) 

where Rj are expressed in Eq. (6). Substituting Eq. (1 3) into Eq. (2) 
and using the partial derivatives of qKr, 0, zj) and ~ ( p ,  49, zfl 
given by Hanson and Puja (1997), we obtain the elastic and electric 
fields as follows: 

W m = -- 

3 3Pz 
w= E 

j = l  

X { - fa[a2F(%,  e) - xZqq(~s) - y2qh(~j) - z203(~s)] 

+?[a(a  2 -  + a [z ) -  a2(1 - 

- 3ay211 + a(y 2 - x2)12 + 2y2zj13 - 2x2zs18 + 3ax219 

3Pz 
+ 2aZzj(ll! -- 112) + i4xy(aI2 -- zjl4)] } -- ~a 4 Go 

× {-fa[a2F(q%, e) - x2+l(~o) - y2~2(~0) - z~3(~0)]  

- ? [ a ( a  2 -  z02)q,l(#o) + a[z 2 - a2(1 - e2)]~b2(~0) 

- 3ay211 + a(y 2 - x2)12 + 2yZzol3 - 2x2zolg + 3ax219 

+ 2a2zo(I11 - 112) + i4xy(al2 - ZoI4)] }, 

3 
6Pz 
~ -  E Gjs jkmj  × {xfxEzflq(~j) - aI,l] 

j = l  

"4- yfy[Zjqt2(~j ) -- a112]}, 

3 
1 2P z 

0"1 -- 0 3 E Gj(mj - c66)[Xfxq l l (~ j )  + Yfy~2(!;j)], 
j=l 

6c66Pz { 
0-z = ~ W - -  i Gj fa[x¢,(~j)  + iY~z(~fl] 

j = l  

Ex  3a .9 -  az/'4- ' , ) - ' , o  
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+ 3y216}+  i ~-.{3a2(12 - I t)  + 3 a z j ( l  3 -- 14) -- 3x217 

+ y 2 1 5 } ] }  6 c 6 6 P Z G o { f a [ x ~ t l ( ~ O )  + iy~b2(~o)] 

- f  ~t {3a (19- 12) + 3azo(14 - 18) - x2Im + 3y216} 

+ i a y- {3a2(12 - I,) + 3azo(13 - 1 4 )  - 3X217 -4- y215} 1 ) ,  

3 
6P~ 

j=t  

3 
3Pz 

'Tzm = ~ 2 GjsjEOmj{fazj~13(~J ) -- f [azj{~bt(~j) - ~ba(~j)} 
j=l  

- a2(ll l  - 112) -4- x21s - y213 

3P~ 
+ i2xyl4]} - - ~  Gosop,,,{fazo@3(~o) + f [azo{t l (~o)  

- ~2(~o)}-  a:( l l l  -- 112) + X21S -- y213 + i2xyl4]} (15) 

where e, ~j ( j  = 0, 1, 2, 3) and F(q~j, e) ( j  = 0, 1, 2, 3) are 
the same as those in Eq. (11); q,, (k = 1, 2, 3), I~, I12, and L (l = 
1, 2, 3 . . . .  12) are listed in Appendices A and B in Hanson and 
Puja (1997). 
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1 Introduct ion 

This work is motivated by Mikata and Nemat-Nasser's (1990) 
study of dynamic transformation toughening of ceramics in which a 
typical dynamic problem of a spherical inclusion was solved. Mikata 
and Nemat-Nasser (1990, 1991), Mikata (1993), and Cheng and He 
(1996) have obtained exact analytic solutions for a dynamic spherical 
inclusion embedded in an infinite linear elastic and isotropic medium. 
However, the corresponding dynamic problem of a circular cylindri- 
cal inclusion has not been studied. Mura (1988) and Mura et al. (1996) 
have reviewed the literature on inclusion problems. 

The time-harmonic elastic field caused by an infinitely long 
circular cylindrical inclusion is obtained in this paper, and a 
closed-form expression is derived for the dynamic Eshelby tensor. 
Unlike the static case, the Eshelby tensor for the dynamic problem 
is not uniform even at interior points within the circular cylinder. 
In the limit of quasi-static deformations the present solution re- 
duces to Eshelby's results. 

2 Analys is  

Following Eshelby (1957, 1959) and Mura (1982), an inclusion is 
referred to a subset of a matrix that has a prescribed eigenstrain (or 
t ransformation strain) and has  the same elastic properties as the matrix. 

Consider the following time-harmonic eigenstrain 

e~(x, t) = e~ (x )A(~ )e - '%  

A ( ~ )  = 0,  x ~ R 3 - ~ (1) 

where ~ is the region occupied by an inclusion that is embedded 
in an infinite (i.e., R 3) isotropic, linear elastic medium, and ~o 
denotes an angular frequency. It is assumed that a time-harmonic 
eigenstrain will induce time-harmonic displacement, strain, and 
stress fields. Henceforth we omit the factor exp(-itot).  Also, a 
comma followed by a subscript i denotes a partial derivative with 
respect to the rectangular Cartesian coordinate x~, a repeated index 
implies summation over the range of the index, Latin subscripts 
range over 1, 2, 3 and Greek subscripts over 1 and 2. 

Equations for determining the displacement field in steady-state 
deformations of a linear elastic isotropic body are 

O'ij J @ ptO2Ui : O, trij : Cijkl[ekl -- e~A(12) ] ,  
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+ 3y216}+  i ~-.{3a2(12 - I t)  + 3 a z j ( l  3 -- 14) -- 3x217 

+ y 2 1 5 } ] }  6 c 6 6 P Z G o { f a [ x ~ t l ( ~ O )  + iy~b2(~o)] 

- f  ~t {3a (19- 12) + 3azo(14 - 18) - x2Im + 3y216} 

+ i a y- {3a2(12 - I,) + 3azo(13 - 1 4 )  - 3X217 -4- y215} 1 ) ,  

3 
6P~ 

j=t  

3 
3Pz 

'Tzm = ~ 2 GjsjEOmj{fazj~13(~J ) -- f [azj{~bt(~j) - ~ba(~j)} 
j=l  

- a2(ll l  - 112) -4- x21s - y213 

3P~ 
+ i2xyl4]} - - ~  Gosop,,,{fazo@3(~o) + f [azo{t l (~o)  

- ~2(~o)}-  a:( l l l  -- 112) + X21S -- y213 + i2xyl4]} (15) 

where e, ~j ( j  = 0, 1, 2, 3) and F(q~j, e) ( j  = 0, 1, 2, 3) are 
the same as those in Eq. (11); q,, (k = 1, 2, 3), I~, I12, and L (l = 
1, 2, 3 . . . .  12) are listed in Appendices A and B in Hanson and 
Puja (1997). 
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where ~ is the region occupied by an inclusion that is embedded 
in an infinite (i.e., R 3) isotropic, linear elastic medium, and ~o 
denotes an angular frequency. It is assumed that a time-harmonic 
eigenstrain will induce time-harmonic displacement, strain, and 
stress fields. Henceforth we omit the factor exp(-itot).  Also, a 
comma followed by a subscript i denotes a partial derivative with 
respect to the rectangular Cartesian coordinate x~, a repeated index 
implies summation over the range of the index, Latin subscripts 
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BRIEF NOTES 

eu = ½ (u~d + ut,,), (2) 

where p is the mass density, 

cw, = a8,A,  + ~(8,&, + 8,1g0, (3) 

A and/x the Lam6 constants and 80 the Kronecker delta. The corre- 
sponding displacement field can be expressed as (Mura, 1982) 

u,(x) f~ a , = -- Cjlmnemn(X )gii.t(X - x ' ) d x ' ,  
1 

(4) 

where g~ is the Green function defined by 

1 
gtm(X - x ' )  - 4¢rpoo ~ 

I e i~3r 
× /328}" r 

Jo(kz)H(ol)(kz ') + 2 ~ JM(kz)H(~)(kz ') cos MO, 
M = l  

= (z <z ' )  

Jo(kz')H~l)(kz) + 2 ~ JM(kz')H~)(kz) cos MO, 
M = I  

(z > z ')  

(c) Recurrence relations 

(15) 

d d 
d--z [ZJ,(z)] = ZJo(z), dz [zH~t)(z)] = z H ( ° l ) ( z ) "  (16) 

Here JM(Z) is the Bessel function of order M and H~J)(z) is the 
Hankel function of the first kind of order M. 

Based on the formulas (12), (15), and (16), the integral (10) can 
now be calculated for a circular cylindrical inclusion. 

r 2= (Xe--X~)(Xk--X~,), Or2_ Pw2 /3z_  pw2 (6) f ( x , k )  
A + 2/* '  /x ( 

If a , [ em,,(X) in Eq, (1) is constant over ~,  then the displacement and 
strain can be expressed as (Mikata and Nemat-Nasser, 1990) 

= 

Ui(X) = Jikl(X)e~, e0(x ) _ a - Miju(x)e u, (7) 

for both inside and outside of the inclusion, where 

Mijkt(x) = ½ [Jm0(x) + Jjk1,i(x)], (8) 

1 
Jiu(x) = 47rp~o z {}kSkl f ,  imm(X, Og) "q- 2 ~ [ f ,  ikl(X , Og) -- f j k l ( X ,  / 3 ) ]  

- /x/3218ikf.,(x, /3) + 8itf.k(X, /3)]}, (9) 

(10) f 
i e ikr 

f(x,  k) = - -  dx ' .  
r 

Mikata and Nemat-Nasser (1990) called M~jkt(x) in Eq. (8) the 
dynamic Eshelby tensor. The expression in Eq. (9) slightly differs 
from that given by Mikata and Nemat-Nasser (1990) since we have 
used 

f.,~m(X, /3) + /32f.,(X, /3) = 0 ( l l )  

to simplify (9). For a spherical inclusion, Mikata and Nemat- 
Nasser (1990) evaluated the integral (10) in closed form and hence 
computed the exact dynamic Eshelby tensor. Here we evaluate this 
integral for an infinitely long circular cylindrical inclusion 12: x~ + 
x~ < a 2 and - ~  < x3 < ~, and then find the corresponding 
Eshelby tensor. To do this, we recall the following formulas 
(Gradshteyn and Ryzhik, 1965). 

(a) Integral formula. 

f ~ e ikr 
- -  dx; = izrH~')(kR), 

r 
(12) 

R 2 = ( x . - x : ) ( x . - x : ) = z  2 + z  ' 2 - 2 z z ' c o s O ,  (13) 

x,,x" 
Z 2 = x . x . ,  Z '2=x '~x ' ,  c o s 0 -  . (14) 

ZZ ~ 

(b) Addition theorem. 

H~i)(kR) 

z z , , , x 3 - - ,  
r 

\ ~ o  ~z / "o 
x ~ 1 2  

(,, ( 2~ (® e,~, 
J, z 'dz '  I dO I dx; - ,  x ~ R 3 - ~  

0 'J 0 ~ - ~  r 

[ zJl(kz)Ht°ll(kz) + aJo(kz)H~ll(ka)R 3 
27r2i 

- zJo(kz)Hll)(kz), x E 
k 

aJl(ka)H~ol)(kz), x ~ - 

(17) 

Furthermore, by using 

2i 
J°(kz)H~l)(kz) - Jl(kz)H~ll(kz) - wkz '  (18) 

(17) can be simplified to 

[1 1 f (x ,  k) --= N(z, k) = -47 r  ~ A ( ~ )  + cb(k)Xrgo(kz) , 

where 

(19) 

' ~ ( k )  = 

i ~ T a  
- ~ - H l ' ) ( k a ) ,  x E 

i'n'a 
- - ~ -  Jl(ka),  x ~ R 3 - ~1 

Jo(kz), x ~ 
~o(kz) = H~l)(kz), x ~ R 3 - ~ ' (20) 

Thus, the exact steady-state Eshelby tensor for an infinite cir- 
cular cylindrical inclusion is readily obtained from Eqs. (8), (9), 
and (19). As can be seen from these equations, unlike for the 
quasi-static problem (Eshelby, 1957), the dynamic Eshelby tensor 
varies even within the inclusion. The calculation of the dynamic 
Eshelby tensor (8) requires the following expressions for the 
derivatives of the potential function fix,  k). 

f,3(x, k) = 0, f,,~(x, k) = x .DN,  

f,.t3(x, k) = 6~t3DN + x~x~D2N, 

f,.t~(x, k) = (x.St3o~ + xt38,o . + x,.6.t3)D2N + x.xt3x,oD3N, 

f,.t3~p(x, k) = (8.t38,o o + 8.o,8t3 p + 8.pS~,~)DZN 
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+ (x.x[38~oo + x~x~oS[3o + x.xoS[3,o + xox~8,  o 

+ X[3Xp8.~ + x~,,xoS~a)D3N + x.xl3x,oxoD4N, (21) 

where D = d/ (zdz)  and 

D W  = -4"tr - dp(k)~t (kz ) ,  (1--> 1), 

• ~(kz) = - ~ D~qto(kz), (l-> 1), 

Jt(kz) ,  x ~ 
• ~(kz) = H}~)(kz), x ~ R 3 - f~ ' 

( l = - 0 ,  1, 2 . . . .  ), no sum on l. (22) 

3 Quasi-stat ic  Deformat ions  
The classical Eshelby tensor S~jk~ for quasi-static deformations 

can be recovered from the present dynamic Eshelby tensor (8) by 
taking the limit o9 ~ 0, i.e., 

Sijkt(X) = lim Mijkl(X ) = ~1 [Jikld(X + Jfkl.i(X)], (23) 
oo---~0 

where 

J~kl(X) = lira Jiu(x) - A + ix 
~ 0  A + 2~  toj~t(x) 

A 
A + 2/x 8k~4)"(x) - 8'kqb't(x) - 8"qS'k(x)' (24) 

if, lf, 1 = = - dx ' .  (25) to(x) ~-~ rdx ' ,  6(x)  ~ r 

Note that the two integrals (25) over an infinite circular cylinder 
diverge, However, the derivatives of the potential functions t0(x ) 
and 45(x) appearing in (24) converge. The derivatives of ~x )  and 
qb(x) can be calculated in the same form as the derivatives o f f  in 
(21), Since a detailed discussion on to(x) and th(x) for a general 
ellipsoidal inclusion has been given by Mura (1982), only the 
relevant results for an infinite circular cylindrical inclusion are 
given below, 

1, 
- Z ,  X ~  

D2to = a 2 a 4 
~z2 + 4z---4, x ~ R 3 - ~ ' 

- ~ ,  x E ~  

D4) = a 2 (26) 
2z 2, x E R 3 - 

By using (26), and recalling S~j,t = Sjzkt = S0~,, the nonzero 
components of the classical Eshelby tensor can be expressed as 

4v - 1 3 - 4v 
S~°"[3- 8(1 - v) 8~8,o0 + 8(1 - v--------)(8.o~[30 + 8~o~0oo), 

BRIEF NOTES 

l 1) 
S3p313 : ~ 8[3p, Stop33 - 2(1 - v) 8top, 

for the inside of the circular cylinder, and 

: A ooo[3 ~ - ~4 

--2B,,,,p.[3( ~ -  ~ ) q -  4Cow,,/3(' ~ 6 

a 2 a 2 

S3p313 "~- ~Z 2 3[3 0 -- ~ 4 Xf3Xp' 

(27) 

3a2  

va 2 / 1 2 
S t o p 3 3  - 2(f  -- v) 3,00 - ~ x ~ /  , (28) 

for the outside of the circular cylinder, where v is the Poisson ratio 
and 

B,oo.[3 = x.x[38~op + x~x~8~o + x.xoTt3o~ + x[3xooS,w 

+ x[3xoS., o + x,oxpS.[3, 

C~ooal3 : XaXl3X~oXp, 

D,.o. ~ = ~ ~ 8"[38~o + 3.o,813 p + 8.p813~o 

2 /  2v  
~ ~ x J o ~ [ 3  + x~x,oSt~ p 

+ xoxoS[3 ~ + x~x~8~ o + x[3xoS.~ ) . (29) 

These expressions for the classical Eshelby tensor agree with those 
given in Mura (1982). 
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BRIEF NOTES 

Torsional Impact Response of a 
Functionally Graded Material With a 
Penny-Shaped Crack 

C. L i  I a n d  Z. Z o u  I 

1 Introduction 
Structural components made of functionally graded materials 

(FGMs) will be inevitably subjected to time-dependent loadings. 
The nonhomogeneous properties in addition to the presence of 
mechanical imperfections such as cracks can have a strong influ- 
ence on the dynamic response of these components. A knowledge 
of the dynamic response of this kind of components is essential to 
achieving an in-depth understanding of the failure mechanisms of 
FGMs. In this paper, we present the torsional impact response of 
an unbounded FGM with a penny-shaped crack. By using integral 
transform techniques, the problem is reduced to solving a Fred- 
holm integral equation of the second kind, which is transformed 
from a pair of dual integral equations. Subsequently the local 
dynamic stress fields around the crack tip are obtained. The influ- 
ence of material nonhomogeneity on the dynamic stress intensity 
factors is illustrated graphically. 

2 Material Property Model 
Several models for describing the nonhomogeneity of material 

properties have been proposed and extensively used, such as the 
power function (Kassir and Sih, 1975), the exponential form 
(Ozturk and Erdogan, 1993) and the generalized interlayer model 
(Wang et al., 1996). However, it is difficult to apply these models 
to obtain the dynamic response of nonhomogeneous FGMs with 
cracks. After thorough consideration, we find that the application 
of the following model 

Ix(z)=tx0(1 + a [ z l )  2, a > O ,  (1) 

makes the dynamic response problems of FGMs with cracks 
tractable. The nonhomogeneity parameter a may be adjusted to 
approximate the actual material property distribution of FGMs. 

3 Formulation of the Problem 
Consider a penny-shaped crack of diameter 2a embedded in an 

unbounded functionally graded material and lying in the z = 0 
plane. For the problem of torsional impact, we have 

Uo = uo(r, z, t), (2) 

Ouo /Ouo _~) 
TOZ = IX(Z) ~ - ,  TrO = IX(Z) Ik-~- ~ -- , (3) 

O2Uo 10Uo Uo 0 2 U o  IX'(z) OUo p O2uo 
Or 2 + + + -- r Or r 2 ~ I~(z) Oz IX(Z) Ot 2 '  

uo(r, O, t) = 0 ,  r >-- a; t > O, 

(4) 

(5) 

~'o~(r, O, t) = -ToH(t)r/a,  0 -~ r < a; t > 0, (6) 
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where t is time, Ix'(z) is the derivative of Ix(z), H(t) is the 
Heaviside unit step function, and p is the mass density of the FGM. 
Here it is assumed that p = constant. 

Applying the Laplace transform to Eq. (4) results in 

02u; 1 0 u ;  u~ 02u~ IX'(Z) Ou; ppZ 
Or 2 + rZ + + - -  - u*, (7) r Or ~ Ix(Z) Oz IX(Z) 

where 

f0  ~ 
u~(r, z, p) = uo(r, z, t)e-P'dt. (8) 

Considering the symmetry of the problem about the z = 0 plane, 
introducing Hankel transforms of the first order, and accounting 
for the regularity condition at z ~ w, we obtain the solution of (7) 
as follows: 

I0 [ u](r, z, p)  = A(s, p)(1 + az)-l/2Kt3 (1 + az) 

X Jl(sr)sds,  (9) 

where J l ( )  is the Bessel function of the first kind, Ks()  is 
the modified Bessel function of the second kind, and /3 = 
"k/l/4 + pp2/ixoa2. 

In the Laplace transform domain, the boundary conditions on 
the plane z = 0 become 

u~(r ,O ,p )  = 0 ,  r-->a, (10) 

Tor 
r~z(r, 0, p) = - - - ,  0 - - < r < a .  (11) pa 

Substituting (9) into (3) and then from (10) and (11), we obtain a 
pair of dual integral equations 

f 0  ~ 
B(s, p)J l (sr)ds  = O, r-> a, (12a) 

f o  z 

sB(s, p)G(s ,  p)J , (sr)ds  - 'for 
txopa 

O_< r < a ,  (12b) 

where 

B(s, p) = sA(s, p)Kt3 , (13) 

~ K  s 

(14) 
G ( s , p ) =  s K ~ ( S )  

The dual integral Eqs. (12) can be solved by applying the method 
of Copson (1961). The solution is found as follows: 

4 Tea 5/2 ( I  
B(s, p) = 3~0p 2 ~  • J0 ~ * ( ¢ ,  p)J3/E(sa¢)a¢, (15) 

where qb*(~, p) should satisfy the Fredholm integral equation of 
the second kind: 

fo  1 • *(~, p) + ~*(~,  p)M(~, '0, P)d'o = ~2. (16) 

The kernel function M(~, "O, P) in (16) is computed from 
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10 

M(~, n, P) 

(17) 

4 Dynamic Stress Intensity Factor 
Integrating B(s, p) in (15) by parts and considering the asymp- 

totic behavior of K~(x) and K~(x) when x --~ ~,  we obtain the 
local stress fields around the crack tip in the Laplace transform 
domain 

r~ ( r , ,  0,, p) = ~ cos + O(r°O, (18a) 

r,*0(rl, 0,, p) - , j ~  sin + O(r~), (18b) 

where r~ and 0~ are the local coordinates at the crack tip. The 
Laplace transform of the dynamic stress intensity factor K~,(p) in 
Eq. (18) is 

4 ~*(1 ,  p) (19) K*,(p) = ~ To , f ~  ~ - ~ ,  

in which ~*(1,  p) is the value of qb*(~, p) evaluated at the crack 
tip corresponding to ~ = 1, 

The dynamic stress intensity factor in time domain can be 
obtained by 

4 ~ 1 ~ ~*(1 ,  p) eV'dP, (20) Kin(t) = ~ ro ~/rra ~ [  ----p --- 
au 

r 

where Br denotes the Bromwich path of integration. 

5 Results and Discussion 
The functional dePendence of the stresses on r~ and 0~ as shown 

in Eqs. (18) reveals that the dynamic stresses in functionally 
graded materials with cracks also possess the inverse square root 
singularity in terms of r~ and that the angular distribution in 0r is 

the same as that in homogeneous solids with cracks. Equation (20) 
shows that the form of the dynamic stress intensity factor for 
functionally graded materials is identical to that for homogeneous 
materials. 

Figure 1 shows the numerical results of ~b*(1, p) as a function 
of the dimensionless Laplace transform wave number c2o/pa for 
several different values of a. Here c20 =. ~/~o/p. It is observed 
that the magnitude of ~*  (1, p) decreases with increasing values of 
the nonhomogeneity parameter a. 

By using the numerical Laplace transform inversion techniques, 
the dynamic stress intensity factor given by Eq. (20) can be 
evaluated. Figure 2-displays the normalized stress intensity factor 
37rKm(t)/4roX/-~a as a function of e2ot/a. It is observed that all 
the curves reach a peak and then oscillate about static values (Li 
and Zou, 1998) in a decaying manner. The peak values of the 
dynamic stress intensity factors for FGMs are smaller than that for 
homogeneous materials and decrease with increasing values of a. 
The physical interpretation may be that the larger the material 
property gradient of the FGM, the higher the restraint of the 
material to deformation. This suggests that the crack driving force 
may be reduced by using FGMs to replace homogenous materials 
in engineering structures. This result encourages our application of 
FGMs in a wide range of engineering disciplines. 
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Unified Plastic Limit Analyses of 
Circular Plates Under Arbitrary Load 

G. Ma, 1 H. Hao, 1 and S. Iwasaki 2 

1 Introduction 
Correct prediction of the load-carrying capacity of circular 

plates is crucial for achieving an optimal structural design. Hop- 
kins and Prager (1953) and Hodge (1963) investigated the load- 
carrying capacities of circular plates with limit analysis theorems. 
The plastic limit solutions for circular plates subjected to an 
arbitrary rotationally symmetric load were presented by Ghorashi 
(1994). However, the above studies were performed by using 
either the square yield criterion or the Tresca criterion. Solutions 
based on the above two yield criteria have obvious shortcomings in 
describing the realistic characteristics of a circular plate in the 
plastic limit state. Hopkins and Wang (1954) investigated the 
load-carrying capacities of a circular plate under uniformly dis- 
tributed load with the Mises criterion and a parabolic criterion by 
an iterative method. Unfortunately, an analytical plastic limit so- 
lution based on the Mises criterion for a circular plate under 
various load conditions is not readily derived because of its non- 
linear feature. The unified yield criterion (UYC) (Yu and He, 
1991) used in the present paper is based on the assumption that 
plastic flow is controlled by the combination of the two larger 
principal shear stresses. Its yield surfaces vary between the lower 
bound and the upper bound of plastic yielding of a material by 
changing a weighting coefficient. In the present study, plastic limit 
load factors, total limit loads, moment fields, and velocity fields of 
circular plates under arbitrary loads are derived in terms of the 
UYC. Comparisons and discussions of its three particular solutions 
corresponding to the Tresca criterion, the Mises criterion (closed 
form), and the twin shear stress criterion are made. 

2 Basic Equations 
The fundamental assumptions of the present study are: (i) the 

entire plate is in the fully plastic state; (ii) the plate is thin (h < a). 
When a circular plate of radius a and thickness h is subjected to an 
arbitrarily distributed axisymmetrical transverse pressure ~P(r) ,  
where ~ is a load factor and P ( r )  is a load distribution function, 
the equilibrium equation of a circular plate is 

d ( r m r ) / d r  - mo = - f I x p ( r ) r d r  (1) 

in which r, mr, mo, and p ( r )  are dimensionless variables and r = 
R / a ,  m,. = M J M o ,  mo = Mo/Mo ,  andp(r )  = P ( r ) a 2 / M o ,  where 
R is radial distance, Mr,  Mo,  and M0 are radial, tangential, and 
ultimate (fully plastic) bending moments, respectively. 

The relations between the curvature rate and the rate of deflec- 
tion are 

kr = -d2CV/dr  2 and k0 = - d w / ( r d r )  (2) 

where w, /~r, and /~0 are the dimensionless deflection rate, the 
dimensionless curvature rates in the radial and circumferential 
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IC  ~ B ~  me b=l 
b=0.7 

A b= 

b;O 7 b.N).2 

l 

b=0.5 

> 
mr 

Fig. 1 UYC for generalized plane stress 

directions, respectively; the dimensionless deflection is defined as 
w = W / a  and W is the actual deflection. According to the 
associated flow rule, 

l~ r = .itOtO/Omr, [co = ~.OtO/Omo (3) 

where }t is a plastic flow factor and tO is the plastic potential. 
Based on the orthogonal octahedron of twin shear element 

model, the unified yield criterion specifies that material fails when 
a certain function of the two larger principal shear stresses reaches 
the limit value (Yu, 1983). Figure 1 shows the limit trajectory of 
the UYC expressed by mr and mo. The UYC has obviously 
piecewise linear forms 

m o =  a ~ m r +  b~ ( i =  1 -- 12). (4) 

The constants ai and bi in Eq. (4) for the five lines Li (i = 1 
5) ofAB, BC, CD, DE, and EF in Fig. 1 are listed in Table 1. Table 
2 gives the radial moments dl (i = 0 ~ 5) corresponding to the 
yield points A, B, C, D, E, and F, respectively. When b varies from 
0 to 1, a family of convex yield criteria which are suitable for 
different kinds of materials are deduced. In particular, it becomes 
the Tresca criterion when b = 0 and the maximum principal 
deviatoric stress criterion or the twin shear stress criterion when 
b = 1. The Mises criterion can be approximated by the UYC when 
b = 0.5. 

The plastic potential O is then expressed as 

O = mo - a i m r -  bi (i = 1 - 12). (5) 

Assuming the load function p ( r )  = ~ p j r  j - l ,  m r located on 
j = l  

the segments Lj are obtained by substituting Eq. (4) into (1) and 
then integrating Eq. (1), 

Table 1 Constants el and bl in the unified yield criterion 

AB (i=l) Be (i=2) CD 0=3) DE 0=4) EF (i=5) 

a t -b b/(l+b) 1/(l+b) l+b (l+b)/b 
b, l+b 1 1 l+b (l+b)/b 

Table 2 Constants dl 

I d, (l+b)/(2+b) -(l+b)/(2+b) - -2(1+b)/(2+b) 
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bi ~ r j+ I 

m , . -  1 - ai Ix ~ p j  (J + 1 ) ( j + 2 -  ai) + cir 1+~, 
j=l  

( i =  1 ~ 5 ) ,  (6) 

where ce (i = 1 ~ 5) are integral constants which can be 
determined from continuity and boundary conditions. 

The field of velocity corresponding to the five sides L~ is 
obtained by substituting Eq. (2) into Eq. (3) and then integrating 
(3) with the aid of Eq. (5), 

= Wo(ct ir  '-~'' + c2i) (i = 1 ~ 5), (7) 

in which ctl, c2i (i = 1 ~ 5) are integral constants, and 90 is the 
velocity at the plate center. 

The dimensionless total limit load on the plate is obtained as 
follows: 

f f  ~ pj 
PT = 2rr / , p ( r ) r d r  or PT = 2rr/x ~ j + 1 " (8) 

j=[ 

3 S imply  Supported Plate 

In the plastic limit state, bending moments of a simply supported 
circular plate are located on the lines AB and BC fl'om the 
normality requirement of plasticity. Assuming r~ is a nondimen- 
sional radius of a ring where the moments exactly COlTespond to 
point B in Fig. 1, the boundary and continuity conditions are: (1) 
m ,  ( r  = O) = 1; (2) m ,  (r  = r l )  is continuous and equal to d,;  
(3) m, (r = 1) = 0; (4) 9 ( r  = 0) = #0; (5) 9 (r = rl)  and 
d w / d r  (r  = rt)  are continuous and (6) 9 (r = 1) = 0. Then the 
integral coefficients Cl, cz, Cl~, c12, c21, and c22 in Eq. (6) and Eq. 
(7) are determined as 

b2 Pa 
- + t * ~  CI = 0 '  C2 1 - a  2 ' =  ( j +  l ) ( j + 2 - a 2 )  (9) 

r l-b(2+l,)/il +t,) 

Cll = -- (1 + b) 2 - (2b + b2)rll t(l+b)' c21 = 1, 

(1 + b) ~ 
C12 = --C22 = --  (1 + b )  2 - (2b + b2)r] I(1+~')" (10) 

The load factor/x is deduced as 

bt 
- d r  + - - - -  1 - a  1 

Ix = (11) 
pjrJ+ 1 

X 
( j +  l ) ( j +  2 - a a )  

j - I  

where rt satisfies the following equation: 

b 2 Nan pjr~+ I 
d ,  F c2r~ I+a2. (12) 

~---7-a2 Z a  ( j  + 1 ) ( j  + 2 - -  a2 )  
j~ l '= 

The above equation is solved by interval halving for r~ in the 
interval (0, 1) for a given value of b between 0 and 1. Substituting 
the convergent value of rl into Eqs. (9)~(11), the moments and 
velocity distributions in Eq. (6) and Eq. (7) are then obtained. As 
a special case, when b = 0, the plastic solution is the same as that 
given by Ghorashi (1994) based on the maximum principal stress 
criterion and the Tresca criterion. If uniformly distributed load is 
applied, it is identical to the results by using the Tresca criterion 
(Hodge, 1963). 

BRIEF NOTES 

4 Clamped  Circular  Plate 

Based on the kinematically admissible requirement, the moment 
fields of the entire clamped plate lie on the five sides correspond- 
ing to AB, BC, CD, DE, and EF in Fig. 1. The points A, B, C, D, 
and E in Fig. 1 correspond to five dividing dimensionless radii on 
the plate, which divide the plate into five parts. The five radii are 
denoted by r0, r~, r2, r3, and r4, respectively, satisfying 0 = r0 -< 
r, -< r2 -< r3 -< r4-< 1. On the outer e d g e ( r  = r5 = 1), the 
moments mr and mo are assumed to correspond to the yield point 
F exactly. The continuity and boundary conditions of the clamped 
plate are (1) m ,  (r = 0) = 1, (2) m,. (r = r~) = d ,  i = 1 ~ 4, 
and are continuous and (3) m,. (r = 1) = ds. Using the above 
continuity and boundary conditions, c~ (i = I ~ 5) in Eq. (6) are 
determined as 

C 1 = O, 

C i = 
bi p j r  i- 1 

- - -  + IX r 1 - . ,  
d, , 1 - a ,  = ( j +  1 ) ( / + 2 - a i ) J  i-~, 

The load factor is derived as 

i =  2 - - 5 .  (13) 

h i  
- d l  + -  

1 - a l  
/x = (14) 

pjr~+ i 
E 

( j +  1 ) ( j +  2 - a , )  
j=l 

in which the dividing radii r~ (i = 2 - 5) are calculated by the 
following equations: 

bi bi p j r i l  
- - +  d i - i  - - - +  IX 
1 - a i  1 - a i  .= ( j +  1 ) ( j + 2 - a i )  

X r I air I+al ~ PJ r~+l 
i - ,  i - ~  ~ ( j + l ) ( j + 2 _ a , ) = d , ,  

j=l 

i =  2 - - 5 .  (15) 

Thus, the plastic collapse load of the clamped plate is expressed as 

t* ~ Pj  r j-1.  Once the load distribution function p ( r )  that is 
j=l  

expressed as a Taylor series is specified, the plastic collapse 
load is calculated by Eqs. (13)-(15) .  

Equation (15) has to be solved by an iterative method. As an 
initial value of rl is specified, r~ (i = 2 - 5) in Eq. (15) are 
searched subsequently. The condition that r5 is exactly equal to 1 
is used as the convergence criterion. Substituting the obtained 
values ofc l  and ri into Eqs. (6) and (14), the moment fields as well 
as the plastic limit load factor of the clamped circular plate are then 
determined. 

The continuity and boundary conditions of velocity on the 
plate are (4) 9 (r = 0) = 90, (5) 9 and d w / d r  ( r  = r~, i = 
1 - 4) are continuous, and (6) 9 (r = 1) = 0. Considering 
these conditions, the constants c~, and c2i in Eq. (7) can be 
derived as 

9o 

Cll = --  (d14 + d24)d13d12dll + d23dt2dll + d22d l l  + d21 ' 

c21 = w0 (16) 

and 
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Table 3 Plastic limit loads for a simply supported circular plate 

p(r) r 

b=O I'2.00 25.13 

b=0.5 12.78 26.78 

b-1 13.36 27.98 

]+r 

4.00 20.94 

4.31 22.56 

4.53 23.73 

1 

p. 

6.00 

6.49 

6.84 

2-r 

P, ~ P, 

18.85 4 .00  16.76 

20.38 4 .34  18.17 

21,49 4 .58  19.17 

]-r 

i1 .P~ 

12.01 12.57 

13.02 13.64 

13.75 14.40 

in which dlz and d2~ (i = 1 - 5) are constants related to the 
continuity conditions, and they are 

1 - a i a i +  1 - -  a i 1 ai 
__ ai+t-al d2 i Fi 

d l i  1 --  ai+ 1 r i  ' 1 - -  ai+ 1 

( i =  1 - 4 ) .  (18) 

Substituting these integral constants into (7), the velocity field of 
the clamped circular plate is obtained. 

5 Discussion and Conclusion 

Tables 3 and 4 list the plastic limit load factors and the total 
limit loads of simply supported and clamped plates for five linearly 
distributed load functions in terms of the three particular yield 
criteria, namely the Tresca criterion, the Mises criterion (approx- 
imated by b = 0.5 of the UYC), and the twin shear stress criterion. 
It can be noticed that the plastic limit load factor as well as the total 
limit load by the Mises criterion are about 6.5 percent to 8.5 
percent larger than those by the Tresca criterion for the simply 
supported plate and about 12.4 percent to 12.8 percent for the 
clamped plate. While those by the twin shear stress criterion are 
about 10.5 percent to 14.5 percent, for the simply supported plate, 
and 20.9 percent to 21.5 percent, for the clamped plate larger than 
those by the Tresca criterion. Increasing the load distribution along 
the plate radius leads to smaller changes between those by differ- 
ent yield criteria, but a larger total limit load, implying that 
increasing the load distribution might improve the load-carrying 
capacity of a plate. For a uniformly distributed load, the present 
results are in good agreement with previous results from different 
yield criteria (Hopkins and Wang, 1954; Hodge, 1954; Ma et al., 
1998) as indicated in Table 5. For a simply supported plate, the 
circumferential moment is no longer constant if b ~ 0 is applied 
in UYC. Using the Tresca criterion, it was proved in an earlier 
paper (Hodge, 1954) that the equilibrium equation for a clamped 
circular plate is invalid if the m o  ~ m r  trajectory is on line EF. If 
UYC is used, however, it is straightforward to extend the trajectory 
to EF to obtain a nonsingular solution. The solution based on the 
Tresca criterion is approximated by using a small b value, e.g., 

Table 4 Plastic limit loads for a clamped circular plate 

p(r) r 

PT 

b=0 22.98 48.13 

b=0.5 25.83 54.09 

b=l 27.78 58.19 

Table 5 

I + r  

P~ 

7.57 39.66 

8.54 44.72 

9.20 48.19 

1 

PT 

11.26 35.37 

12.72 39.96 

13.71 43.06 

2-r 

7.45 31.26 

8.40 35.19 

9.05 37.91 

1-r 

PT 

21.87 22.90 

24.60 25.76 

26.46 27.71 

Comparison of the limit loads with previous results ( M o l a  2) 

Tresea 
Present (b=0) 

Mises Hopkins & Wang 
Present (b=0.5) 

Yu Ms, et al 

criteria Simply supported Clamped 
Hopkins & Wang 6.00 11.26 

6.00 11.26 

ts.~aatt~.! 

6.50 12.50 
6.49 12.72 
6.84 13.71 
6.84 13.71 

b = 0.001. The velocity fields corresponding to any criterion 
(b v ~ 0 in UYC) other than the Tresca criterion distribute nonlin- 
early along the plate, which avoids a single linear variation and a 
singularity at the plate center as given by the Tresca criterion (b = 
0 in UYC). 

The solutions obtained satisfy both the static admissibility of the 
moment fields and the kinematical admissibility of the velocity 
field, thus they are the exact solutions of the plates in the plastic 
limit state. It has been shown that the limit analysis by using the 
unified yield criterion can give the plastic limit solutions of various 
yield conditions in a uniform manner. Upper and lower bounds of 
the plastic load factor and the total limit load are deduced by the 
two bound criteria corresponding to b = 0 and b = 1 in the 
unified yield criterion. The solutions based on different criteria 
might differ by more than ten percent for a simply supported 
circular plate, and more than 20 percent for a clamped circular 
plate. 

The effect of shear stress on the collapse load depends on the 
ratio ( h / a )  and the load type. The shear stress in a thin plate (h 
a) in the plastic limit state is much smaller than the normal stress 
~r~ except in a very small area near a concentrated load. However, 
when the plate is subjected to an intensive implosive pressure, 
punch failure should be included even for a very thin plate and the 
influence of shear stress can no longer be ignored. 
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A Novel Formulation for the Exterior- 
Point Eshelby's Tensor of an 
Ellipsoidal Inclusion 

J. W. J u  1'3 and L. Z. Sun  :'3 

1 Introduction 

Micromechanics of heterogeneous materials is of great interest 
to researchers in many science and engineering disciplines. It is not 
only the tool for determining the local stress and strain fields in 
materials, but also the basis for homogenization to obtain effective 
mechanical properties of composites. Although the concept of 
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Table 3 Plastic limit loads for a simply supported circular plate 

p(r) r 

b=O I'2.00 25.13 

b=0.5 12.78 26.78 

b-1 13.36 27.98 

]+r 

4.00 20.94 

4.31 22.56 

4.53 23.73 

1 

p. 

6.00 

6.49 

6.84 

2-r 

P, ~ P, 

18.85 4 .00  16.76 

20.38 4 .34  18.17 

21,49 4 .58  19.17 

]-r 

i1 .P~ 

12.01 12.57 

13.02 13.64 

13.75 14.40 

in which dlz and d2~ (i = 1 - 5) are constants related to the 
continuity conditions, and they are 

1 - a i a i +  1 - -  a i 1 ai 
__ ai+t-al d2 i Fi 

d l i  1 --  ai+ 1 r i  ' 1 - -  ai+ 1 

( i =  1 - 4 ) .  (18) 

Substituting these integral constants into (7), the velocity field of 
the clamped circular plate is obtained. 

5 Discussion and Conclusion 

Tables 3 and 4 list the plastic limit load factors and the total 
limit loads of simply supported and clamped plates for five linearly 
distributed load functions in terms of the three particular yield 
criteria, namely the Tresca criterion, the Mises criterion (approx- 
imated by b = 0.5 of the UYC), and the twin shear stress criterion. 
It can be noticed that the plastic limit load factor as well as the total 
limit load by the Mises criterion are about 6.5 percent to 8.5 
percent larger than those by the Tresca criterion for the simply 
supported plate and about 12.4 percent to 12.8 percent for the 
clamped plate. While those by the twin shear stress criterion are 
about 10.5 percent to 14.5 percent, for the simply supported plate, 
and 20.9 percent to 21.5 percent, for the clamped plate larger than 
those by the Tresca criterion. Increasing the load distribution along 
the plate radius leads to smaller changes between those by differ- 
ent yield criteria, but a larger total limit load, implying that 
increasing the load distribution might improve the load-carrying 
capacity of a plate. For a uniformly distributed load, the present 
results are in good agreement with previous results from different 
yield criteria (Hopkins and Wang, 1954; Hodge, 1954; Ma et al., 
1998) as indicated in Table 5. For a simply supported plate, the 
circumferential moment is no longer constant if b ~ 0 is applied 
in UYC. Using the Tresca criterion, it was proved in an earlier 
paper (Hodge, 1954) that the equilibrium equation for a clamped 
circular plate is invalid if the m o  ~ m r  trajectory is on line EF. If 
UYC is used, however, it is straightforward to extend the trajectory 
to EF to obtain a nonsingular solution. The solution based on the 
Tresca criterion is approximated by using a small b value, e.g., 

Table 4 Plastic limit loads for a clamped circular plate 

p(r) r 

PT 

b=0 22.98 48.13 

b=0.5 25.83 54.09 

b=l 27.78 58.19 

Table 5 

I + r  

P~ 

7.57 39.66 

8.54 44.72 

9.20 48.19 

1 

PT 

11.26 35.37 

12.72 39.96 

13.71 43.06 

2-r 

7.45 31.26 

8.40 35.19 

9.05 37.91 

1-r 

PT 

21.87 22.90 

24.60 25.76 

26.46 27.71 

Comparison of the limit loads with previous results ( M o l a  2) 

Tresea 
Present (b=0) 

Mises Hopkins & Wang 
Present (b=0.5) 

Yu Ms, et al 

criteria Simply supported Clamped 
Hopkins & Wang 6.00 11.26 

6.00 11.26 

ts.~aatt~.! 

6.50 12.50 
6.49 12.72 
6.84 13.71 
6.84 13.71 

b = 0.001. The velocity fields corresponding to any criterion 
(b v ~ 0 in UYC) other than the Tresca criterion distribute nonlin- 
early along the plate, which avoids a single linear variation and a 
singularity at the plate center as given by the Tresca criterion (b = 
0 in UYC). 

The solutions obtained satisfy both the static admissibility of the 
moment fields and the kinematical admissibility of the velocity 
field, thus they are the exact solutions of the plates in the plastic 
limit state. It has been shown that the limit analysis by using the 
unified yield criterion can give the plastic limit solutions of various 
yield conditions in a uniform manner. Upper and lower bounds of 
the plastic load factor and the total limit load are deduced by the 
two bound criteria corresponding to b = 0 and b = 1 in the 
unified yield criterion. The solutions based on different criteria 
might differ by more than ten percent for a simply supported 
circular plate, and more than 20 percent for a clamped circular 
plate. 

The effect of shear stress on the collapse load depends on the 
ratio ( h / a )  and the load type. The shear stress in a thin plate (h 
a) in the plastic limit state is much smaller than the normal stress 
~r~ except in a very small area near a concentrated load. However, 
when the plate is subjected to an intensive implosive pressure, 
punch failure should be included even for a very thin plate and the 
influence of shear stress can no longer be ignored. 
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A Novel Formulation for the Exterior- 
Point Eshelby's Tensor of an 
Ellipsoidal Inclusion 

J. W. J u  1'3 and L. Z. Sun  :'3 

1 Introduction 

Micromechanics of heterogeneous materials is of great interest 
to researchers in many science and engineering disciplines. It is not 
only the tool for determining the local stress and strain fields in 
materials, but also the basis for homogenization to obtain effective 
mechanical properties of composites. Although the concept of 
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micromechanics can be traced back to many decades ago (e.g., 
Goodier, 1937; Edwards, 1951), Eshelby (1957, 1959) outlined a 
general method to derive the local strain and stress fields. These 
fields may be due to the stress-free transformation strains which 
act in a homogeneous ellipsoidal inclusion embedded in an infinite 
elastic medium. The local stress and strain fields can also be 
induced by the applied far-field loading on an infinite medium 
containing an ellipsoidal inhomogeneity. Subsequently, microme- 
chanics of solids has been widely developed. See, for example, the 
comprehensive reviews by Mura (1987) and Nemat-Nasser and 
Hori (1993). The term "eigenstrain" was given by Mura to replace 
the term "stress-free transformation strain" because eigenstrains 
can be referred to as such inelastic strains as thermal expansion, 
phase transformation, initial strains, plastic strains, misfit strains, 
fictitious inelastic strains, and so on. 

In the present work, the Eshelby's tensors for an ellipsoidal 
inhomogeneous inclusion in an infinite matrix are revisited. We 
first define the outward unit normal vector for an imaginary ellip- 
soid. Subsequently, we propose a new formulation for the exterior- 
point Eshelby's tensor which represents the strain and stress in- 
fluences of an ellipsoidal inclusion upon a local matrix material 
point. In particular, explicit tensorial components are given for the 
exterior-point Eshelby's tensor for a spheroidal inclusion. Finally, 
we discuss the interfacial discontinuities of Eshelby's tensors and 
strain/stress tensors across the boundary between the matrix and 
inclusion. 

2 E s h e l b y ' s  T e n s o r s  for  an E l l ipso ida l  I n h o m o g e n e o u s  
I n c l u s i o n  

Let us begin by considering an elastic ellipsoidal inhomoge- 
neous inclusion ~/(phase 1) embedded in a distinct elastic infinite 
medium 23. It is assumed that the subdomain ~ and the matrix [23 
- ~]  (phase 0) are perfectly bonded at the interface. 

2.1 Strain/Stress Distributions and Eigenstrains. The 
constitutive equation of stress ~r(x) and strain c(x) at a local point 
x in the/3-phase (/3 = 0 or 1) reads 

~(x) = C<~: c(x) (1) 

where the symb})l ":" denotes the tensor contraction. The elasticity 
tensors C <° of the inclusion and C <°) of the matrix are isotropic and 
can be expressed as 

C (t3)= A~I ® 1 +2/x~I ,  ( / 3 = 0 ,  1) (2) 

where the symbol ® denotes the tensor product, and Ao and/xz are 
the Lain6 constants of the/3-phase. Moreover, 1 and I signify the 
second-rank and fourth-rank identity tensors, respectively. 

Assume that the uniform eigenstrain tensor c' is prescribed in 
the inhomogeneous inclusion l~ and, at the same time, the entire 
medium is subjected to the far-field applied loading. Eshelby 
(1957, 1959) proposed a fourth-rank tensor S which is commonly 
referred to as the Eshelby's tensor to describe the strain and stress 
fields in the inclusion domain. The Eshelby's tensor is defined as 

S(x) ~ I G(x - x ' ) dx '  (3) 
a~ 

in which x is the local point inside the inclusion domain 1~. In 
addition, the integrand G(x - x') is the fourth-rank Green's 
function tensor with the following indicial expression (cf. Ju and 
Chen, 1994): 

1 
Gqkt(X - x ' )  : 8qr(l -- vo)l lx - x ' l l  ~ 

+ 3Vo(Sjknjnt + 6itnjnk + 6jkninl + 6itnink) 

BRIEF NOTES 

+ 38i~nknl + 3(1 - 2vo)6~tninj 

- 15njnjn~nt] (4) 

where v0 is the Poisson's ratio of the matrix material and n is the 
unit vector which is defined as n =- (x - x')/l[x - x'l[. Further, the 
symbol [I.l[ denotes the L2-norm of a vector, and 6~j is the Kro- 
necker delta. 

Esbelby (1957) showed that, after carrying out the volume 
integration on the inclusion domain, the Eshelby's tensor S does 
not depend on the local point x in an ellipsoidal domain. Thus, the 
total strain field e and the total stress field cr inside an ellipsoidal 
domain are also uniform, and can be expressed as 

c = c  ° + S :  c**,  x E ~  (5) 

o -=  ~r ° +  C ( ° ) . ( S - I )  : c**, xE1% (6) 

where " • " denotes the tensor multiplication operation. Moreover, 
we have go = C(0) : c0. If the entire medium is loaded by the 
specified far-field applied stress tensor o "°, then the corresponding 

• strain c ° is derived (not specified) by this relation. On the other 
hand, if the entire medium is loaded by the specified far-field 
applied strain tensor c °, then the corresponding stress cr ° is also 
derived (not specified) by the above relation. 

In Eqs. (5) and (6), the total eigenstrain c** can be shown to be 
(cf. Sun, 1998) 

c** = ( S + A )  -1 :  (B : C - c  °) (7) 

where the fourth-rank elastic-phase "mismatch tensors" A and B 
are defined as 

A = [C (1) - C (°)]-l" C(0) ; B = [ C  (1) - C (0)] - 1 .  C ( l )  (8) 

In fact, the total eigenstrain e** is the sum of the prescribed 
eigenstrain c' and the far-field load-induced eigenstrain c* (the 
"equivalent eigenstrain") of the inhomogeneous inclusion, where 
c* takes the form 

c* = (S + A) -j : [ (I  - S) : c ' -  c°] .  (9) 

It is noted that the equivalent eigenstrain c* is not equal to [ - ( S  + 
A) -~ : c°], except where c' = 0. That is, when c' = 0, c* reduces 
to the "noninteracting eigenstrain" (inhomogeneity-induced) c *° 
previously defined by Ju and Chen (1994). 

If one desires to obtain the strain and stress fields at a material 
point x which is outside the ellipsoidal inclusion (i.e., in the 
matrix), then one needs to introduce another fourth-rank tensor 
G(x) as follows (Eshetby, 1959, and Mura, 1987): 

I](x) ~ ( G(x - x ' ) dx ' .  (10) 
a~  

It is observed that the only difference between the right-hand sides 
of Eqs. (10) and (3) is that x is in the matrix in Eq. (10) whereas 
x is inside the inclusion in Eq. (3). To avoid confusion, we shall 
refer to the Eshelby's tensor S as the interior-point Eshelby's 
tensor, and l](x) as the exterior-point Eshelby's tensor in what 
follows. 

Once the exterior-point Eshelby's tensor G(x) is obtained, the 
total strain field c and total stress field o" in the matrix domain can 
be derived as (Eshelby, 1959; Mura and Cheng, 1977; and Mura, 
1987) 

c(x) = e  ° + ( ~ ( x )  : c**, x E  2 3 - f ~  (11) 

~r(x) = o "°+  C ~°)'(](x) : c**, x E  2 3 -  [ l  (12) 

where the details for computing c** can be found in Sun (1998). 

2.2 Derivation of the Exterior-Point Eshelby's Tensor. In 
this section, we will derive the exterior-point Eshelby's tensor in 
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Fig. 1 A schematic representation of an enlarged Imaginary ellipsoid 
and Its outward unit normal vector fi 

detail. Let the center of an ellipsoidal inhomogeneous inclusion be 
the origin of the Cartesian coordinate system (x, ,  xz, x~). Accord- 
ingly, the inclusion domain can be expressed as 

x~xi x~ x~ x~ 
a - T - < l ,  or a-~+a--~+a-~-<l (13) 

where a~ (I = 1, 2, 3) is one of the three semi-axes of an ellipsoid. 
In addition, Eq. (13) follows Mura's (1987) tensorial indicial 
notation; i.e., repeated lowercase indices are summed up from 1 to 
3 while uppercase indices always take on the same numbers as the 
corresponding lowercase ones but are not summed up. 

For any point x within the matrix phase, similar to Mura (1987), 
an imaginary ellipsoid based on the real inclusion (Eq. (13)) can be 
constructed as 

xixi 
a~ +-----A = 1 (14) 

where A is taken as positive (A -> 0) and can ~ be uniquely deter- 
mined in terms of the local point x of the matrix and a ,  from Eq. 
(14). Further, let us introduce the new outward unit normal vector 
fl at a matrix point x on the imaginary ellipsoid surface as (see Fig. 
1) 

in which 

Xi 

a, = (a~ + x) O, fO~5 (15) 

Xi 
O(A) = O,(A)O,(A) and O,(X) = a~ + )t" (16) 

With the help of the above definitions and after lengthy deriva- 
tions, the exterior-point Eshelby's tensor G(x) can be finally ex- 
pressed in terms of fi: 

= SIK(A)6ij6kt -t- ~il6jk) "~" 

"~- S(K4)( X ) ~k ln ia j  -~- S ~5)( A ) ( 6ikl~jal -4- 6ilaj~k) 

+ S~6)(A)(gjkn,a, + 6j,n,nk) + s~sT~cz(A)n,nfik ~, (17) 

where all the components of G(x) are given by 

/)0 
s~(a)  - 2(1 - ~,o) J,(X) 

1 [ a~ a~ ] 
+ 4 ( 1  Vo~--~ ~ 2 - -  2 [.a, - a r  Ji(A) + a t -  al Jx(*) J 

(18) 

1 
S~j2)(A) = - ~ [J,(A) + J,(A)] 

1 [ a~ a 2 ] 
+ 4(1 VO~ ~ J,(A) + ~--s (19) [ a , -  ~ a~ ~J~(X) 

p~(X) 
S~3)(A) - 2(1 - Vo) [1 - p~(A)] (20) 

p~(X) 
S~)(A) - 2(~ - vo) [1 - 2 v o -  p~(a) ]  (21) 

p'(a) 
S~5)(A) - 2(1 - Vo) [vo - p~(X)] (22) 

p~(a) 
S~s6)(A) - 2(1 - v0) [Vo - psZ(A)] (23) 

(7) P 3 ( X )  I SUKL(A) 2(1 Z ~'o) 2[p2()t) + PE(A) + P~()~) + P~(~')] 

4pit(A) ®' (X)  ®re(A) ] 
+ p,,()t)pm(A) -- @(A) 5 (24) 

and pi(A), p(A), and J/(A) are defined as 

a l  
p l ( ) t )  = a l E ,  p ( A )  = [ p l ( ) k ) p 2 ( A ) p 3 ( A ) ]  1`3, 

f p3(x) 
J,(A) = a ~  dA. (25) 

It is noted that the integral Ji(A) cannot be integrated explicitly but 
can be expressed by the standard elliptic integrals. However, if the 
inclusion is spheroidal (a2 = a3 -~ a l ) ,  we can then integrate 
Ji(A) explicitly and obtain the components of exterior-point Esh- 
elby's  tensor. See Section 3 for details. 

The expressions and coherent tensorial structures in Eqs. (17)- 
(24) for the exterior-point Eshelby's tensor are new and proposed 
for the first time in the literature. It can also be shown that Eq. (17) 
is equivalent to Eq. (11.41) in Mura (1987). However, compared 
with our new formulation, Mura's expression is unfinished, not 
final, and not explicit. This is, in part, due to the fact that one 
would have to derive the complicated first and second derivatives 
of the first and second elliptic integrals in Mura's expression. More 
importantly, our formulation is geometrically meaningful (in terms 
of the new outward normal vector fi) and features a common 
indicial structure in comparison with that of Mura (1987). There- 
fore, our treatment is finished, final, explicit, and compact. 

Similarly, the interior-point Eshelby's tensor S takes the form 

Siikt = S~K(O)606kt(l) + Su(2~(O)(6ik6jt + 6it6jk ) (26) 

where 

1) o 

S~r)(O) - 2(1 - Vo) J i ( O )  

+ 4(1 vo-------) ~ L a, J,(O) + Jx(O) (27) 

1 
s ~ ( o )  = - ~ [J,(O) + Jj(O)] 

+ 4(1 vo---------) ~ Jl(O) + ~ Jj(O) (28) 
a I - -  a j  a j  - -  a I 

with 

J,(0) = J,()t)lx=o. (29) 

Here, S~)(0) and S~sZ)(0) in Eqs. (27) and (28) are the special cases 
of S~(A)  and S~sZ)()t) in Eqs. (18) and (19) by setting A = 0. It is 
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also observed that the interior-point Eshelby's tensor depends only 
on the Poisson's ratio of the matrix and the three semi-axes of the 
ellipsoidal inclusion. 

~(2) In general, 3u is a symmetric tensor while SJJ ) is not. Therefore, 
the interior-point Eshelby's tensor is of minor symmetry but not of 
major symmetry; i.e., S~ m = S;~,~ = Sa~ ¢ S~,~. The only 
exception for the major symmetry is that the Poisson's ratio of the 
matrix is equal to zero or the inclusion becomes spherical. 

3 Expl i c i t  C o m p o n e n t s  o f  the  E x t e r i o r - P o i n t  E s h e l b y ' s  
T e n s o r  for a S p h e r o i d  

Let us assume that a~ ¢ a2 = a3; i.e., the spheroidal inclusion 
is aligned with the longitudinal x x-axis. The spheroidal aspect ratio 

is defined as c~ ~ aJa2 .  The explicit formulas for the first two 
components S°)(A) and s(a)(A) of the exterior-point Eshelby's 
tensor in Eqs. (18)-(19) can be shown to be 

S? i ) (~ )  = -4Up a ~ -  1 g(A) 3(c~ 2 -  1) p~(k) 

+ 4Vo+ g r - i ~  p,(~)p~(~,) (3o) 

[ 2 ~ 2 +  1] 
SI~)(A) = S?3)(A) = - 4 v 0  + ¢x2 _ 1 g(A) 

+ [4v0 c-~2eC~l]p,(A)p~(A ) =  (31) 

s~'?(x) = s~?(x) 

= [ - 2 v o  

s~)(~) = s~(x) 

and 

= [ - 2 v 0  

20e 2 + lq  2 a  2 
U S  f i g ( A )  a 2 -  1 p i ( k )p~(A)  (32) 

s # ( x )  ~') = = S 33 ( ) t )  

4c~ ~ -  1 ] a 2 p~(A) 
+ 4 ( a  2 1)J g(A) + 2(R2 _ 1) Oi(A) (33) 

40~ 2 - 2]  2 
S~?(A) = - 4 v o  + ~ J g ( a )  3(~ ~ -  1) p~(a) 

- [4vo 4or 2 - 2"] 2 
= f J p,(;~)p2(;0 

s~)(x) = ~) 3 1 3 ( ~  ) = 8~2)(~ . )  = S ~ 2 ) ( ~ )  

= - v o  o~2-- g (M 

2 2 

s ~ ( x )  = s~)(x) = s~)(x) = s~)o,)~3, 

[ 4 ~ - 7  ] o~ ~ 
= g(A) + 2 ( ~ 2 _  1) p,(A) 

2Vo 4(¢¢z -~) P4(A) 

where 

BRIEF NOTES 

Furthermore, k can be solved as 

r 2 . . . .  a~ - a 2 + , j ~  + a~ a~) 2 4(a~ az)x~2 2 

A =  
2 

(38) 

in which r is the distance between the local point x in the matrix 
and the origin of the coordinate system. 

All other components of the exterior-point Eshelby's tensor 
have previously been derived in Eqs. (20) to (24). 

4 D i scont inu i t i e s  in  E s h e l b y ' s  Tensors  and  S tra in /  
Stress  O v e r  Inter face  

From Section 2, it is clear that the exterior-point Eshelby's 
tensor G(x) and the interior-point Eshelby's tensor S represent the 
total eigenstrain contributions to the strain/stress fields of the 
matrix and inclusion, respectively. An interesting question is 
whether or not the exterior-point Eshelby's tensor will reduce to 
the interior-point Eshelby's tensor when the local point x in the 
matrix moves to the matrix/inclusion interface as a limiting case. 
From our explicit formulation of the exterior-point Eshelby's 
tensor G(x) in Eq. (17), when x is on the interface (A = 0 or Pi = 
1, with i = l ,  2, 3), G(x) reduces to 

+ s~3~(o)(,,A, + *,~,) - _ _  
V0 

1 w 110 
6kli~.ii~ j 

1 

1 
+ 1 - v------o fiifijfik~l (39) 

where fi recovers the outward unit normal vector to an ellipsoidal 
inclusion. Clearly, G(x) generally does not reduce to S. The 
discontinuity (difference) in the two Eshelby's tensors at the 
interface can be written as 

1 Up 
- = - -  &~fik& -- - -  3k~fi~; GUkl(X) Sijkl 1 -- VO 1 - Vo 

(34) 
1 
2 (3ikfifit + 3ilfifik + 8jkfifil + 3jr&ilk). (40) 

Physically, the total eigenstrain tensor ~** is zero in the matrix 
and nonzero (Eq. (7)) in the inclusion according to the Eshelby's 
equivalent inclusion principle. Therefore, the total strain and total 
stress tensors can be discontinuous on the boundary (Hill, 1961; 

(35) Mura and Cheng, 1977; Mura, 1987). By subtracting Eq. (5) from 
(11), we obtain 

[~] _~ ~(out)_ qEO~)= (G _ S) : ~** (41) 

where [ • ] denotes the jump in the quantity under consideration at 
(36) the boundary between the inclusion and the surrounding matrix 

material, and the preceding superscripts (out) and (in) denote 
quantities just outside and just inside the inclusion, respectively. 

g ( x )  = 
c~ 2 -  1 pl(A) + (c~ 2 -  1) 3/--------~ In [ ( a  2 -  1)i/2p2(A ) + p l ( A  ) j , 

o~ ~ p ~ ( X )  o~ o~ 
O~ 2 - -  1 pi(A) + (1 - o~2) 3/2 tan 1 (1  - -  a 2 )  l / 2 p l ( A  ) ' 

f o r a >  1; 

for a < 1. 
(37) 
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Clearly, the exterior-point Eshelby's tensor does n o t  coincide with 
the interior-point Eshelby's tensor even when the local point x in 
the matrix moves to the interface. 

In the present case, the jump in the total strain tensor across the 
interface can be derived as 

[~] = ½ ( A  ® f i + f i  ® A) (42) 

where fi reduces to the outward unit normal vector to the ellipsoi- 
dal inclusion. Furthermore, )t defines the vector of proportionality 
constant (the magnitude of the jump) determined explicitly by 

1 
- 1 -  v0 [f i :  ~** : f i -  v 0 t r ~ * * ] f i - 2 ~ * *  : fi (43) 

where tr ~** is the trace of ~**. It can be shown that our above 
expression for the proportionality constant )t is equivalent to Eq. 
(6.8) of Mura (1987, p. 39) for an isotropic inclusion and matrix 
after some lengthy derivations. However, the present formulation 
is more explicit and easier to use. 

On the other hand, the interfacial jump in the stress tensor 
becomes (cf. Mura and Cheng, 1977; and Mura, 1987) 

[or] ~ o "(°ut) - o "0"/= C(°): ([~] + E**). (44) 

The above equation is useful for evaluating the stress just outside 
the inclusion when the stress just inside the inclusion is known. 

5 C o n c l u s i o n s  

The Eshelby's inclusion problem for an ellipsoidal inhomoge- 
neous inclusion in an infinite matrix is revisited. By introducing 
the new outward unit normal vector of an enlarged imaginary 
ellipsoid, a novel formulation is derived for the exterior-point 
Eshelby's tensor which represents the strain and stress influences 
of an ellipsoidal inclusion upon a local material point within the 
matrix (not inclusion). The proposed expression for the exterior- 

point Eshelby's tensor is simpler, more explicit, compact, geomet- 
rically meaningful, and with a common indicial structure, com- 
pared with that of Mura (1987). As a special case, we present the 
explicit tensorial components of the exterior-point Eshelby's ten- 
sor for a spheroidal inclusion. Finally, it is demonstrated that the 
exterior-point Eshelby's tensor does not become the interior-point 
Eshelby's tensor when the matrix material point moves onto the 
boundary between the matrix and inclusion. Interfacial disconti- 
nuities are obtained for Eshelby's tensors and strain/stress tensors. 
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The Elastodynamic Green's Function for a 
Torsional Ring Load t 

M. Rahman. 2 In the above article, Dr. Lu derived the time- 
harmonic displacement response of a homogeneous, elastic isotropic 
medium under a point force of magnitude 2~" uniformly distributed 
along a circular ring in the tangential direction. Solutions for ring 
loads are useful, especially in the context of axisymmetric boundary 
value problems of the elasticity theory, since they can be used as 
Green's functions for deriving the governing integral equations for 
axisynametric mixed boundary value problems. However, the author's 
claim that the corresponding solutions for elastodynamics had not 
existed in the literature before he derived the present one is incorrect 
and misleading. In the article by Rahman (1995), elastodynamic 
solutions for axial, radial shear, and torsional ring loads have been 
derived for both time-harmonic and transient cases. In particular, the 
following solution has been derived in Rahman (1995) for a time- 
harmonic torsional ring source acting on the plane z = z0 (the time 
dependence is taken in the form e~'): 

1 f o  ~r e -ik2R 
u*(r ,  z) = -- cos th ~ dth, 

'71" 
(1) 

where k2 = to/C2 (to is the circular frequency of vibration and c2 
is the velocity of shear wave propagation) and R = 
~ / r  2 + r~ + ( z  - zo) 2 - 2rro cos q5 (r0 is the radius of the cir- 
cular ring). Some examples illustrating the use of the Green's 
function (1) have been given in Rahman (1995, 1994). Of course, 
expression (t) can be written in the form of an infinite series by 
expanding e -~k2R. However, the resulting series would converge 
well for smaller values of k2 only. Therefore, the integral form of 
the Green's function (1) is most suitable for numerical purposes. 
The issues concerning effective numerical evaluation of the inte- 
grals of the form (l) are discussed at greater length in the relevant 
literature, for instance, by Mittra (1973) in the context of mathe- 
matically similar problems in electromagnetic scattering theory. In 
this regard, it is noteworthy that Dr. Lu's  double-series solution for 
the torsional ring load is the least effective. He did not provide any 
result regarding how well his double series converges, nor did he 
present any example illustrating the use of the Green's function he 
derived. 

Finally, Dr. Lu attempted to represent the elastodynamic 
Green's function as the sum of a singular part (the corresponding 
static solution for the ring load (Kermanidis (1975)) and a regular 
part--a procedure often exercised in boundary value problems of 
elastodynamics for writing the corresponding governing integral 
equations as the sum of a singular part involving the elastostatic 
ring solution as the Green's function, and a regular elastodynamic 
part and then inverting the singular part using well-known methods 

for the corresponding elastostatic problems. It is interesting that 
although Dr. Lu also agrees that the singular part should be the 
corresponding elastostatic solution, a close inspection of his ex- 
pression (22) and (22a), however, has revealed that the singular 
part of his solution is by no means the corresponding elastostatic 
solution, it being still dependent on the wave parameter kr! 
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Author's Closure 3 

This author has carefully read Dr. Rahman's papers (Rahman, 
1994, 1995), and reached conclusion that in these two papers Dr. 
Rahman had not derived the solution to the integral in Eq. (1) 
of the discussion. Rather, Dr. Rahman gave solutions for to = 
0, (or equivalently, k~.2 = 0). Here, solutions are defined as 
mathematical expressions without the integral sign. Dr. Rahmau 
should, in this author's opinion, evaluate integrals (i.e., get rid 
of the integral signs) in Eq. (18), (Rahman, 1994), and Eqs. 
(13) and (31), (Rahman, 1995), without imposing the condition 
O) ~ 0.  

While the major task of this author's paper (Lu, 1998) was to 
derive the elastodynamic Green's function for a time-harmonic 
torsional ring source, Dr. Rahman's discussion of the paper does 
provide this author an opportunity to discuss the converging rate of 
the Green's function. The two-dimensional Green's function for a 
time-harmonic line source can be expressed in terms of Hankel's 
1unction, H o ( z ) ,  (Achenbach, Gautesen, and McMaken, 1982). If 
the expression of the regular term of the Green's function for a 
torsional ring source, Eq. (22b), (Lu, 1998), is compared to the 
ascending series expansion of H0(z) (Abramowitz and Stegun, 
1964), it is seen that the Green's function converges at least at the 
same rate as Ho(z )  for any given source location and observation 
point. This is expected since both functions are responses to line 
sources. The use of the words "least effective" by Dr. Rahman is 
therefore inappropriate. 

As for the statement that Dr. Rahman made in the last paragraph 
of the discussion, this author simply points out a well-known fact 
that for a static problem kT = kl~ = 0, which is equivalent to 
t o = 0 .  

t by Y. Lu and published in the Sept. 1998 issue of the ASME JOURNnL OF APPLIED 
MECHANICS, Vol. 65, pp. 566-568. 

2 3019 W. 13 Mile Road, Apt. 214, Royal Oak, MI 48073. 
3 y.  Lu, Southwest Research Institute, P.O. Box 28510, San Antonio, TX 78228- 
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Bernoul l i  N u m b e r s  and  Rotat ional  Kinemat ics  1 

W. Pietraszkiewicz. 2 The kinematic differential Eqs. (21) and 
(22) of Pfister (1998) are expressed through unconventional tensor 
power series coe (.) and Ber (.), and the proposed proof is indirect 
and confusing indeed. Perhaps it may be of some interest to readers 
of this Journal to note that equivalent equations follow directly as 
a result of simple transformations, which are analogous to those 
used by Pietraszkiewicz and Badur (1983) in discussion of spatial 
changes of the rotation field in continuum mechanics. 

With notation used by Pfister (1998), the standard representation 
of the rotation tensor R E SO(3) given already by Gibbs (1884) 
reads 

R = c o s q t l  + s i n W n X  1 +  ( 1 - c o s W ) n @ n ,  (1) 

where ® denotes the tensor product. For a time-dependent R = 
R(t) it follows from (1) that 

R =  ( - s i n W 1  + c o s W n X  1 + s i n W n ® n ) ' ~ "  

+ s i n W f i x l + ( 1 - c o s ~ ) ( f i ® n + n ® f i ) .  (2) 

With R T denoting the transposed rotation tensor (=  R-I) ,  the 
angular velocity vector ~ is an axial vector of the skew-symmetric 
tensor RR T, that is RR T = ~ x 1. Introducing (1) and (2) into the 
left-hand side of this relation, after some algebra we obtain 

l} = sin ~ f l  + (1 - cos ~ ) n  X fi + '~'n. (3) 

The Eq. (3) can be solved for fi leading to 

1 1 
fi 2 tg ~ / 2  (D., - '~"n) - ~ n X ~ .  (4) 

The simple vector Eqs. (3) and (4) are just the canonical forms 
of the kinematic differential equations equivalent to (21) and (22) 
of Pfister (1998). Indeed, introducing the finite rotation vector air 
= ~ n  and taking into account that 

'tI.r = ~ n  + ~f i ,  air. a,It = air • n = q!t~, 

. x ( .  x . )  = ( . . # ) .  - ~2~, (5)  

the relations (3) and (4) can be transformed into the forms 

O = A " t - i  r, ' t i r = A - ' . [ l ,  (6) 

where 

1 - c o s ~  ~ - s i n  
A = I +  ~i#2 ~.P" x 1 + ,ti/, 3 ~ X (lit X 1), 

i By F. Pfister, and published in the Sept. 1998 issue of the ASME JOURNAL OF 
APPLIED MECHANICS, VO1. 65, pp. 758-763. 

2 Polish Academy of Sciences, Institute of Fluid-Flow Machinery, 80-952 Gdafisk, 
Poland. 

1 1 
A-' =~("qt®qt)-~qtx I 

1 
x (qt x 1). (7) 

2q t tg ~ / 2  

The Eqs. (6) with (7) coincide with (21) and (22) of Pfister (1998), 
if trigonometric functions in (7) are replaced by Gibbs' functions 
gibe(.). However, in the Eq. (22) of Pfister (1998) two obvious 
misprints should be corrected: 1 should be replaced by 1, and the 
closing parenthesis should be inserted after Ber ( - q t ) .  

For other definitions of the finite rotation vector used in the 
literature, such as tg q,72n, 2 tg qr/2n, sin • n, or tg ~ /4n ,  for 
example, appropriate equivalent forms of the kinematic differential 
equations can easily be derived by analogous transformations of 
(3) and (4). 

References  
Gibbs, J. W., 1884, Elements of vector analysis, New Haven, CT, privately printed, 

pp. 1-36, 1881 ; pp. 37- 83, 1884 (reprint in The Collected Works of J. Willard Gibbs, 
VoL 2, Part 2. Longmans, Green and Co., New York, 1928). 

Pietraszkiewicz, W., and Badur, J., 1983, "Finite rotations in the description of 
continuum deformation," International Journal of Engineering Science, Vol. 21, No. 
9, pp. 1097-1115. 

Pfister, F., 1998, "Bernoulli Numbers and Rotational Kinematics," ASME JOURNAL 
OF APPLmD MECHANICS, Vol. 65, pp. 758-763. 

A u t h o r ' s  C losure  3 

I 'm happy to note Professor Pietraszkiewicz' interest in kine- 
matic differential equations (KDEs) and in my paper "Bernoulli 
Numbers and Rotational Kinematics?' Some of the points brought 
up in his discussion can readily be clarified in the following 
paragraphs. 

1 I could not agree that the "proposed proof is indirect and 
confusing." To set the record straight: Prof. P.'s proof is clearly 
less efficient than the one given in my paper. I would like to 
suggest that Prof. P. writes out the details of what leads "after 
some algebra" to his Eq. (3). The calculations are much more 
complex than shown in his discussion. The fact that his "run-of- 
the-mill-proof" leads to a jungle of never-ending equations is 
certainly one of the reasons that the KDE of the Rotation-vector qt 
has not found adequate attention in kinematics textbooks. 

Considering that I obtained the same result within a few lines 
(without leaving out "some algebra"), I feel that calling my proof 
"indirect and confusing" should be a rather unfair assessment. 

2 Prof. P.'s criticism that the KDEs are expressed "through 
unconventional tensor power series" could lead to a misinterpre- 
tation of my paper. 

In fact, it is actually one of  the main points of my paper (and was 
clearly stated in the Introduction), to extend Gibbs' ten,or-power 
series formulation of the rotation operator, R = exp(qt), to the 
KDEs of qt. Such a result is missing in Prof. P.'s work. Prof. P.'s 
arguments and formulations are similar to those found elsewhere 
in the literature (see, e.g., Shuster, 1993). Instead, my paper was 
written to achieve a more general goal, i.e., to advance the under- 
standing and to highlight the structure of KDEs through the intro- 
duction of meaningful tensor power series: 

• The importance of exp(tA) is well documented in the theory 
of difibrential equations. Lesser known is the differential 
equation of exp(~It), where the skew ~t is an arbitrary 
function of the scalar t: 

d 
exp(~t) = ~ .  exp(aIt), (1) 

3 F. Pfister, IPG Automotive Engineering Software + Consulting GmbH, P.O. Box 
210522, D-76155 Karlsruhe, Germany. 
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n = coe ( ~ ) "  ~ .  (2) 

I feel that this result in itself justifies the introduction of the 
co-exponent ial  series." 

coe (z) := (exp(z) - 1)lz ,  z ~ C. (3) 

In most textbooks the Bernoulli numbers B~ = ~, B~ i 
B3 = ~,  B4 = ~ . . . are def ined by 

z 1 B,  z2~. 
e x p ( z ) -  1 = 1 - ~ z - l -  ~ ( - 1 ) ~  ~v.t 

v = l  

(4) 

c~ 

Now, introducing the abriged notation Ber (z) := £ ( B d  
v = l  

2 v ! ) z  ~ (Bernoulli  series), one has coe (z)(1 - }z + Ber 
( - ( z ) ~ ) )  = 1. 

• Using this result (+  some mild mathematical conditions) we 
find the inverse of coe (T) (T: arbitrary tensor): 1 - ½ T + 
Ber ( -T2) .  The special case T = ~ gives 

(coe ( ~ ) ) - '  = 1 - ½ ~  + Ber ( _ ~ 2 ) .  (5) 

It is not clear to me how Prof. P. found his Eq. (7). I 
would like to suggest that he further substantiates his 
arguments.  

• From a purely rigorous mathematical  point of view, the 
choice of "primit ive" (sin (.), tan (.) . . . .  ) or "unorthodox" 
(Ber (.), gibe(.) . . . .  ) power series is immaterial .  However,  
there exist good motivations in favor of choosing "unor- 
thodox" series. First, as shown clearly in my paper, this 
choice results in strictly simpler expressions. Further, and 
computat ionally more important,  is the fact that by adopt- 
ing these series the problem can be solved without the 
need to calculate the norm of air, because air only appears 
quadratically. These facts render the arguments of Prof. P. 
tenuous at best. 

3 An alternative (and perhaps simpler) derivation of Eq. (24) 
was pointed out to me by Prof. Wohlhart (Wohlhart, 1998): 

is an eigenvector of the orthonormal tensor R, R • ~ = air. 
Time derivation gives 

R . q r  + R . a l t  = ~ .  (6) 

W i t h R ' R  r = ~ 1 1  = ~ ' R a n d R ' ~  = ~ o n e h a s  

air. f i  = (R - 1 ) .  ajt, (7) 

~ "  1l~ = (R - 1 ) ' ~ .  (8) 

4 Prof. P. correctly indicates two obvious misprints. Unfortu- 
n ateiy, three more need to be corrected. (i) p. 759, 1.18: 

( - 1 ) v [ ( ½ x ) 4 V ) / ( ( 2 v ) ! ) 2 ] .  ( i i )Eq .  (30): R ~ 1 + g i b ~ ( ~ 2 ) ~  
v=0  

+ gib2(qIr2)~ 2. (iii) Eq. (31): gibe(.) : =  ~ [ ( - 1 ) ~ ( ' ) ~ / ( 2 v  + 

i)!] ,  i = 0, 1, 2, 3 . . . .  ~=0 
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A Note on the Effective Lam6 Constants of  a 
Polycrystalline Aggregate of  Cubic Crystals t 

J.  C. Nadeau.  2 Given the publication of the note by Lubarda 
(1998), we would like to take this opportunity to generalize and 
extend the result presented therein. 

For an effectively isotropic material let bounds on the bulk K 
and shear/x moduli be given, respectively, by 

0 < ' ` - _ < K _ < K  + (1) 

0 <  ~ - _ <  /x_</x + (2) 

where a superscript + and - denote an upper and lower bound, 
respectively. As examples, these upper and lower bounds may, in 
the case of effectively isotropic composites, take the form of 
zeroth-order bounds (Nadeau and Ferrari, 1998), the Voigt/Reuss 
bounds (Hill, 1952; Paul, 1960), or the Hashin-Shtrikman bounds 
(Hashin and Shtrikman, 1963; Nadeau and Ferrari, 1998). The 
remaining three isotropic parameters: E, v, and X, (i.e., Young's  
modulus, Poisson's ratio, and a Lam6 constant, respectively) ex- 
pressed in terms of K and/x  are given by the familiar expressions 

9K/x 
E - ~  E (K ,  ~ )  - 3K + Ix 

3K - 2/x 

v-~  v(K, /x) - 2(3K + ~)  

x -= x ( ' ` ,  ~ )  = }(3 , ,  - 2 ~ ) .  

The corresponding bounds on these three parameters, in terms of 
the given bounds on "` and/,z, are 

0 < E -  := E(v : - ,  t x - )  --< E --< E(K +, ~ + ) = :  E ÷ (3) 

- 1  < v -  := v(K- ,  /.z +) ~- v ~ v(K +, / x - ) = :  v + < ½ (4) 

X-  := X(K-,  tx +) -< X-< X(K +, t * - ) = :  X +. (5) 

Note that the lower bounds v- and h are functions of the lower 
bulk modulus bound K- and the upper shear modulus bound /x  +, 
while the upper bounds v + and a + are functions of the upper bulk 
modulus bound "`+ and the lower shear modulus bound ~- .  

When the upper and lower bounds for Eqs. (1) and (2) are taken 
to be the Voigt/Reuss bounds for a polycrystalline aggregate of 
cubic crystals then Eq. (5) yields the result of Lubarda (1998). 
When the upper and lower bounds for Eqs. (1) and (2) are taken to 
be the Hashin-Shtrikman bounds then Eqs. (3) and (4) correspond 
to the results obtained by Zimmerman (1992). 
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n = coe ( ~ ) "  ~ .  (2) 

I feel that this result in itself justifies the introduction of the 
co-exponent ial  series." 

coe (z) := (exp(z) - 1)lz ,  z ~ C. (3) 

In most textbooks the Bernoulli numbers B~ = ~, B~ i 
B3 = ~,  B4 = ~ . . . are def ined by 

z 1 B,  z2~. 
e x p ( z ) -  1 = 1 - ~ z - l -  ~ ( - 1 ) ~  ~v.t 

v = l  

(4) 

c~ 

Now, introducing the abriged notation Ber (z) := £ ( B d  
v = l  

2 v ! ) z  ~ (Bernoulli  series), one has coe (z)(1 - }z + Ber 
( - ( z ) ~ ) )  = 1. 

• Using this result (+  some mild mathematical conditions) we 
find the inverse of coe (T) (T: arbitrary tensor): 1 - ½ T + 
Ber ( -T2) .  The special case T = ~ gives 

(coe ( ~ ) ) - '  = 1 - ½ ~  + Ber ( _ ~ 2 ) .  (5) 

It is not clear to me how Prof. P. found his Eq. (7). I 
would like to suggest that he further substantiates his 
arguments.  

• From a purely rigorous mathematical  point of view, the 
choice of "primit ive" (sin (.), tan (.) . . . .  ) or "unorthodox" 
(Ber (.), gibe(.) . . . .  ) power series is immaterial .  However,  
there exist good motivations in favor of choosing "unor- 
thodox" series. First, as shown clearly in my paper, this 
choice results in strictly simpler expressions. Further, and 
computat ionally more important,  is the fact that by adopt- 
ing these series the problem can be solved without the 
need to calculate the norm of air, because air only appears 
quadratically. These facts render the arguments of Prof. P. 
tenuous at best. 

3 An alternative (and perhaps simpler) derivation of Eq. (24) 
was pointed out to me by Prof. Wohlhart (Wohlhart, 1998): 

is an eigenvector of the orthonormal tensor R, R • ~ = air. 
Time derivation gives 

R . q r  + R . a l t  = ~ .  (6) 

W i t h R ' R  r = ~ 1 1  = ~ ' R a n d R ' ~  = ~ o n e h a s  

air. f i  = (R - 1 ) .  ajt, (7) 

~ "  1l~ = (R - 1 ) ' ~ .  (8) 

4 Prof. P. correctly indicates two obvious misprints. Unfortu- 
n ateiy, three more need to be corrected. (i) p. 759, 1.18: 

( - 1 ) v [ ( ½ x ) 4 V ) / ( ( 2 v ) ! ) 2 ] .  ( i i )Eq .  (30): R ~ 1 + g i b ~ ( ~ 2 ) ~  
v=0  

+ gib2(qIr2)~ 2. (iii) Eq. (31): gibe(.) : =  ~ [ ( - 1 ) ~ ( ' ) ~ / ( 2 v  + 

i)!] ,  i = 0, 1, 2, 3 . . . .  ~=0 
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A Note on the Effective Lam6 Constants of  a 
Polycrystalline Aggregate of  Cubic Crystals t 

J.  C. Nadeau.  2 Given the publication of the note by Lubarda 
(1998), we would like to take this opportunity to generalize and 
extend the result presented therein. 

For an effectively isotropic material let bounds on the bulk K 
and shear/x moduli be given, respectively, by 

0 < ' ` - _ < K _ < K  + (1) 

0 <  ~ - _ <  /x_</x + (2) 

where a superscript + and - denote an upper and lower bound, 
respectively. As examples, these upper and lower bounds may, in 
the case of effectively isotropic composites, take the form of 
zeroth-order bounds (Nadeau and Ferrari, 1998), the Voigt/Reuss 
bounds (Hill, 1952; Paul, 1960), or the Hashin-Shtrikman bounds 
(Hashin and Shtrikman, 1963; Nadeau and Ferrari, 1998). The 
remaining three isotropic parameters: E, v, and X, (i.e., Young's  
modulus, Poisson's ratio, and a Lam6 constant, respectively) ex- 
pressed in terms of K and/x  are given by the familiar expressions 

9K/x 
E - ~  E (K ,  ~ )  - 3K + Ix 

3K - 2/x 

v-~  v(K, /x) - 2(3K + ~)  

x -= x ( ' ` ,  ~ )  = }(3 , ,  - 2 ~ ) .  

The corresponding bounds on these three parameters, in terms of 
the given bounds on "` and/,z, are 

0 < E -  := E(v : - ,  t x - )  --< E --< E(K +, ~ + ) = :  E ÷ (3) 

- 1  < v -  := v(K- ,  /.z +) ~- v ~ v(K +, / x - ) = :  v + < ½ (4) 

X-  := X(K-,  tx +) -< X-< X(K +, t * - ) = :  X +. (5) 

Note that the lower bounds v- and h are functions of the lower 
bulk modulus bound K- and the upper shear modulus bound /x  +, 
while the upper bounds v + and a + are functions of the upper bulk 
modulus bound "`+ and the lower shear modulus bound ~- .  

When the upper and lower bounds for Eqs. (1) and (2) are taken 
to be the Voigt/Reuss bounds for a polycrystalline aggregate of 
cubic crystals then Eq. (5) yields the result of Lubarda (1998). 
When the upper and lower bounds for Eqs. (1) and (2) are taken to 
be the Hashin-Shtrikman bounds then Eqs. (3) and (4) correspond 
to the results obtained by Zimmerman (1992). 
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Vibrations of Elasto-Plastic Bodies (Springer Series on Founda- 
tions of Engineering Mechanics), by V. A. Palmov. Springer- 
Verlag, New York, 1998. 311 pages. 

R E V I E W E D  BY F. Z I E G L E R  1 

This book, translated by A. Belyaev, is actually a revised and 
carefully updated version of the Russian original, published in 
1976. it covers fundamental microplasticity, proper constitutive 
relations, and practical tools for the analysis of dynamic plasticity. 
By successfully developing such a uniform and applicable ap- 
proach to various important problems of energy-absorbing media 
and structures, the author has filled a major gap in the existing 
literature. Considering steady-state vibrations in elastoplastic bod- 
ies, the focus is on important applications in low-cycle fatigue of 
metals and to the applied theory of amplitude-dependent internal 
damping, also transient and random vibrations are well covered. 
The scier/tific community certainly looks forward to the author's 
sectional lecture to be delivered at the 20th ICTAM at Chicago in 
the year 2000. 

The controversy on decomposition of large strain, which has 
strongly influenced computational mechanics in the recent past, is 
resolved with elegance, based solely on thermodynamic consider- 
ations. These theorems appear as part of the fundamentals, which 
comprise the first two chapters, may (hopefully) alter the common 
and standardized routines which quite often lead to unreliable 
numerical results. 

The first chapter presents a brief overview of the basic concepts 
and methods of nonlinear continuum mechanics. Considerable 
attention is paid to thermodynamic principles, the general theory of 
rheological modeling (series and/or parallel connections of 
springs, dashpots, and St. Venant bodies) and the construction of 
microplasticity theories. Since rheology utilizes an additive de- 
composition of the strain rate tensor of finite viscoelasticity, elas- 
toplasticity and viscoelastoplasticity into elastic, viscous, and vis- 
coplastic parts, one section is devoted entirely to the applicability 
of decomposition methods. Three methods are compared, namely 
the additive decomposition of the strain applied to elastic and 
viscoplastic or plastic components, the additive decomposition of 
a strain tensor and the multiplicative decomposition of the defor- 
mation gradient. It is shown that only the first method is thermo- 
dynamically consistent. The thermodynamic inconsistency of the 
other methods is explicitly demonstrated. 

The second chapter is devoted mainly to the derivation of 
general amplitude-dependent internal damping in terms of plastic- 
ity theory. An analysis of a one-dimensional variant of a simple 
microplasticity theory in the cases of loading, unloading and cyclic 
deformation is carried out. It is shown that (i) superimposing a 
static load does not influence the energy dissipation in the ductile 
material under cyclic deformation, (ii) energy dissipation in ductile 
materials under cyclic deformation does not depend on frequency, 
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(iii) energy dissipation is nonlinear in general, linear dissipation is 
not feasible. 

Constitutive equations for elastoplastic materials in three dimen- 
sions are studied in the third chapter. Properties of the stress-strain 
curves of loading and unloading, as well as the properties of cyclic 
deformation diagrams are investigated. The method of harmonic 
linearization allows the author to introduce a complex shear mod- 
ulus which is shown to be independent of the frequency but 
depends upon the amplitude of the shear stress. 

The fourth chapter deals with assigned single-frequency vibra- 
tions of elastoplastic bodies of arbitrary shape. Closed-form ex- 
pressions for the coefficients of the equation for the amplitude- 
frequency characteristics and for the decay of vibration amplitude 
are derived by Galerkin's method. The formulae obtained are of a 
general character and are applicable to the analysis of vibrations in 
homogeneous and heterogeneous bodies. It is shown that the 
vibration decrement depends upon the stress state and the ampli- 
tude of the shear stress. The vibration decrements due to the 
derived equations are compared with those obtained in experimen- 
tal tests, and satisfactory agreement between the theory and test 
data is ascertained for the energy dissipation. 

The fifth chapter outlines the analysis of random deformations 
of elastoplastic materials. An analysis performed by means of the 
method of statistical linearization shows that the problem reduces 
to one within reach of the concept of the complex shear modulus. 
A few calculations for the complex shear modulus in the cases of 
polyharmonic deformations and for a simple type of broadband 
random deformation are given. 

Random vibrations of elastoplastic bodies are studied in the 
sixth chapter. An approximate solution of the boundary value 
problem is obtained with the aid of Galerkin's method by utilizing 
a series expansion in terms of normal modes of the elastic body. 
Closed-form expressions for the decrement of free vibration are 
derived for the case of asymptotically small plastic strains. Vibra- 
tion of an infinite plate subject to broadband loading is shown to 
depend essentially on the character of the energy dissipation over 
the whole frequency range, and not nearly on near-resonance 
domains as is the case for finite bodies. The spectral theory of 
homogeneous random fields is used to construct the solution. By 
modeling the energy dissipation with the aid of plasticity theory, 
the problem reduces to an implicit nonlinear integral equation, 
whose solution is rather easily obtained by the method of succes- 
sive approximations for any particular spectral density. The ap- 
proach applied to the analysis of plate vibrations is generalized to 
the vibration of shallow shells. 

The next chapter is devoted to the problem of vibration propa- 
gation in nonlinear dissipative media with various theological 
constitutive equations. It is found that, for example, vibration 
propagates down a rod for a finite distance in the case of a 
rigid-plastic material with linear hardening. In the case of so-called 
amplitude-dependent "internal friction," vibration occupies the 
entire rod and possesses a saturation property. This property im- 
plies that there exists a limit on the attainable level of vibration 
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which depends on the material properties, the distance from the 
vibration source and the frequency, but does not depend on the 
loading intensity. 

Vibrations in media with complex structure are analyzed in the 
eighth and final chapter. The medium is postulated to consist of a 
carrier medium and an infinite set of noninteracting oscillators 
with a continuous spectrum of eigenfrequencies attached to the 
carrier structure. The one-dimensional theory is analyzed in detail. 
The solution of the problem of vibration propagation indicates that 
the character of the vibration decay depends weakly on the oscil- 
lators' damping and is determined mainly by the spectral proper- 
ties of the set of oscillators. This implies the resonant character of 
vibration absorption, i.e., the oscillators act as dynamic absorbers. 
Applicability of the medium with complex structure for a phenom- 
enological description of complex dynamic structures is discussed. 

Another theory related to the problem of high-frequency vibrations 
in complex structures is the theory of vibroconductivity, which 
leads to an equation identical to that of thermal conductivity with 
a distributed heat sink, the latter modeling the vibration absorption 
by the secondary systems of the complex structures. 

Well written, well organized, with well-balanced references, and 
clear illustrations, Vibrations of Elasto-Plastic Bodies satisfies a 
long-standing need for a book providing models and analytical 
tools for real world problems in dynamic plasticity. It contains 
many ideas, approaches, and practical methods of solution, as well 
as comparisons with test results. This book is unique since it 
contains a systematic analysis of all aspects of vibrations in 
energy-absorbing media. Practitioners and researchers in the field 
of dynamic plasticity, and graduate students as well, will all profit 
from the study of this monograph. 
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